Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

Similar documents
Supporting Information

Synthesis of Enamides via CuI-Catalyzed Reductive Acylation of. Ketoximes with NaHSO 3

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Supporting Information for

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang*

Supporting Information

Supporting Information for

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Supporting Information

How to build and race a fast nanocar Synthesis Information

Pd(II) Catalyzed C3-selective arylation of pyridine with (hetero)arenes SUPPORTING INFORMATION

Supporting Information

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Supporting Information

N-Hydroxyphthalimide: a new photoredox catalyst for [4+1] radical cyclization of N-methylanilines with isocyanides

Supplementary Information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information

Supporting Information

Supporting Information. for

Electronic Supplementary Information

Supporting Information. Indole Synthesis via Cobalt(III)-Catalyzed Oxidative Coupling of N-Arylureas and Internal Alkynes

Palladium-Catalyzed Alkylarylation of Acrylamides with

Supporting Information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Supporting Information

SUPPORTING INFORMATION

Supporting Information

Supporting Information

Electronic Supplementary Information

Supplementary Table S1: Response evaluation of FDA- approved drugs

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

SUPPORTING INFORMATION

Supporting Information

Supporting Information

Supporting Information

SUPPLEMENTARY INFORMATION

Supplementary Information. Direct difunctionalization of alkynes with sulfinic acids and

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes

SUPPORTING INFORMATION

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle

PTSA-Catalyzed Green Synthesis of 1,3,5-Triarylbenzene under Solvent-Free Conditions

Supporting Information

Bio-based Green Solvent Mediated Disulfide Synthesis via Thiol Couplings Free of Catalyst and Additive

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

SUPPORTING INFORMATION FOR

Supporting Information

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium

Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System

Supporting Information

Iron Catalyzed Cross Couplings of Azetidines: Application to an Improved Formal Synthesis of a Pharmacologically Active Molecule

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Supporting Information. Rhodium(III)-Catalyzed Synthesis of Naphthols via C-H Activation. of Sulfoxonium Ylides. Xingwei Li*, Table of Contents

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Supporting Information:

Supplementary Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information. Cu(I)-Catalyzed Three-Component Reaction of Diazo. Compound with Terminal Alkyne and Nitrosobenzene for

Supporting information

Supporting Information

Significant improvement of dye-sensitized solar cell. performance by a slim phenothiazine based dyes

Supporting Information

Supplementary Information

Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids

Supporting Information

Supporting Information:

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective

Supporting information. Ni-catalyzed the efficient conversion of phenols protected with 2, 4, 6-trichloro-1, 3, 5- triazine (TCT) to olefins

Zn-Catalyzed Diastereo- and Enantioselective Cascade. Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles:

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

guanidine bisurea bifunctional organocatalyst

Trisulfur Radical Anion as the Key Intermediate for the. Synthesis of Thiophene via the Interaction between Elemental.

Supporting Information for:

SUPPORTING INFORMATION. A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on Distyryl-Bodipy Fluorophore

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Supporting Information

Supporting Information

Solvent-controlled selective synthesis of biphenols and quinones via oxidative coupling of phenols

Electronic Supplementary Material

Cu-Catalyzed Synthesis of 3-Formyl imidazo[1,2-a]pyridines. and Imidazo[1,2-a]pyrimidines by Employing Ethyl Tertiary

Supporting Information

Scalable Synthesis of Fmoc-Protected GalNAc-Threonine Amino Acid and T N Antigen via Nickel Catalysis

Supporting Information

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

Supporting Information

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Supporting Information - I: Experimental Procedures and Characterization

Palladium(0)-Catalyzed C(sp 3 )-Si Bond Formation via Formal Carbene Insertion into Si-H Bond

Halogen halogen interactions in diiodo-xylenes

Supporting Information

Transcription:

Supporting Information for Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles Xiao-Li Lian, Zhi-Hui Ren, Yao-Yu Wang, and Zheng-Hui Guan* Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi an 710069, P. R. China E-mail: guanzhh@nwu.edu.cn CONTENTS 1. General information-------------------------------------------------------------------------s2 2. General procedure for the preparation of tertiary enamines-----------------------s2 3. The optimization of reaction conditions for Pd-catalyzed oxidative cyclization of enamines for synthesis of 1,3-disubstituted indoles ---------------------------------S2-S3 4. Typical procedure for Pd-catalyzed cyclization of enamines ---------------------- S3 5. Characterization data of products ------------------------------------------------S4 S10 6. Copies of 1 H and 13 C NMR spectra-------------------------------------------------s11-s58 - S 1 -

1. General Information 1 H and 13 C NMR spectra were recorded on Varian instrument (400 MHz) and (100 MHz). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad. Coupling constants, J were reported in Hertz unit (Hz). Thin layer chromatography was carried out using silica gel GF254 and flash column chromatography was performed using silica gel 200-300 mesh. Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers and used without further purification. 2. General procedure for the preparation of N-substituted enamines N-substituted enamines were prepared according to following literatures: (1) Pen, Y.; Liu, H.; Tang, M.; Cai, L.; Pike, V. Chin. J. Chem. 2009, 27, 1339. (2) Byun, E.; Hong, B.; De Castro, K.; Lim, M.; Rhee, H. J. Org. Chem. 2007, 72, 9815. (3) X. Ji, H. Huang, W. Wu, X. Li, H. Jiang, J. Org. Chem. 2013, 78, 11155. 3. The optimization of reaction conditions for Pd-catalyzed oxidative cyclization of enamines for synthesis of 1,3-disubstituted indoles. [a] Entry Catalyst Additive Solvent T ( o C) Yield[%] [b] 1 Pd(OAc) 2 - CH 3 CN 100 5 2 Pd(OAc) 2 K 2 CO 3 CH 3 CN 100 NR 3 Pd(OAc) 2 PivOH CH 3 CN 100 13 4 Pd(TFA) 2 PivOH CH 3 CN 100 18 5 PdCl 2 PivOH CH 3 CN 100 25 6 [c] PdCl 2 PivOH CH 3 CN 100 43 - S 2 -

7 [c] PdCl 2 TFA CH 3 CN 100 68 8 [c] PdCl 2 TFA DMF 100 33 9 [c] PdCl 2 TFA toluene 100 26 10 [c] PdCl 2 TFA DCE 100 43 11 [c] PdCl 2 TFA CH 3 CN 60 27 [a] Reaction conditions: 3a (0.2 mmol), [Pd] (5 mol%), Cu(OAc) 2 (1.2 equiv), Additive (1.0 equiv) in CH 3 CN (2 ml) at 100 o C, in air. [b] Isolated yield. [c] The reaction was carried out with 2.0 equiv of Cu(OAc) 2. 4. Typical procedure for Pd-catalyzed cyclization of enamines Typical procedure for synthesis of 1,3,4-trisubstituted pyrroles: (E)-ethyl 3-(allyl(phenyl)amino)acrylate 1a (0.2 mmol), Pd(OAc) 2 (5 mol%), Cu(OAc) 2 (0.44 mmol), TFA (0.2 mmol) and CH 3 CN (2 ml) was stirred in a 10 ml round-bottom flask at 60 o C in air. After completion of the reaction (detected by TLC), the reaction mixture was cooled to room temperature, quenched with H 2 O (10 ml) and extracted with EtOAc (3 10 ml) or CH 2 Cl 2 (3 10 ml). Removal of the solvent in vacuo and purification of the residue by flash chromatography (SiO 2, pentane/etoac) provided pyrrole 2a (70%) as a pale yellow solid. Typical procedure for synthesis of 1,3-disubstituted indoles: (E)-butyl 3-(methyl(phenyl)amino)acrylate 3a (0.2 mmol), PdCl 2 (5 mol%), Cu(OAc) 2 (0.40 mmol), TFA (0.2 mmol) and CH 3 CN (2 ml) was stirred in a 10 ml round-bottom flask at 100 o C in air. After completion of the reaction (detected by TLC), the reaction mixture was cooled to room temperature, quenched with H 2 O (10 ml) and extracted with EtOAc (3 10 ml) or CH 2 Cl 2 (3 10 ml). Removal of the solvent in vacuo and purification of the residue by flash chromatography (SiO 2, pentane/etoac) provided indole 4a (68%) as a white solid. - S 3 -

5. Characterization data of products CO 2 Et N 2a 2a: Yield: 70% (32.1 mg), pale yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.55 (s, 1 H), δ = 7.34-7.30 (m, 2 H), δ = 7.27-7.25 (d, J = 7.6 Hz, 2 H), δ = 7.19-7.16 (m, 1 H), δ = 6.72 (s, 1 H), δ = 4.23-4.17 (m, 2 H), δ = 2.34 (s, 3 H), δ = 1.26 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.2, 139.7, 129.6, 126.3, 124.7, 122.9, 120.4, 118.9, 116.5, 59.4, 14.4, 11.7. HRMS Calcd (ESI) m/z for C 14 H 15 NNaO 2 : [M+Na] + 252.0995, found: 252.0999. 2b: Yield: 62% (30.1 mg), pale yellow liquid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.53 (d, J = 2.4 Hz, 1 H), δ = 7.20-7.14 (m, 4 H), δ = 6.72 (s, 1 H), δ = 4.25-4.19 (m, 2 H), δ = 2.30 (s, 3 H), δ = 2.25 (s, 3 H), δ = 1.28 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.3, 137.5, 136.3, 130.1, 124.8, 122.8, 120.4, 119.0, 116.3, 59.4, 29.7, 20.9, 14.5, 11.8. HRMS Calcd (ESI) m/z for C 15 H 17 NNaO 2 : [M+Na] + 266.1151, found: 266.1158. 2c: Yield: 62% (30.1 mg), pale yellow liquid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.54 (s, 1 H), δ = 7.23-7.17 (m, 1 H), δ = 7.10-7.07 (d, J = 11.6 Hz, 2 H), δ = 7.01-7.00 (d, J = 7.2 Hz, 1 H), δ = 6.73 (s, 1 H), δ = 4.24-4.19 (m, 2 H), δ = 2.31 (s, 3 H), 2.25 (s, 3 H), δ = 1.27 (t, J = 6.8 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.2, 139.7, 139.7, 129.4, 127.1, 124.7, 122.8, 121.1, 118.9, 117.5, 116.4, 59.4, 21.4, 14.5, 11.8. HRMS Calcd (ESI) m/z for C 15 H 17 NNaO 2 : [M+Na] + 266.1151, found: 266.1156. CO 2 Et N 2d 2d: Yield: 52% (26.7 mg), yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.53 (d, J = 2.4 Hz, 1 H), δ = 7.08 (s, 2 H), δ = 7.03-7.01 (m, 1 H), δ = 6.71 (s, 1 H), δ = 4.25-4.19 (m, 2 H), δ = 2.25 (s, 3 - S 4 -

H), δ = 2.23 (s, 3 H), δ = 2.20 (s, 3 H), δ = 1.28 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.3, 138.0, 137.7, 134.9, 130.5, 124.8, 122.7, 121.8, 119.1, 117.8, 116.1, 59.4, 19.9, 19.2, 14.5, 11.8. HRMS Calcd (ESI) m/z for C 16 H 19 NNaO 2 : [M+Na] + 280.1308, found: 280.1314. CO 2 Et N 2e 2e: Yield: 40% (19.4 mg), colourless liquid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.34 (d, J = 2.4 Hz, 1 H), 7.30-7.29 (d, J = 3.6 Hz, 2H), 7.27-7.19( m, 3H), δ = 4.31-4.26 (m, 2 H), δ = 2.33 (s, 3 H), δ = 2.21 (s, 3 H), δ = 1.34 (t, J = 8.0 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.4, 139.6, 133.6, 131.1, 128.1, 127.7, 126.7, 126.4, 121.8, 121.6, 59.4, 17.8, 14.5, 11.7. HRMS Calcd (ESI) m/z for C 15 H 17 NNaO 2 : [M+Na] + 266.1151, found: 266.1157. 2f: Yield: 55% (28.5 mg), pale yellow liquid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.47 (d, J = 2.0 Hz, 1 H), δ = 7.19 (d, J = 3.6 Hz, 2 H), δ = 6.86 (d, J = 8.8 Hz, 2 H), δ = 6.66 (s, 1 H), δ = 4.24-4.19 (m, 2 H), δ = 3.75 (s, 3 H), δ = 2.25 (s, 3 H), δ = 1.27 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.3, 158.1, 133.4, 125.0, 122.1, 119.4, 116.0, 114.7, 59.4, 55.5, 29.7, 14.5, 11.7. HRMS Calcd (ESI) m/z for C 15 H 17 NNaO 3 : [M+Na] + 282.1101, found: 282.1108. 2g: Yield: 60% (49.4 mg), yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.48 (d, J = 1.6 Hz, 1 H), δ = 7.26-7.23 (m, 2 H), δ = 7.04-7.02 (m, 2 H), δ = 6.67 (s, 1 H), δ = 4.24-4.19 (m, 2 H), δ = 2.24 (s, 3 H), δ = 1.27 (t, J = 6.8 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.1, 161.0 (d, J CF = 244.8Hz), 136.2, 125.0, 123.1, 122.3 (d, J CF = 8.3 Hz), 119.2, 116.7, 116.4 (d, J CF = 22.9 Hz), 59.5, 14.5, 11.7. HRMS Calcd (ESI) m/z for C 14 H 14 FNNaO 2 : [M+Na] + 270.0901, found: 270.0893. CO 2 Et N 2h Cl - S 5 -

2h: Yield: 67% (35.2 mg), yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.56 (s, 1 H), δ = 7.36 (d, J = 8.0 Hz, 2 H), δ = 7.27 (d, J = 8.0 Hz, 2 H), δ = 6.75 (s, 1 H), δ = 4.29-4.24 (m, 2 H), δ = 2.29 (s, 3 H), δ = 1.32 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.0, 138.3, 131.9, 129.7, 124.6, 123.4, 121.6, 118.8, 117.0, 59.5, 14.5, 11.7. HRMS Calcd (ESI) m/z for C 14 H 14 ClNNaO 2 : [M+Na] + 286.0605, found: 286.0601. 2i: Yield: 61% (32.1 mg), pale yellow liquid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.54 (s, 1 H), δ = 7.30-7.25 (m, 2 H), δ = 7.18 (s, 2 H), δ = δ = 6.73 (s, 1 H), δ = 4.24-4.19 (m, 2 H), δ = 2.24 (s, 3 H), δ = 1.28 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.0, 140.7, 135.3, 130.7, 126.4, 123.5, 120.6, 118.7, 118.4, 117.2, 59.6, 14.5, 11.7. HRMS Calcd (ESI) m/z for C 14 H 14 ClNNaO 2 : [M+Na] + 286.0605, found: 286.0612. 2j: Yield: 56% (34.4 mg), pale yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.52 (s, 1 H), δ = 7.49 (d, J = 8.4 Hz, 2 H), δ = 7.17 (d, J = 8.8 Hz, 2 H), δ = 6.71 (s, 1 H), δ = 4.25-4.19 (m, 2 H), δ = 2.24 (s, 3 H), δ = 1.28 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.0, 138.8, 132.7, 124.5, 123.4, 121.8, 119.6, 118.7, 117.1, 59.7, 14.5, 11.7. HRMS Calcd (ESI) m/z for C 14 H 14 BrNNaO 2 : [M+Na] + 330.0100, found: 330.0108. 2k: Yield: 45% (25.1 mg), pale yellow solid 1 H NMR (CDCl 3, 400 MHz): δ = 7.82 (d, J = 8.8 Hz, 1 H), δ = 7.78-7.74 (m, 2 H), δ = 7.69-7.68 (m, 2 H), 7.46-7.40 (m, 3 H), δ = 6.87 (s, 1 H), δ = 4.27-4.21 (m, 2 H), δ = 2.29 (s, 3 H), δ = 1.30 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.2, 137.1, 133.6, 131.7, 129.8, 127.8, 126.0, 124.9, 123.2, 119.6, 119.1, 117.7, 116.8, 59.5, 14.5, 11.8. HRMS Calcd (ESI) m/z for C 18 H 17 NNaO 2 : [M+Na] + 302.1151, found: 302.1144. - S 6 -

CO 2 Me N CO 2 Me 2l 2l: Yield: 65% (32.5 mg), pale yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.34 (d, J = 7.6 Hz, 2 H), δ = 7.20 (d, J = 6.8 Hz, 2 H), δ = 6.58 (s, 1 H), δ = 3.78 (s, 3 H), δ = 3.63 (s, 3 H), δ =2.16 (s, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.4, 161.9, 139.3, 129.0, 128.1, 126.0, 125.2, 124.4, 120.9, 119.4, 52.2, 51.6, 11.0. HRMS Calcd (ESI) m/z for C 15 H 15 NNaO 4 : [M+Na] + 273.1009, found: 273.1000. 2m: Yield: 62% (30.1 mg), yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.58 (s, 1 H), δ = 7.34-7.32 (m, 4 H), δ = 7.22-7.21 (d, J = 6.4 Hz, 2 H), δ = 6.76 (s, 1 H), δ = 4.25-4.21 (m, 2 H), δ = 2.74-2.72 (m, 3 H), δ = 1.28 (t, J = 6.8 Hz, 3 H), δ = 1.20-1.16 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ = 165.0, 139.9, 130.0, 129.6, 125.0, 120.5, 117.8, 116.0, 59.4, 19.6, 14.5, 14.4. HRMS Calcd (ESI) m/z for C 15 H 17 NNaO 2 : [M+Na] + 266.1165, found: 266.1157. 2n: Yield: 55% (28.3 mg), pale yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.58 (s, 1 H), δ = 7.34-7.31 (m, 4 H), δ = 7.21-7.19 (d, J = 10.8 Hz, 1 H), δ = 6.77 (s, 1 H), δ = 4.25-4.20 (m, 2 H), δ =3.40-3.33 (m, 1 H), δ = 1.28 (t, J = 6.8 Hz, 3 H), δ = 1.20 (d, J = 6.8 Hz, 6 H); 13 C NMR (CDCl 3, 100 MHz): δ = 164.9, 139.9, 135.4,129.6, 126.4,125.2, 120.6, 116.5, 115.4, 59.4, 25.5, 23.6, 14.5. HRMS Calcd (ESI) m/z for C 16 H 19 NNaO 2 : [M+Na] + 280.1313, found: 280.1315. 4a: Yield: 68% (31.4 mg), white solid; 1 H NMR (CDCl 3, 400 MHz): δ = 8.17 (t, J = 4.8 Hz,1 H), 7.77 (s, 1H), 7.34-7.25 (m, 3 H), 4.33 (t, J = 6.4 Hz, 2 H), 3.81 (s, 3 H), 1.78 (t, J = 6.8 Hz, 2 H), 1.52-1.48 (m, 2 H), 0.99 (t, J = 7.2 Hz, 3H) ; 13 C NMR (CDCl 3, 100 MHz): δ =165.2, 137.1, 135.1, 126.5, 122.6, 121.7, 121.6, 109.7, 107.1, 63.5, 33.4, 31.0, 19.4, 13.8. HRMS Calcd (ESI) m/z for - S 7 -

C 14 H 17 NNaO 2 : [M+Na] + 254.1151, found: 254.1161. CO 2 Me N 4b 4b: Yield: 55% (20.8 mg), white solid; 1 H NMR (CDCl 3, 400 MHz): δ = 8.18-8.16 (m, 1 H), 7.78 (s, 1 H), 7.36-7.26 (m, 3 H), 3.91 (s, 3 H), 3.82 (s, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ =165.4, 137.1, 135.1, 126.5, 122.7, 121.8, 121.5, 109.7, 106.7, 50.9, 33.4. HRMS Calcd (ESI) m/z for C 11 H 11 NNaO 2 : [M+Na] + 212.0682, found: 212.0691. CO 2 Et N 4c 4c: Yield: 55% (22.3 mg), white solid; 1 H NMR (CDCl 3, 400 MHz): δ = 8.18 (d, J = 6.8 Hz, 1 H), 7.77 (s, 1 H), 7.33-7.25 (m, 3 H), 4.37(d, J = 6.8 Hz, 2 H), 3.80 (s, 3 H), 1.43-1.40 (m, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ =165.1, 137.1, 135.1, 126.5, 122.6, 121.7, 121.6, 109.7, 107.0, 59.6, 33.3, 29.7, 14.5. HRMS Calcd (ESI) m/z for C 12 H 13 NNaO 2 : [M+Na] + 226.0838, found: 226.0845. 4d: Yield: 61% (28.2 mg), pale yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 8.15 (d, J = 6.0 Hz, 1 H), 7.70 (s, 1 H), 7.30-7.25 (m, 3 H), 3.78 (s, 3 H), 1.63(s, 9 H); 13 C NMR (CDCl 3, 100 MHz): δ =164.6, 137.1, 135.0, 126.5, 122.5, 121.6, 109.6, 108.6, 79.7, 33.3, 28.5. HRMS Calcd (ESI) m/z for C 14 H 17 NNaO 2 : [M+Na] + 254.1151, found: 254.1156. 4e: Yield: 50% (25.1 mg), white solid; 1 H NMR (CDCl 3, 400 MHz): δ = 8.25-8.23 (m, 1 H), 7.93 (s, 1 H), 7.44-7.29 (m, 5 H), 7.24 (d, J = 8.0 Hz, 2 H), 3.84 (s, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ =164.6, 137.1, 135.0, 126.5, 122.5, 121.6, 109.6, 108.6, 79.7, 33.3, 28.5. HRMS Calcd (ESI) m/z for C 16 H 13 NNaO 2 : [M+Na] + 274.0838, found: 274.0848. - S 8 -

4f: Yield:60% (29.4 mg), pale yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 8.03 (d, J = 8.0 Hz, 1 H), 7.70 (s, 1 H), 7.11 (d, J =9.2 Hz, 2 H), 4.32 (t, J = 6.4 Hz, 2 H), 3.77 (s, 3 H), 2.50 (s, 3 H), 1.77 (t, J = 7.2 Hz,2 H), 1.51-1.48 (m, 2 H), 0.99 (t, J = 7.6 Hz, 3 H) ; 13 C NMR (CDCl 3, 100 MHz): δ =165.3, 137.5, 134.6, 132.6, 124.3, 123.5, 121.2, 109.7, 107.0, 63.4, 33.2, 31.0, 21.8, 19.4, 13.8. HRMS Calcd (ESI) m/z for C 15 H 19 NNaO 2 : [M+Na] + 268.1308, found: 268.1323. 4g: Yield: 52% (27.0 mg), pale yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.92 (s, 1 H), 7.65 (s, 1 H), 7.09 (s, 1 H), 4.32 (t, J = 6.8 Hz, 2 H), 3.75 (s, 3 H), 2.39 (s, 6 H), 1.77 (t, J = 7.2 Hz, 2 H), 1.52-1.48 (m, 2 H), 0.99 (t, J = 7.2 Hz, 3H) ; 13 C NMR (CDCl 3, 100 MHz): δ =165.3, 136.0, 134.3, 131.8, 130.6, 124.8, 121.6, 110.0, 106.4, 63.3, 33.3, 31.0, 20.6, 20.2, 19.4, 13.8. HRMS Calcd (ESI) m/z for C 16 H 21 NNaO 2 : [M+Na] + 282.1465, found: 282.1471. 4h: Yield: 65% (31.9 mg), pale yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 8.18-8.16 (m, 1 H), 7.85 (s, 1 H), 7.37-7.35 (m, 1 H), 7.28-7.25 (m, 2 H), 4.35-4.32 (m, 2 H), 4.21-4.16 (m, 2 H), 1.78 (t, J = 7.6 Hz, 2 H), 1.50 (t, J = 7.6 Hz, 5 H), 0.99 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ =165.3, 136.2, 133.4, 126.7, 121.7, 121.7, 109.8, 107.2, 63.5, 41.5, 31.0, 19.4, 15.1, 13.8. HRMS Calcd (ESI) m/z for C 15 H 19 NNaO 2 : [M+Na] + 268.1308, found: 268.1321. 4i: Yield: 51% (26.2 mg), pale yellow solid; 1 H NMR (CDCl 3, 400 MHz): δ = 7.89 (d, J = 8.0 Hz, 1 H), 7.79 (s, 1 H), 7.18 (t, J = 7.2 Hz, 1 H), 7.00-6.98 (m, 1 H), 4.34-4.31 (m, 2 H), 4.19 (s, 2 H), 3.00 (s, 2 H), 2.25 (s, 2 H), 1.80-1.76 (m, 2 H), 1.51 (d, J = 7.2 Hz, 2 H), 0.99 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ =165.6, 134.4, 132.3, 124.4, 122.2, 122.2, 119.8, 119.0, 107.3, - S 9 -

63.5, 44.7, 31.0, 24.3, 22.7, 19.4, 13.8. HRMS Calcd (ESI) m/z for C 16 H 19 NNaO 2 : [M+Na] + 280.1308, found: 280.1311. 4j: Yield: 15% (8.0 mg), pale yellow liquid; 1 H NMR (CDCl 3, 400 MHz): δ = 8.26 (d, J = 7.2 Hz, 1 H), 8.04 (s, 1 H), 7.54-7.50 (m, 5 H), 7.33-7.26 (m, 3 H), 4.43-4.41 (m, 2 H), 1.44 (t, J = 7.2 Hz, 3 H); 13 C NMR (CDCl 3, 100 MHz): δ =165.1, 138.5, 136.6, 134.1, 129.8, 127.8, 126.9, 124.8, 123.4, 122.4, 121.9, 111.0, 109.4, 59.9, 14.6. HRMS Calcd (ESI) m/z for C 17 H 15 NNaO 2 : [M+Na] + 288.1000, found: 288.0994. - S 10 -

6. Copies of 1 H and 13 C NMR Spectra CO 2 Et N 2a - S 11 -

CO 2 Et N 2a - S 12 -

- S 13 -

- S 14 -

- S 15 -

- S 16 -

CO 2 Et N 2d - S 17 -

CO 2 Et N 2d - S 18 -

CO 2 Et N 2e - S 19 -

CO 2 Et N 2e - S 20 -

- S 21 -

- S 22 -

- S 23 -

- S 24 -

CO 2 Et N 2h Cl - S 25 -

CO 2 Et N 2h Cl - S 26 -

- S 27 -

- S 28 -

- S 29 -

- S 30 -

- S 31 -

- S 32 -

CO 2 Me N CO 2 Me 2l - S 33 -

CO 2 Me N CO 2 Me 2l - S 34 -

- S 35 -

- S 36 -

- S 37 -

- S 38 -

- S 39 -

- S 40 -

CO 2 Me N 4b - S 41 -

CO 2 Me N 4b - S 42 -

CO 2 Et N 4c - S 43 -

CO 2 Et N 4c - S 44 -

- S 45 -

- S 46 -

- S 47 -

- S 48 -

- S 49 -

- S 50 -

- S 51 -

- S 52 -

- S 53 -

- S 54 -

- S 55 -

- S 56 -

- S 57 -

- S 58 -