MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x

Similar documents
MATHEMATICS 200 April 2010 Final Exam Solutions

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Solutions to Practice Exam 2

Solutions to Sample Questions for Final Exam

MATH 2400 Final Exam Review Solutions

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

Mathematics 205 Solutions for HWK 23. e x2 +y 2 dxdy

One side of each sheet is blank and may be used as scratch paper.

Triple Integrals. y x

Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates.

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

MATH 52 FINAL EXAM SOLUTIONS

MATHEMATICS 200 December 2014 Final Exam Solutions

1. For each function, find all of its critical points and then classify each point as a local extremum or saddle point.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

e x3 dx dy. 0 y x 2, 0 x 1.

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y.

MULTIVARIABLE INTEGRATION

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

MTHE 227 Problem Set 10 Solutions. (1 y2 +z 2., 0, 0), y 2 + z 2 < 4 0, Otherwise.

MATHS 267 Answers to Stokes Practice Dr. Jones

Review Sheet for the Final

14.7 Triple Integrals In Cylindrical and Spherical Coordinates Contemporary Calculus TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Bi. lkent Calculus II Exams

Math 20C Homework 2 Partial Solutions

Review for the First Midterm Exam

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

51. General Surface Integrals

D = 2(2) 3 2 = 4 9 = 5 < 0

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and

Figure 25:Differentials of surface.

MAT 211 Final Exam. Fall Jennings.

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

Figure 21:The polar and Cartesian coordinate systems.

MTH 234 Solutions to Exam 2 April 10th, Without fully opening the exam, check that you have pages 1 through 12.

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Final Review Worksheet

MULTIVARIABLE INTEGRATION

Practice Final Solutions

Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of January 28, 2011

MATHEMATICS 200 December 2013 Final Exam Solutions

MATH 280 Multivariate Calculus Fall Integration over a surface. da. A =

Week 7: Integration: Special Coordinates

Exercises of Mathematical analysis II

MATH 52 MIDTERM 1. April 23, 2004

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

Math 221 Examination 2 Several Variable Calculus

The University of British Columbia Final Examination - December 17, 2015 Mathematics 200 All Sections

Solutions for the Practice Final - Math 23B, 2016

Math Exam IV - Fall 2011

Answer sheet: Final exam for Math 2339, Dec 10, 2010

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

Dr. Allen Back. Nov. 5, 2014

Problem Solving 1: Line Integrals and Surface Integrals

Vector Calculus. Dr. D. Sukumar

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01

53. Flux Integrals. Here, R is the region over which the double integral is evaluated.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

ENGI Multiple Integration Page 8-01

Math 261 Solutions to Sample Final Exam Problems

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

Math 31CH - Spring Final Exam

MATHEMATICS 200 December 2011 Final Exam Solutions

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

Math Double Integrals in Polar Coordinates

36. Double Integration over Non-Rectangular Regions of Type II

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line

Review problems for the final exam Calculus III Fall 2003

ES.182A Topic 45 Notes Jeremy Orloff

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Double Integrals. Advanced Calculus. Lecture 2 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A

Substitutions in Multiple Integrals

Derivatives and Integrals

Student name: Student ID: Math 265 (Butler) Midterm III, 10 November 2011

Math 23b Practice Final Summer 2011

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems

MTH 234 Solutions to Exam 2 April 13, Multiple Choice. Circle the best answer. No work needed. No partial credit available.

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

e x2 dxdy, e x2 da, e x2 x 3 dx = e

v n ds where v = x z 2, 0,xz+1 and S is the surface that

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

Math 21a Homework 07 Solutions Spring, 2014

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

Math 233. Practice Problems Chapter 15. i j k

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Transcription:

MA 5 Fall 8 Eam # Review Solutions. Find the maimum of f, y y restricted to the curve + + y. Give both the coordinates of the point and the value of f. f, y y g, y + + y f < y, > g < +, y > solve y λ + λy + + y λ y λ y OR y y y + + y y + y + + + + + +, y y 9 f, f, y ± f, maimum is at,. Find the dimensions of a rectangular bo of maimum volume such that the sum of the lengths of its edges is a constant, C. dimensions, y, z C + y + z z C y C maimize V yz y y V Cy y y y Cy C y when y or y C y y

MA 5 Fall 8 Eam # Review Solutions y is not a realistic solution for this problem y C V y C y V y C C C C + C when, C C y C z V y, V y C, V yy D >, V < a maimum C C C. Find the absolute maimum and minimum of f, y + y + y over the disk {, y + y 9} and where they occur. Interior: f + y y f y + y +, y only critical point is,, f, Boundary: f, y + y + y g, y + y 9 f < + y, + y > g <, y > solve + y λ + y λy + y 9 + y λ y λ : + λ λy λλ + λ λ λ λ 8λ + λ λ, λ,, y ± f, ± 9 λ y / y, ±

MA 5 Fall 8 Eam # Review Solutions f f,, 9 9 + 9 9 9 9 + 9 9 λ y + y 9 ± f, 9 + 9 + 9 7 f, 9 + 9 + 9 7 minimum is at,, maimum is 7 at,,,. Find the volume of the solid lying under the circular paraboloid z + y and above the rectangle R,,. + y d dy + y dy 8 + y 8 y dy 6 + y dy 6 y + y 6 + 6 6 6 5. Find the volume of the solid under the paraboloid z +y and above the region bounded by y and y y..5.5 The region R is of Type II:.5.5 R V y y y + y d dy + y y y y dy y + y y y + y yy dy y y 6 y 5 + y y + y y dy y y + y 5 y 6 dy y 5 y5 + y6 7 y7 5

MA 5 Fall 8 Eam # Review Solutions 6. Evaluate y da, D {, y y, y}. D D y da y / y dy y y dy y y d dy use u-sub on y y y / + y / dy 7. Find the volume of the solid under the paraboloid z + y + and the planes, y, z and + y. V + y + dy d y + y + y y y d + + d + + + d 5 + d 5 + 6 8. Find the volume of the solid bounded by the cylinders + y r and y + z r. By symmetry, the volume of the solid is 8 times V, which is the volume of the solid just in the first octant. The solid in the first octant is bounded by the y-plane,, y, r y and the surface z r y which in the first octant is z r y. In other words, we have V is the volume of the solid over region R pictured below under the surface z r y. r R V r r r r y r y d dy r y dy r y dy r y y r r r r r y r V 8V 6 r

MA 5 Fall 8 Eam # Review Solutions 5 9. Evaluate R e +y da where R {, y 6 + y 5,, y }. R e +y da { R r, θ r, 5, θ π π π 5 er e r r dr dθ r5 dθ r e 5 e 6 dθ e5 e 6 π, π }. Use polar coordinates to find the volume of the solid bounded by the paraboloid z y and the plane z. The paraboloid intersects the plane z when + y or + y r V + y da. Evaluate z y ze y d dy dz. z y +y π π π π 6π ze y d dy dz 6 r r dr dθ 6r r dr dθ r r dθ 6 π dθ dθ z ze y y dy dz z yze y dy dz ze y yz y dz ze z + z dz e z + z e e e +

MA 5 Fall 8 Eam # Review Solutions 6. Rewrite the integral y f, y, z dz dy d as an equivalent iterated integral in five other orders. Projection in y plane, y ^ Projection in yz plane, z y Projection in z plane,z ^....75.75.75 y z z...75....75....75. y Above are the projections of the region E onto the y, yz and z-planes, respectively and are described below mathematically. D {, y,, y } {, y y,, y } D {y, z y,, z y} {y, z z,, z y } D {, z,, z } {, z z,, z } y f, y, z dz dy d E {, y, z, y D, z y, } {, y, z y, z D, y } {, y, z, z D, z y } y y y z f, y, z dz d dy y f, y, z d dz dy y f, y, z d dy dz z z z f, y, z dy dz d f, y, z dy d dz

MA 5 Fall 8 Eam # Review Solutions 7 π. Evaluate πyz cos 5 dv where D {, y, z, y, z }. D E D πyz cos π 5 dv πyz cos π 5 dz dy d π π yz cos 5 z dy d z π π y cos 5 π π y cos 5 dy d π π y cos 5 dy d π 5 y π y cos y d π π cos 5 d π sin 5 sin6π sin π. Evaluate dv where E is the solid enclosed by the planes z and z + y + and by the cylinders + y and + y 9. E E {r, θ, z r,, θ, π, z r cos θ + r sin θ + } dv π r cos θ+r sin θ+ π r cos θ+r sin θ+ π π π π π r cos θz r cos θr dz dr dθ r cos θ dz dr dθ zr cos θ+r sin θ+ z dr dθ r cos θ + cos θ sin θ + r cos θ dr dθ r cos θ + cos θ sin θ + r cos θ 8 65 65 8 θ + 65 8 65π r r dθ cos θ + cos θ sin θ + 7 8 cos θ 6 + cos θ + sin θ 65 sin θ π + 65 6 + 6 cos θ + 9 sin θ π 65 6 + + 9 cos θ dθ dθ

MA 5 Fall 8 Eam # Review Solutions 8 5. Evaluate E e +y +z dv, where E is enclosed by the sphere + y + z 9 in the first octant. E e +y +z dv E {ρ, θ, φ ρ,, θ, π/, φ, π/} π/ π/ π/ π/ e ρ ρ sin φ dρ dφ dθ ρ e ρ sin φ dρ dφ dθ by formula on pg 96, etended for triple integrals: int by parts twice on third integral: π/ π/ dθ sin φ dφ ρ e ρ dρ θ π/ cos φ π/ ρ e ρ ρe ρ + e ρ π 9e 6e + e + π 5e 6. Consider the two surfaces ρ csc θ in spherical coordinates and r in cylindrical coordinates. Are they the same surface, or different? Eplain your answer. Several ways to do this, this is one: For the first surface, remember: ρ cos θ sin φ y ρ sin θ sin φ z ρ cos φ For the second surface, remember: r cos θ y r sin θ z z So if we let φ in the first surface, we would get, and y. For the second surface, when, that would mean cos θ since r. Then on the second surface, by Pythagorean Identity, if cos θ, then sin θ ±. Thus y ± when. But on the first surface and y. Thus these cannot be the same surface.