Efficiency Enhancement in Polymer Solar Cell Using Solution-processed Vanadium Oxide Hole Transport Layer

Similar documents
Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of Ternary Solar Cells

Structural Effect on the Oxygen Evolution Reaction in the Electrochemical Catalyst FePt

Supporting Information

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

doi: /

OPV Workshop September 20, Materials for Polymer Solar Cells: Achievements and Challenges. Wei You

Numerical model of planar heterojunction organic solar cells

Supporting Information

Fabrication and Characteristics of Organic Thin-film Solar Cells with Active Layer of Interpenetrated Hetero-junction Structure

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Improvement of Photovoltaic Properties for Unmodified Fullerene C 60 -Based Polymer Solar Cells by Addition of Fusible Fullerene

High efficiency MAPbI3-xClx perovskite solar cell via interfacial passivation

Charge dynamics in solar cells with a blend of p-conjugated polymer-fullerene studied by transient photo-generated voltagew

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique

Supporting Information

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D.

Towards a deeper understanding of polymer solar cells

Solution-Processed Organic Photovoltaics Based on Indoline Dye Molecules Developed in Dye-Sensitized Solar Cells

Effect of Composition on Conjugation Structure and Energy Gap of P3HT:PCBM Organic Solar Cell

Solar Energy Materials & Solar Cells

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Investigation of three important parameters on performance of organic solar cells based on P3HT:C 60

Electronic Supplementary Information (ESI)

Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO x Hole Contacts

HKBU Institutional Repository

Supporting Information

What will it take for organic solar cells to be competitive?

Absorbance/Transmittance/Reflectance of PCDTBT:PC 70 BM Organic Blend Layer

Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of Cathode Interlayer Materials

Supporting Information. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed. NiOx Hole Contact

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Studies of efficient and stable organic solar cells based on aluminum-doped zine oxide transparent electrode

International Journal of Nano Dimension

Simulation of organic solar cell with graphene transparent electrode

The influence of doping on the performance of organic bulk heterojunction solar cells

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Comparison of Pre-service Physics Teachers Conceptual Understanding of Classical and Quantum Mechanics

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

Plastic Electronics. Joaquim Puigdollers.

Proposal of an Experimental Apparatus for Learning about Torque

Inverted top-emitting organic light-emitting diodes using transparent conductive NiO electrode

Materials Chemistry A

HKBU Institutional Repository

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources

Low-bandgap small molecules for near-infrared photovoltaic applications

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells

Xinwen Zhang, 1 Zhaoxin Wu, 1 Dongdong Wang, 2 Dawei Wang, 1 Xun Hou 1

Solution-processable graphene mesh transparent electrodes for organic solar cells

Supporting Information

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells

Organic Electronics. Polymer solar cell by blade coating

I n recent years, flexible organic light-emitting diodes (FOLEDs) have emerged as one of the basic components

Conjugated Polymers Based on Benzodithiophene for Organic Solar Cells. Wei You

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Electronic Supplementary Information. inverted organic solar cells, towards mass production

Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Nam-gu, Pohang, Gyeongbuk , Republic of Korea.

The charge generation layer incorporating two p-doped hole transport layers for improving the performance of tandem organic light emitting diodes

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that

Enhanced efficiency of inverted polymer solar cells by using solution-processed TiO x /CsO x cathode buffer layer

Enhanced Charge Extraction in Organic Solar Cells through. Electron Accumulation Effects Induced by Metal

ORGANIC-BASED LIGHT HARVESTING ELECTRONIC DEVICES

OPTIMIZATION OF PEDOT: PSS THIN FILM FOR ORGANIC SOLAR CELL APPLICATION YURAIMY YAKIMIN BIN ABDUL TALIB

Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Numerical Analysis of a Q-switched Er:YAG Laser to Determine the Operational Parameter Effect of a Pockels Cell

Efficient and saturated blue organic polymer light emitting devices with an oxadiazole containing poly(fluorene) polymer emissive layer

POLYMER-FULLERENE BASED BULK HETEROJUNCTION P3HT:PCBM SOLAR CELL: THE INFLUENCE OF PTU AS A CHEMICAL ADDITIVE ON PHOTOVOLTAIC PERFORMANCE

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Color-Stable and Low-Roll-Off Fluorescent White Organic Light Emitting Diodes Based on Nondoped Ultrathin Emitters

Energy & Environmental Science

Efficiency degradation of organic solar cells with solution processed ZnO nanoparticles

SCAPS Simulation of P3HT:Graphene Nanocomposites-Based Bulk-Heterojunction Organic Solar Cells

Photovoltaic cells based on lead- and tin-perovskites

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

All materials were purchased from Sigma-Aldrich unless specified otherwise. PCBA

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Investigation of the Role of the Acceptor Molecule in Bulk Heterojunction Photovoltaic Cells Using Impedance Spectroscopy

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 1, JANUARY

University of Groningen. Cathode dependence of the open-circuit voltage of polymer Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, Jan; Rispens, M. T.

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

The Current Status of Perovskite Solar Cell Research at UCLA

Research Article Role of Vanadium Pentoxide Hole-Extracting Nanolayer in Rubrene/C 70 -Based Small Molecule Organic Solar Cells

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13%

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion

Supporting Infromation

Optimization of an organic photovoltaic device via modulation of thickness of photoactive and optical spacer layers

Supplementary Materials for

Plasma Treatment of ITO Cathode to Fabricate Free Electron Selective Layer In Inverted Polymer Solar Cells

Organic Electronic Devices

Performance Optimization of Organic Solar Cells

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solarcell

Study of electrical and optical properties of ITO/PEDOT/P3HT:PCBM(1:1)/LiF/Al photovoltaic structures

Electronic Supplementary Information (ESI)

Novel device Substrates and Materials for Organic based Photovoltaics

Transcription:

New Physics: Sae Mulli, Vol. 65, No. 7, July 2015, pp. 709 714 DOI: 10.3938/NPSM.65.709 Efficiency Enhancement in Polymer Solar Cell Using Solution-processed Vanadium Oxide Hole Transport Layer Insoo Shin Hoyeon Choi Sung Heum Park Department of Physics, Pukyong National University, Busan 608-737, Korea (Received 10 May 2015 : revised 18 June 2015 : accepted 21 June 2015) Polymer solar cells are considered as promising candidates for the next generation energy source due to their advantage including low cost and large-area fabrication and mechanical flexibility. We reported the efficiency enhancement in a polymer solar cell with a solution-processed vanadium oxide hole transport layer. When we inserted a solution-based vanadium sub-oxide layer in between the polymer blending layer and the indium tin oxide anode, the polymer solar cells exhibit an enhanced efficiency compared with that without the vanadium sub-oxide layer. Moreover, the efficiency of polymer solar cells are 27% higher than that of the polymer solar cells with a conventional PEDOT:PSS layer which is widely used as hole transport layer. PACS numbers: 42.70.Jk, 71.20.Rv, 71.20.Tx, 73.50.Pz, 73.61.Ph Keywords: Organic solar cell, Bulk Heterojunction, Vanadium Oxide, Buffer layer, 608-737 (2015 5 10, 2015 6 18, 2015 6 21 ). (VO X). VOx כ,,., PEDOT:PSS 27%. PACS numbers: 42.70.Jk, 71.20.Rv, 71.20.Tx, 73.50.Pz, 73.61.Ph Keywords:,,, E-mail: spark@pknu.ac.kr This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

710 New Physics: Sae Mulli, Vol. 65, No. 7, July 2015 I., [1 3].,,. (Indium Tin Oxide, ITO)., ITO ITO (Power Conversion Efficiency, PCE)., ITO ITO [4 7]. Poly(3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS),, [8]., PEDOT:PSS (sulfonic acid) ITO. [9 11],, PEDOT:PSS [12]., (VOx), (WOx), (MoOx). VOx,, PEDOT:PSS., VOx, כ VOx כ [13 15]., PEDOT:PSS כ VOx,. VOx PEDOT:PSS, 27%. II.. ITO,,,, 24. UV-Ozone Cleaner 20, PEDOT:PSS VO X, VO X Vanadium oxytriisopropoxide (VOTP) IPA 1:150. PEDOT:PSS 140 C 10, VO X 80 C 10 UV-Ozone Cleaner. Poly[4,8-bis(2-ethylhexyloxy)benzo[1,2- b:4,5-b ]dithiophene-alt22,5-dioctyl-4,6-di(thiophen-2- yl)pyrrolo[3,4-c]pyrrole-1,3(2h,5h)-dione)] (P(BDT- TDPPDT)) Poly[[5-(2-ethylhexyl)-5,6-dihydro- 4,6-dioxo-4H-thieno[3,4-c]pyrrole-1,3-diyl][4,8-bis[(2- ethylhexyl)oxy]benzo[1,2-b:4,5-b ]dithiophene-2,6-diyl]] (PBDTTPD) P(BDT-TDPPDT- TPD) PC 70 BM 1:2.25, 2 wt%,. 100 nm. -, AM1.5G (100 mw/cm 2 )., UV-Ozone VO X Ultraviolet Photoelectron Spectroscopy (UPS). III.,,

Efficiency Enhancement in Polymer Solar Cell Using Solution-processed Insoo Shin et al. 711 Fig. 1. (Color online) (a) Molecular structure of vanadium oxytriisopropoxide (VOTP), (b) transmittance spectrum of vanadium oxide film and picture of VOTP/IPA solution (Inset). Fig. 2. (Color online) (a) Device structure and (b) energy level diagram.,.,, VOx,. Fig. 1(a) VOx VOTP. VOTP, VOx IPA 1:150, 80 C 10. VOTP IPA, Fig. 1(b). Fig. 1(b) VOTP / IPA, VOx. 450 nm 530 nm 530 nm,.,., 90%,, 370 nm 95%, כ., VOTP / IPA VOx. VOx,. Fig. 2(a). ITO, P(BDT-TDPPDT- TPD):PC 70 BM ITO,

712 New Physics: Sae Mulli, Vol. 65, No. 7, July 2015 Fig. 3. (Color online) (a) Energy level variation of VO X film by UV-Ozone treatment, (b) current and voltage characteristics of device with and without UV-Ozone treatment. PEDOT:PSS VO X, ITO (4.8 ev) (4.3 ev). Fig. 2(b) כ. (exciton) (P(BDT-TDPPDT-TPD)) (PC 70 BM),, ITO. ITO, ITO,, כ. כ [16,17]., כ. VO X, PEDOT:PSS (Highest occupied molecular orbital, HOMO) (Lowest unoccupied molecular orbital, LUMO). PEDOT:PSS, VO X, כ, כ [14, 18]., VO X,.,. UV-Ozone. UV- Ozone Cleaner,,, (oxygen vacancy), כ [15, 19]., VO X UV-Ozone Cleaner,, כ. Fig. 3(a) UPS UV-Ozone VO X כ. UV-Ozone, VO X כ. VOx -8.28 ev UV-Ozone 5-7.51 ev, 10-7.52 ev, 15-7.26 ev, VOx, -5.8 ev 5-5.05 ev, 10-5.23 ev, 15-4.84 ev. UV-Ozone כ, 5., VO X, VO X כ כ, 10 UV-Ozone. UV-Ozone VO X

Efficiency Enhancement in Polymer Solar Cell Using Solution-processed Insoo Shin et al. 713 Table 1. Data of Jsc, Voc, FF and Efficiency for device with VO X HTL with and without UV-Ozone treatment. HTL Jsc (ma/cm 2 ) Voc (V) FF Efficiency (%) VO X w/o UV 8.77 0.76 0.65 4.29 VO X with UV 8.84 0.85 0.68 5.15 Table 2. Data of Jsc, Voc, FF and Efficiency for device with VO X and PEDOT:PSS HTL. HTL Jsc (ma/cm 2 ) Voc (V) FF Efficiency (%) PEDOT:PSS 8.44 0.76 0.68 4.33 VO X with UV 8.84 0.87 0.71 5.5, UV-Ozone VO X J-V, UV-Ozone. Fig. 3(b) UV VO X 10 UV VO X J-V כ,,,, Table 1. UV-Ozone 8.77 ma/cm 2 8.84 ma/cm 2, 0.65 0.68, 0.76 V 0.85 V 12%, 4.29% 5.15% 20%. UV-Ozone,. Fig. 3(a), UV-Ozone VOx ITO.,, כ., VOx UV-Ozone כ,, כ. Fig. 3(a), (b), VOTP / IPA VOx UV-Ozone, VOx. VOx Fig. 4. (Color online) Current and voltage characteristics of device with VOx and PEDOT:PSS layer as a hole transport layer., PEDOT:PSS, VOx. Fig. 4 PEDOT:PSS, - כ. Table 2, PEDOT:PSS UV-Ozone VO X, 8.44 ma/cm 2 8.84 ma/cm 2, 0.68 0.71, 0.76 V 0.87 V 14%, UV-Ozone VO X כ., 4.33% 5.5% 27%., VOx, PEDOT:PSS. IV., PEDOT:PSS. VOTP IPA,

714 New Physics: Sae Mulli, Vol. 65, No. 7, July 2015 VOx., VO X UV-Ozone, VO X,, UPS, VO X,, PEDOT:PSS 27%. VOx PEDOT:PSS.. (2014 ). REFERENCES [1] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 258, 1474 (1992). [2] J. J. M Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia and R. H. Friend et al., Nature 376, 498 (1995). [3] S. H. Park, A. Roy, S. Beaupre, S. Cho and N. Coates et al., Nat. Photon. 3, 297 (2009). [4] A. W. Hains, J. Liu, A. B. F. Martinson, M. D. Irwin and T. J. Marks, Adv. Funct. Mater. 20, 595 (2010). [5] L. Chen, Z. Xu, Z. Hong and Y. Yang, J. Mater. Chem. 20, 2572 (2010). [6] A. J. Heeger, Adv. Mater. 26, 10 (2014). [7] G. Li, R. Zhu and Y. Yang, Nat. Photon. 6, 153 (2012). [8] Z. Feng, Y. Hou, Q. Shi, L. Qin and Y. Li et al., Chin. Phys. B. 19, 038601 (2010). [9] M. Jorgensen, K. Norrman, F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008). [10] M. P. de Jong, L. J. van IJzendoorn and M. J. A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000). [11] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong and W. M. Lau et al., Appl. Phys. Lett. 80, 2788 (2002). [12] S. Lattante, Electronics 3, 132 (2014). [13] N. Özer, Thin Solid Films 305, 80 (1997). [14] J. Meyer, K. Zilberberg, T. Riedl and A. Kahn, J. Appl. Phys. 110, 033710 (2011). [15] F. Xie, W. C. H. Choy, C. Wang, X. Li and S. Zhang et al., Adv. Mater. 25, 2051 (2013). [16] K. M. Knesting, H. Ju, C. W. Schlenker, A. J. Giordano and A. Garcia et al., J. Phys. Chem. Lett. 4, 4038 (2013). [17] H. Wilhelm, H. Schock and R. Scheer, J. Appl. Phys. 109, 084514 (2011). [18] K. Zilberberg, S. Trost, J. Meyer, A. Kahn and A. Behrendt et al., Adv. Funct. Mater. 21, 4776 (2011). [19] P. Liu, T. P. Chen, X. D. Li, Z. Liu and Y. Liu et al., ECS Solid State Lett. 2, Q21 (2013).