Search for Neutrinoless Double Beta Decay in the GERDA Experiment

Similar documents
Background Free Search for 0 Decay of 76Ge with GERDA

Results on neutrinoless double beta decay of 76 Ge from the GERDA experiment

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

GERDA & the future of 76 Ge-based experiments

Prospects for kev-dm searches with the GERDA experiment

Results from GERDA Phase I and status of the upgrade to Phase II. Stefan Schönert (TU München) on behalf of the GERDA collabora;on

The GERDA Experiment:

Search for 0νββ-decay with GERDA Phase II

The Gerda Experiment for the Search of Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay for Particle Physicists

The GERmanium Detector Array

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

Two Neutrino Double Beta (2νββ) Decays into Excited States

Results on neutrinoless double beta decay of 76 Ge from GERDA Phase I

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

The search for neutrino-less double beta decay with LNGS: status and perspectives

Investigation and development of the suppression methods of the 42 K background in LArGe

a step forward exploring the inverted hierarchy region of the neutrino mass

Status and Perspectives of the COBRA-Experiment

First results on neutrinoless double beta decay of 82 Se with CUPID-0

-> to worldwide experiments searching for neutrinoless double beta decay

Double Beta Present Activities in Europe

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy

BEGe Detector studies update

The GERDA Phase II detector assembly

The GERDA Neutrinoless double beta decay experiment

GERDA Status and Perspectives

Phase II upgrade of the Gerda experiment for the search of neutrinoless double beta decay

arxiv: v1 [nucl-ex] 20 Dec 2008

E15. Background suppression in GERDA Phase II. and its study in the LARGE low background set-up

Search for Neutrinoless Double- Beta Decay with CUORE

the first prototype for a scintillating bolometer double beta decay experiment.

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Neutrino Masses and Mixing

Yoann KERMAÏDIC PSeGe workshop

NEMO-3 latest results

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

cryogenic calorimeter with particle identification for double beta decay search

GERDA Phase II detectors: behind the production and characterisation at low background conditions

MC Benchmarks for LAr Instrumentation in GERDA

Coincidence measurements for Gerda Phase II

Status of the GERDA experiment

Status of the CUORE and CUORE-0 experiments at Gran Sasso

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

Shielding Strategies. Karl Tasso Knöpfle MPI Kernphysik, Heidelberg

Neutron Activation of 76Ge

Status of the CUORE experiment at Gran Sasso

How can we search for double beta decay? Carter Hall University of Maryland

A Liquid Argon Scintillation Veto for the GERDA Experiment

Björn Lehnert. Search for double beta decays of palladium isotopes into excited states

Search for Majorana neutrinos and double beta decay experiments

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA

Background by Neutron Activation in GERDA

Neutrinoless Double-Beta Decay

Correlated Background measurement in Double Chooz experiment

Majorana Double Beta Decay Search Project (Majorana Demonstrator)

arxiv: v1 [physics.ins-det] 23 Oct 2007

AMoRE 0 experiment using low temperature 40 Ca 100 MoO 4 calorimeters

Status of the CUORE and CUORE-0 Experiments at Gran Sasso

Improvement of the GERDA Ge Detectors Energy Resolution by an Optimized Digital Signal Processing

Results from EXO 200. Journal of Physics: Conference Series. Related content PAPER OPEN ACCESS

An active-shield method for the reduction of surface contamination in CUORE

Wavelength Shifting Reflector Foils for Liquid Ar Scintillation Light

- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering

Status of Cuore experiment and last results from Cuoricino

Is the Neutrino its Own Antiparticle?

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Neutron Activation of 74 Ge and 76 Ge

Excited State Transitions in Double Beta Decay: A brief Review

K. Zuber, TU Dresden DESY, 9/10 September In search of neutrinoless double beta decay

First results on neutrinoless double beta decay from the GERDA experiment

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration)

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

The energy calibration system of the CUORE double beta decay bolometric experiment

Searching for neutrino- less double beta decay with EXO- 200 and nexo

Recent Results and Status of EXO-200 and the nexo Experiment

LUCIFER: Neutrinoless Double Beta Decay search with scintillating bolometers

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Background and sensitivity predictions for XENON1T

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016

K. Zuber, TU Dresden INT, Double beta decay experiments

K. Zuber, Techn. Univ. Dresden Erlangen, 4. June Status and perspectives of the COBRA double beta decay experiment

The Daya Bay Reactor Neutrino Experiment

K. Zuber, Uni. Sussex NNR 05, Osaka Status of COBRA

can be read by PMTs w/o wave length shifter

GERDA Phase II: status and prospects

Search for Low Energy Events with CUORE-0 and CUORE

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

Neutrino nucleus coherent scattering - Prospects of future reactor experiments with germanium detectors

Searches for Exotic Processes in Double Beta Decay with EXO-200

The CUORE Detector: New Strategies

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

Transcription:

Search for Neutrinoless Double Beta Decay in the GERDA Experiment Andrea Kirsch on behalf of the Gerda Collaboration Max-Planck Institut für Kernphysik, Heidelberg X th Recontres du Vietnam Flavour Physics Conference Quy Nhon 31 st July 2014 Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 1 / 17

Outline 1 Neutrinos and Double Beta Decay (2νββ vs. 0νββ) 2 GERDA experimental design 3 Phase I data: energy calibration, resolution and spectrum 4 Background modeling 5 Pulse shape discrimination 6 Unblinding and results of 0νββ analysis 7 Outlook on Phase II Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 2 / 17

Open questions from neutrino oscillations... Flavour eigenstates ν α (with α e, µ, τ) as linear superposition of mass eigenstates ν i 3 ν α y i1 U αi ν i y Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U c 12 c 13 s 12 c 13 s 13 e iδ s 12 c 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ s 23 c 13 s 12 s 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ c 23 c 13 where s ij sin θ ij and c ij cos θ ij What we know squared mass differences m 2 12 and m 2 23 mixing angles θ 12, θ 23 and θ 12 from e.g. solar neutrino long baseline reactor, amospheric neutrino long baseline accelerator or short baseline reactor / accelerator experiments What we do not know new physics behind SM absolute mass scale mass hierarchy nature of the neutrino (Dirac or Majorana?) Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 3 / 17

Open questions from neutrino oscillations... Flavour eigenstates ν α (with α e, µ, τ) as linear superposition of mass eigenstates ν i 3 ν α y i1 U αi ν i y Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U c 12 c 13 s 12 c 13 s 13 e iδ s 12 c 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ s 23 c 13 s 12 s 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ c 23 c 13 where s ij sin θ ij and c ij cos θ ij What we know squared mass differences m 2 12 and m 2 23 mixing angles θ 12, θ 23 and θ 12 from e.g. solar neutrino long baseline reactor, amospheric neutrino long baseline accelerator or short baseline reactor / accelerator experiments What we do not know new physics behind SM absolute mass scale mass hierarchy nature of the neutrino (Dirac or Majorana?) Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 3 / 17

Open questions from neutrino oscillations... Flavour eigenstates ν α (with α e, µ, τ) as linear superposition of mass eigenstates ν i 3 ν α y i1 U αi ν i y Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U c 12 c 13 s 12 c 13 s 13 e iδ s 12 c 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ s 23 c 13 s 12 s 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ c 23 c 13 where s ij sin θ ij and c ij cos θ ij What we know What we do not know squared mass differences m 2 12 and m 2 23 mixing angles θ 12, new physics behind SM θ 23 and θ 12 absolute mass scale from e.g. solar neutrino long baseline reactor, mass hierarchy amospheric neutrino long baseline accelerator nature of the neutrino or short baseline reactor / accelerator experiments (Dirac or Majorana?) Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 3 / 17

Open questions from neutrino oscillations... Flavour eigenstates ν α (with α e, µ, τ) as linear superposition of mass eigenstates ν i 3 ν α y i1 U αi ν i y Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U c 12 c 13 s 12 c 13 s 13 e iδ s 12 c 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ s 23 c 13 s 12 s 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ c 23 c 13 where s ij sin θ ij and c ij cos θ ij What we know squared mass differences m 2 12 and m 2 23 mixing angles θ 12, θ 23 and θ 13 from e.g. solar neutrino long baseline reactor, amospheric neutrino long baseline accelerator or short baseline reactor/accelerator experiments What we do not know new physics behind SM absolute mass scale mass hierarchy nature of the neutrino (Dirac or Majorana?) Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 3 / 17

Unveiling the nature of the neutrino Dirac: νν Majorana: νν vs. Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 4 / 17

Unveiling the nature of the neutrino Dirac: νν Majorana: νν vs. Double Beta (ββ) Decay: rare second order nuclear transision occurs between 2 even-even isobars only if single β decay energetically forbidden or J large allows for an unambigous test 35 canditates in nature predominantly used isotopes for experimental ββ search: 48 Ca, 76 Ge, 82 Se, 96 Zr, 100 Mo, 116 Cd, 128 Te, 130 Te, 136 Xe, 150 Nd,... Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 4 / 17

Double Beta Decay 2νββ: pa, Zq Ñ pa, Z 2q 2e 2ν e so far observed in 12 nuclei half lifes in the range of 10 19 10 24 yr with T1{2p 2ν 76 Geq 1.84 0.14 0.10 10 21 yr J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110 L 0: Lepton-number conserved allowed by Standard Model 0νββ: pa, Zq Ñ pa, Z 2q 2e only if ν s have Majorana mass component still hunted process note: one claim by subgroup of HdM with T1{2p 0ν 76 Geq 1.19 0.37 0.23 10 25 yr Phys. Rev. Lett. B 586, 198-212 (2004) L 2: Lepton-number violation not allowed by Standard Model Experimental signatures measure the electrons sum energy spectrum distribution sensitive to the underlying process Phys. Rev. 401 C81 (2010) 032501 continuum Ñ 2νββ or 0νββ Majoron(s) monoenergetic peak @ Q ββ -value Ñ 0νββ Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 5 / 17

Double Beta Decay 2νββ: pa, Zq Ñ pa, Z 2q 2e 2ν e so far observed in 12 nuclei half lifes in the range of 10 19 10 24 yr with T1{2p 2ν 76 Geq 1.84 0.14 0.10 10 21 yr J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110 L 0: Lepton-number conserved allowed by Standard Model 0νββ: pa, Zq Ñ pa, Z 2q 2e only if ν s have Majorana mass component still hunted process note: one claim by subgroup of HdM with T1{2p 0ν 76 Geq 1.19 0.37 0.23 10 25 yr Phys. Rev. Lett. B 586, 198-212 (2004) can be L mediated 2: Lepton-number by e.g. light Majorana violation ν, R-handed weak currents, SUSY particles,... not allowed by Standard Model Experimental signatures measure the electrons sum energy spectrum distribution sensitive to the underlying process Phys. Rev. 401 C81 (2010) 032501 continuum Ñ 2νββ or 0νββ Majoron(s) monoenergetic peak @ Q ββ -value Ñ 0νββ Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 5 / 17

Neutrinoless Double Beta Decay Expected decay rate: assuming light Majorana ν exchange to be dominating process pt 0ν 1{2 q 1 G 0ν pq ββ, Zq M 0ν 2 xm ββ y 2 where: G 0ν pq ββ, Zq 9 Q 5 ββ phase space integral M 0ν nuclear matrix element xm ββ y 3 i1 U eim i effective ν mass Values taken from: Phys. Rev. D86 (2012) 013012; JCAP 07 (2012) 053 Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 6 / 17

Neutrinoless Double Beta Decay Expected decay rate: assuming light Majorana ν exchange to be dominating process pt 0ν 1{2 q 1 G 0ν pq ββ, Zq M 0ν 2 xm ββ y 2 where: G 0ν pq ββ, Zq 9 Q 5 ββ phase space integral M 0ν nuclear matrix element xm ββ y 3 i1 U eim i effective ν mass 1 Background! 1: T 0ν 1{2 9 ɛ a M t 2 Background " b1: T1{2 0ν 9 ɛ a M t BI E Experimental Sensitivity ɛ total detection efficiency a abundance of 0νββ isotope where: M t exposure (detector mass livetime) BI background index E energy resolution @ Q ββ Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 6 / 17

Neutrinoless Double Beta Decay Expected decay rate: assuming light Majorana ν exchange to be dominating process pt 0ν 1{2 q 1 G 0ν pq ββ, Zq M 0ν 2 xm ββ y 2 where: G 0ν pq ββ, Zq 9 Q 5 ββ phase space integral M 0ν nuclear matrix element xm ββ y 3 i1 U eim i effective ν mass 1 Background! 1: T 0ν 1{2 9 ɛ a M t 2 Background " b1: T1{2 0ν 9 ɛ a M t BI E Experimental Sensitivity ɛ total detection efficiency a abundance of 0νββ isotope where: M t exposure (detector mass livetime) BI background index E energy resolution @ Q ββ Search in 76 Ge (with well established semiconductor technology) Advantages source detector Ñ high ɛ High Purity Ge Ñ low intrinsic BI FWHM @ Q ββ 0.2% Ñ excellent E test of claim for 0νββ observation by HdM without depending on NME Disadvantages low Q ββ -value Ñ possible external BI from e.g. 208 Tl + small G 0ν pq ββ, Zq a7.8% for 76 Ge Ñ enrichment needed rather long and costly process to get large active detector mass Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 6 / 17

GERmanium Detector Array Eur. J. Phys. C73 (2013) 2330 Background reduction techniques from construction of setup: located in Hall A of LNGS underground laboratory, Italy cosmic µ flux reduced by 106 Ñ novel idea: Ge detectors are operated bare in LAr as coolant Andrea Kirsch (MPIK) only minimal amount of (screened) material close to detectors Search for 0νββ in GERDA Ñ rock shielded by ultra-pure water copper lined steel cryostat LAr Ñ active µ-veto by using water tank instrumented with PMTs and plastic scintillator above the cryostat neck Quy Nhon, 31st July 2014 7 / 17

GERDA Phase I data Experiment proceeds in two phases: Phase Mass Aspired BI Livetime T1{2 0ν [kg] [cts/(kev kg yr)] [yr] [yr] I 15 10 2 1 2.4 10 25 II 35 10 3 3 1.4 10 26 Phase II Ñ liquid argon scintillation veto upgrade 8 semi-coaxial detectors inherited from HdM (ANG1-5) & IGEX (RG1-3) experiments; all reprocessed at Canberra enrichement fraction of 76 Ge: 86% data taking: November 2011 May 2014 2 detectors not considered (high leakage current) total mass used for analysis: 14.6 kg 5 Broad Energy Germanium (BEGe) detectors from 30 newly processed Phase II detectors enrichement fraction of 76 Ge: 88% data taking (first test): July 2012 May 2014 1 detector not considered (unstable behaviour) total mass used for analysis: 3.0 kg Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 8 / 17

Additional background reduction (by off-line analysis) Signal Background ββ events: range for 1MeV electrons in Ge about 1 mm interaction via ionization or exitation of absorber atoms one drift of electrons and holes originated close-by in located charge cloud Ñ single-site event (SSE) γ events: range of 1MeV γ s in Ge À10 larger (compared to electrons) interaction via compton scattering, e e pair creation or photelectric absorption sum of several separated electron-hole drifts Ñ multi-site event (MSE) Signal processing: diode Ñ amplifier Ñ FADC Ñ digital filter Ñ E, pulse shape,... anti-coincidence between detectors: 20% rejected @ Q ββ quality cuts (e.g. T, E instabilities): 9% rejected @ Q ββ pulse shape discrimination (PSD): 50% rejected @ Q ββ Ramo-Shockley theorem: Qptq q rφpr h ptqq φpr eptqqs distinguish between SSE s and MSE s different PSD for semi-coaxial and BEGe detectors Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 9 / 17

Calibration, time stability and energy resolution Shift of 2614.5 kev position (bi-) weekly calibration with movable 228 Th sources offline energy reconstruction (semi-gaussian filter) stability monitored with test pulser (0.05 Hz) drift of 2614.5 kev γ-line small ( 0.05%) compared to FWHM @ Q ββ of 0.2% Energy resolution @ 2039 kev Mean FWHM of detectors @ Q ββ 1 semi-coaxial: p4.8 0.2q kev 2 BEGe: p3.2 0.2q kev automatic blinding of the Q ββ 20 kev (later 5 kev) region applied to allow for an unbiased data analysis; validated background model and PSD before perform unblinding Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 10 / 17

Blinded physics spectrum Counts/(keV) 3 10 2 10 10 1 - β Ar 39 2νββ 1460.8 1524.7 K 40 K 42 1764.5 Bi 214 2204.1 Bi 214 2614.5 Tl 208 semi-coaxial: 19.2 kg yr 3 10 BEGe: 2.4 kg yr - β 2 10 2 10 region of interest 2νββ blinded window 10 10 α 1 1 0 1000 2000 3000 4000 5000 6000 Energy [kev] Region Of Interest (ROI) interval [1930 2190s kev Ra 226 α Po 210 Rn 222 Po 218 2 10 10 10 1 yr) kg -1 Counts/(keV Main background components: β-spectrum of 39 Ar (with Q 565 kev) 2νββ-spectrum of 76 Ge γ-lines from 40 K, 42 K, 60 Co, 214 Bi, 212 Bi, 208 Tl & 228 Ac α-spectrum of 238 U chain (in semi-coaxial detectors) Division in 3 data sets: semi-coaxial data splitted in two sets ( golden, silver ) according to BI BEGe set kept seperated due to different resolution and background data set Exposure FWHM @ [kg yr] Q ββ [kev] golden 17.9 4.8 0.2 silver 1.3 4.8 0.2 BEGe 2.4 3.2 0.2 Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 11 / 17

Background model Eur. Phys. J. C74 (2014) 2764 General procedure: simulation of known (from material screening) and observed (from detector operation) background sources spectral fit with combination of all components in the energy region between 570 kev and 7500 kev on the 3 data sets 2 extremes: minimum (all known visible contributions) & maximum (additional contributions from other possible locations) Results: no γ-line expected in the blinded window around Q ββ flat background between 1930 kev and 2190 kev ( ROI) excluding known peaks @ 2103 kev ( 208 Tl SEP) as well as 2119 kev ( 214 Bi) BI p1.76 2.38q 10 2 (depending on assumption of source location) cts kg kev yr Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 12 / 17

Background model Eur. Phys. J. C74 (2014) 2764 General procedure: simulation of known (from material screening) and observed (from detector operation) background sources spectral fit with combination of all components in the energy region between 570 kev and 7500 kev on the 3 data sets 2 extremes: minimum (all known visible contributions) & maximum (additional contributions from other possible locations) Results: no γ-line expected in the blinded window around Q ββ flat background between 1930 kev and 2190 kev ( ROI) excluding known peaks @ 2103 kev ( 208 Tl SEP) as well as 2119 kev ( 214 Bi) BI p1.76 2.38q 10 2 (depending on assumption of source location) cts kg kev yr Partial unblinding @ Q ββ 20 kev Ñ 5 kev with 8.6 10.3 expected and 13 observed events Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 12 / 17

Pulse shape discrimination (PSD) Eur. Phys. J. C73 (2013) 2583 semi-coaxial: artificial neural network (ANN) TMVA / TMlpANN with 2 hidden layers of n var and n var+1 nodes Input: time when charge pulse reaches 1%, 3%,...,90% of maximum (n var50) training using 228 Th calibration data Ñ SSE: 208 Tl DEP @ 1620.7 kev Ñ MSE: 212 Bi FEP @ 1592.5 kev cut defined such that acceptance of 208 Tl DEP @ 2614.5 kev is fixed to 90% 0νββ acceptance 90 5 9 %; background acceptance @ Q ββ 55% BEGe: mono-parametric A{E A amplitude of current pulse E energy high capability of distinguising SSE from MSE and surface p /n events tuned using 208 Tl DEP (per definition A{E1) Ñ keep 0.965 A 1.07 well tested and understood method 0νββ acceptance p92 2q% (determined from 208 Tl DEP and MC); background acceptance @ Q ββ 20% cross checks 2νββ: p85 2q% compton edge: p85-94q% 56 Co DEP: p83-95q% 2 alternative PSD Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 13 / 17

Unblinding @ Q ββ 5 kev Phys. Rev. Let. 111 (2013) 122503 after energy calibration, data selection, analysis method and PSD cut is fixed Ñ unblinding @ meeting in June 2013 full data set: total exposure: M t 21.6 kg yr no peak in spectrum @ Q ββ N obs 7 (w/o) Ø 3 (w/) N exp 5.1(w/o) Ø 2.5(w/) event count N obs consistent with expected background N exp Ñ GERDA sets limit on 0νββ half-live data set PSD Exposure FWHM @ Efficiency Events [kg yr] Q ββ [kev] f 76 f av ɛ fep ɛ psd @ ROI N exp N obs golden w/o 0.688 76 3.3 5 17.9 4.8 0.2 w/ 0.619 45 2.0 2 silver w/o 0.688 19 0.8 1 1.3 4.8 0.2 w/ 0.619 9 0.4 1 BEGe w/o 0.720 23 1.0 1 2.4 3.2 0.2 w/ 0.663 3 0.1 0 Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 14 / 17

Unblinding @ Q ββ 5 kev Phys. Rev. Let. 111 (2013) 122503 T 0ν 1{2 lnp2q N A m A N 0ν M t f 76 f av ɛ fep ɛ psd fit in [1930 2190] kev with 4 free parameters: 3 constant background plus 1 gauss with T1{2 0ν 0 gaussian parameters fixed: µp2039.06 0.2q kev σp2.0 0.1q kev for semi-coaxial σp1.4 0.1q kev for BEGe systematic uncertainties on f, ɛ, µ, σ: MC sampling & averaging Results on T 0ν 1{2 limit data set PSD Exposure FWHM @ Efficiency Events Frequentist: profile likelihood fit Ñ bestn fit exp N N [kg yr] Q obs ββ [kev] f 76 f av ɛ fep ɛ psd @ ROI 0ν 0 Ñ T w/o 0.688 76 1{2 0ν p90%c.l.q 3.3 5 2.1 1025 yr golden 17.9 4.8 0.2 w/ 0.619 45 Ñ median 2.0 sensitivity: 2 2.4 10 25 yr w/o 0.688 19 Bayes: flat 0.8 1{T prior 1 0 10 24 yr silver 1.3 4.8 0.2 w/ 0.619 9 Ñ best0.4 fit N 0ν 10 w/o 0.720 23 Ñ T1{2 0ν 1.0 1 BEGe 2.4 3.2 0.2 p90%c.l.q 1.9 1025 yr w/ 0.663 3 Ñ median 0.1 sensitivity: 0 2.0 10 25 yr Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 14 / 17

Unblinding @ Q ββ 5 kev Phys. Rev. Let. 111 (2013) 122503 Claim by subgroup of HdM (2004) total exposure: M t 71.7 kg yr 28.75 6.86 signal events observed T1{2 0ν 0.37 1.19 0.23 1025 yr Phys. Rev. Lett. B 586, 198-212 (2004) Comparison with Phase I result assuming the claimed signal GERDA should see 5.9 1.4 0νββ events in 2σ interval above background of 2.0 0.3 probability from profile likelihood: ppn 0ν 0 H1signal bkgq0.01 Ñ claim ruled out @ 99% level Bayes factor: pph1signal bkgq/pph0bkgq gives 0.024 Ñ search for 0νββ open again, many proposals to push sensitivity Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 14 / 17

Phase I finished Ñ currently preparing Phase II Goal: Upgrade: Phase I: 20 kg yr with a BI of 10 2 cts/(kg kev yr) Phase II: 100 kg yr with a BI of 10 3 cts/(kg kev yr) 2 detector mass (20 kg BEGe 15 kg semi-coax) liquid argon veto instrumented with PMTs optimized readout electronics low mass detector suspension wedge bond contact (made of clean material) b T1{2 0ν 9 f M t 76 ɛ BI E (if background is present) increased statistic (higher ββ emitter mass M and longer data taking t) lower background index BI (by about factor 10) better energy resolution E Ñ expected sensitivity 1.4 10 26 yr (90% C.L.) Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 15 / 17

Conclusion: Phase I (2011 2013) data taking completed with an exposure of 21.6 kg yr blind analysis performed (first time in this field) unprecedented BI of 10 2 cts/(kg kev yr) after PSD (order of magnitude lower than previous experiments) observed 3 events @ Q ββ 5 kev compared to expected background of 2.5 0.3 Ñ no 0νββ signal upper half-life limit from profile likelihod fit: T1{2 0ν yr with GERDA alone Ñ HdM claim (2004) rejected @ 99% level T1{2 0ν yr with GERDA HdM[1] IGEX[2] [1] Euro Phys J A12 (2001) 147 [2] Phys Rev D65 (2002) 092007 Outlook: Phase II (start scheduled end 2014) new BEGe detectors of additional 20 kg Ñ available upgrade of infrastructure (lock system, glove box,...) Ñ finished liquid argon scintillation veto Ñ currently installed last integration tests (new contacting, electronics,..,) Ñ ongoing Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31 st July 2014 16 / 17

The Collaboration Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31st July 2014 17 / 17

The Collaboration... and the people behind the GERDA experiment. Picture taken during last GERDA Meeting in June 2014 hosted by the Max-Planck-Institut fu r Kernphysik @ Heidelberg, Germany Andrea Kirsch (MPIK) Search for 0νββ in GERDA Quy Nhon, 31st July 2014 17 / 17