Rigorous back analysis of shear strength parameters of landslide slip

Similar documents
Source mechanism solution

The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA 报告人 : 沈胤

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels

d) There is a Web page that includes links to both Web page A and Web page B.

Chapter 2 the z-transform. 2.1 definition 2.2 properties of ROC 2.3 the inverse z-transform 2.4 z-transform properties

沙强 / 讲师 随时欢迎对有机化学感兴趣的同学与我交流! 理学院化学系 从事专业 有机化学. 办公室 逸夫楼 6072 实验室 逸夫楼 6081 毕业院校 南京理工大学 电子邮箱 研 究 方 向 催化不对称合成 杂环骨架构建 卡宾化学 生物活性分子设计

Galileo Galilei ( ) Title page of Galileo's Dialogue concerning the two chief world systems, published in Florence in February 1632.

Lecture English Term Definition Chinese: Public

Integrated Algebra. Simplified Chinese. Problem Solving

Alternative flat coil design for electromagnetic forming using FEM

三类调度问题的复合派遣算法及其在医疗运营管理中的应用

The Lagrange Mean Value Theorem Of Functions of n Variables

There are only 92 stable elements in nature

Synthesis of PdS Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability

通量数据质量控制的理论与方法 理加联合科技有限公司

Design, Development and Application of Northeast Asia Resources and Environment Scientific Expedition Data Platform

An IntRoduction to grey methods by using R

Chinese Journal of Applied Entomology 2014, 51(2): DOI: /j.issn 信息物质的化学分析技术 黄翠虹 , ; 2.

Seismic stability safety evaluation of gravity dam with shear strength reduction method

Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions

上海激光电子伽玛源 (SLEGS) 样机的实验介绍

The preload analysis of screw bolt joints on the first wall graphite tiles in East

Thermal-hydro-mechanical coupling stress intensity factor of brittle rock

Microbiology. Zhao Liping 赵立平 Chen Feng. School of Life Science and Technology, Shanghai Jiao Tong University

Column Buckling.

Bending Internal Forces.

Principia and Design of Heat Exchanger Device 热交换器原理与设计

Preparation of Cu nanoparticles with NaBH 4 by aqueous reduction method

Effect of lengthening alkyl spacer on hydroformylation performance of tethered phosphine modified Rh/SiO2 catalyst

Species surface concentrations on a SAPO 34 catalyst exposed to a gas mixture

MASTER S DEGREE THESIS. Electrochemical Stability of Pt-Au alloy Nanoparticles and the Effect of Alloying Element (Au) on the Stability of Pt

On the Quark model based on virtual spacetime and the origin of fractional charge

A novel method for fast identification of a machine tool selected point temperature rise based on an adaptive unscented Kalman filter *

系统生物学. (Systems Biology) 马彬广

Numerical Analysis in Geotechnical Engineering

Phase-field simulations of forced flow effect on dendritic growth perpendicular to flow

三系杂交棉花粉育性对高温和低温胁迫的反应. Reaction of Pollen Fertility to High or Low Temperature Stresses in CMS-Based Hybrid Cotton 邵明彦 1 张海平 张昭伟 朱云国 袁淑娜 1

USTC SNST 2014 Autumn Semester Lecture Series

第五届控制科学与工程前沿论坛 高志强. Center for Advanced Control Technologies

能源化学工程专业培养方案. Undergraduate Program for Specialty in Energy Chemical Engineering 专业负责人 : 何平分管院长 : 廖其龙院学术委员会主任 : 李玉香

Deformation And Stability Analysis Of A Cut Slope

ILC Group Annual Report 2018

Surveying,Mapping and Geoinformation Services System for the Major Natural Disasters Emergency Management in China

Riemann s Hypothesis and Conjecture of Birch and Swinnerton-Dyer are False

MECHANICS OF MATERIALS

复合功能 VZθ 执行器篇 Multi-Functional VZθActuator

Thermodynamic model for equilibrium solubility of gibbsite in concentrated NaOH solutions

Measurement of accelerator neutron radiation field spectrum by Extended Range Neutron Multisphere Spectrometers and unfolding program

ArcGIS 10.1 for Server OGC 标准支持. Esri 中国信息技术有限公司

Key Topic. Body Composition Analysis (BCA) on lab animals with NMR 采用核磁共振分析实验鼠的体内组分. TD-NMR and Body Composition Analysis for Lab Animals

Influence of fin arrangement on fluid flow and heat transfer in the inlet of a plate-fin heat exchanger *

Study on property and deterioration of whole boned bolt in heat-harm tunnel

层流火焰动力学研究 进展及展望 北京大学工学院力学与工程科学系 第一届全国青年燃烧学术会议 2015 年 9 月 日, 上海. Peking University

= lim(x + 1) lim x 1 x 1 (x 2 + 1) 2 (for the latter let y = x2 + 1) lim

QTM - QUALITY TOOLS' MANUAL.

基于可拓物元法的土壤重金属污染程度评价. Hg Cd. Cu Co Ni Sn V ~ N ~ E. 土壤 (Soils), 2013, 45(3): Cd Hg As Cu Pb X142 ( )

Research on the Concrete Dam Damage and Failure Rule under the Action of Fluid-Solid Coupling

A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting *

GRE 精确 完整 数学预测机经 发布适用 2015 年 10 月考试

Bending Deflection.

POSTERIOR CRAMÉR-RAO BOUNDS ANALYSIS FOR PASSIVE TARGET TRACKING 1

Torsion.

Molecular weights and Sizes

Leaching kinetics of gold bearing pyrite in H 2 SO 4 Fe 2 (SO 4 ) 3 system

Chapter 22 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Electric Potential 電位 Pearson Education, Inc.

Mechatronics Engineering Course Introduction

2012 AP Calculus BC 模拟试卷

Atomic & Molecular Clusters / 原子分子团簇 /

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015

Zinc doped g C3N4/BiVO4 as a Z scheme photocatalyst system for water splitting under visible light

Estimation of the Passive Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress is Considered

国际数值预报现状和发展 沈学顺 中国气象局数值预报中心

Application of Argo Data in the Analysis of Water Masses in the Northwest Pacific Ocean

Introduction. 固体化学导论 Introduction of Solid State Chemistry 新晶体材料 1976 年中科院要求各教研室讨论研究方向上海硅酸盐所 福州物质所. Textbooks and References

Tsinghua-Berkeley Shenzhen Institute (TBSI) PhD Program Design

暗物质 II 毕效军 中国科学院高能物理研究所 2017 年理论物理前沿暑期讲习班 暗物质 中微子与粒子物理前沿, 2017/7/25

Photo induced self formation of dual cocatalysts on semiconductor surface

Solar Radiation Climatology Calculation in China

Analysis in Geotechnical Engineering

Cooling rate of water

Giant magnetoresistance in Fe/SiO 2 /p-si hybrid structure under non-equilibrium conditions

澳作生态仪器有限公司 叶绿素荧光测量中的 PAR 测量 植物逆境生理生态研究方法专题系列 8 野外进行荧光测量时, 光照和温度条件变异性非常大 如果不进行光照和温度条件的控制或者精确测量, 那么荧光的测量结果将无法科学解释

Workshop on Numerical Partial Differential Equations and Scientific Computing

A Tutorial on Variational Bayes

数理经济学教学大纲 内容架构 资料来源 : 集合与映射 (JR,pp ) 1. 数学 : 概念 定理 证明, 重在直觉, 多用图形 ; 2. 举例 : 数学例子 ; 3. 应用 : 经济学实例 ;

Influence of surface strain on activity and selectivity of Pd based catalysts for the hydrogenation of acetylene: A DFT study

Analysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis

Effects of particle size and particle interactions on scheelite flotation

Slope stability analysis and prediction based on the limit equilibrium method of Luming Molybdenum Mine's West-I and North Region

ILC Group Annual Report 2017

Lecture Note on Linear Algebra 14. Linear Independence, Bases and Coordinates

A new approach to inducing Ti 3+ in anatase TiO2 for efficient photocatalytic hydrogen production

The East Asian summer monsoon and impact of snow cover over HTP

Integrating non-precious-metal cocatalyst Ni3N with g-c3n4 for enhanced photocatalytic H2 production in water under visible-light irradiation

Preparation of LaMnO3 for catalytic combustion of vinyl chloride

Single-atom catalysis: Bridging the homo- and heterogeneous catalysis

Factors Driving the Expansion of Construction Land: A Panel Data Study of Districts and Counties in Ningbo City, China

R.SUNDARAVADIVELU Professor IIT Madras,Chennai - 36.

RESEARCH AND APPLICATION OF THE EVAPORATION CAPACITY SPATIAL INTERPOLATION METHOD FOR AGRICULUTRAL ENVIRONMENT / 面向农业环境的蒸发量空间插值方法研究和应用

Transcription:

Trans. Nonferrous Met. Soc. China 23(2013) 1459 1464 Rigorous back analysis of shear strength parameters of landslide slip Ke ZHANG 1, Ping CAO 1, Rui BAO 1,2 1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China; 2. Kunming Prospecting Design Institute of China Nonferrous Metals Industry, Kunming 650000, China Received 25 April 2012; accepted 21 September 2012 Abstract: A rigorous back analysis of shear strength parameters of landslide slip was presented. Kinematical element method was adopted to determine factor of safety and critical failure surface, which overcomes the disadvantage of limit equilibrium method. The theoretical relationship between the combination of shear strength parameters and stability state was studied. The results show that the location of critical slip surface, F/tan φ and F/c depend only on the value of c/tan φ. The failure surface moves towards the inside of slope as c/tan φ increases. According to the information involving factor of safety and critical failure surface in a specific cross-section, strength parameters can be back calculated based on the above findings. Three examples were given for demonstrating the validity of the present method. The shear strength parameters obtained by back analysis are almost consistent with their correct solutions or test results. Key words: slope stability; back analysis; kinematical element method; shear strength parameter; critical failure surface 1 Introduction The determination of shear strength for landslide slip is an important research object in slope stability analysis. It is widely accepted that the shear strength parameters obtained by back analysis are more reliable than those by laboratory or in-situ test. However, back analysis is a much more difficult task. Many studies have indicated that it is insufficient to assess shear strength parameters from the information provided by a failure surface. This can be done in two ways [1 3]: one is by assuming one of these parameters; the other is by establishing a set of simultaneous equations involving the information of two cross-sections. The back analysis can also be treated as the optimization problem. NGUYEN [4] developed a simple and quick method for the back calculation of slope failures by the secant method. LI et al [5] presented hybrid genetic algorithm, and used the optimization algorithm to identify the shear strength parameters of geotechnical materials. JIANG and YAMAGAMI [6,7] illustrated the theoretical relationship between the strength parameters and the critical slip surface, and produced a new method for back analysis of strength parameters. One of the key problems of back analysis is to calculate the factor of safety. The limit equilibrium method was adopted in the aforementioned researches, and they assumed that the slip surface is a circular one. Since this method is a statically indeterminate problem, assumptions on the inter-slice shear forces are employed to render the problem statically determinate. It is difficult to assess the accuracy of the limit equilibrium solution. Kinematical element method (KEM) is an advanced slope limit analysis technology presented by GUSSMANN [8] with strong theoretical background. CAO and GUSSMANN [9] improved this method, and developed KEM analysis software. GUSSMANN [10] solved the limit-load problem by the KEM. LI et al [11] used KEM to analyze bottom stability of foundation pit. The main advantages of KEM are as follows: 1) it avoids assumptions of inter-slice forces in limit equilibrium method; 2) no assumption needs to be made on geometry of the slip surface; and 3) the inter-element boundaries do not have to be vertical. The internal relationship between the combination Foundation item: Project (51174228) supported by the National Natural Science Foundation of China; Project (CX2012B069) supported by Hunan Provincial Innovation Foundation for Postgraduate; Project (201003) supported by Transportation Science and Technology Projects of Hunan Province, China Corresponding author: Ke ZHANG; Tel: +86-13467530581; E-mail: zhangke_csu@163.com DOI: 10.1016/S1003-6326(13)62617-5

1460 Ke ZHANG, et al/trans. Nonferrous Met. Soc. China 23(2013) 1459 1464 of shear strength parameters and stability state was studied. Based on the above-mentioned relationship, a rigorous back analysis combining KEM was presented, which provided a practical and rigorous way to determine shear strength parameters of landslide slip. According to the information involving the factor of safety and the critical slip surface in a specific crosssection, strength parameters can be back calculated. 2 Theoretical background of KEM The theory of KEM includes three parts: kinematics analysis, static analysis and optimization. First, plastic sliding zone is divided into several block elements called kinematical elements (Fig. 1). The normal force and shear force acting on the internal boundary satisfy Mohr Coulomb failure criterion. Fig. 1 Slope stability analysis model of KEM Taking the compatibility condition of movement for elements, kinematics equation is given as K V + V ˆ = 0 (1) where K represents kinematics coefficient matrix, V represents the vector of unknown displacements of elements, and Vˆ represents the known displacements vector on flexible boundary. After solving the above equations, the directions of relative movement of elements are obtained. The horizontal and vertical force equilibriums for each element are converted into the matrix form, and effective normal force applied on the element is taken as unknown quantity, K s N + F = 0 (2) where K s represents the static coefficient matrix, N represents the vector of unknown effective norm stress on the element, and F represents the vector of known force. The factor of safety is obtained by employing iteration process after solving the static equations. Factor of safety is taken as an objective function, and the coordinates of the points defining the failure surface are taken as the control variables. Optimization algorithm is used to search the minimum factor of safety and critical slip surface. 3 New back analysis 3.1 Theoretical background In slope stability analysis, the factor of safety F is usually defined as the ratio of the shear strength of the soil to the shear stress necessary to bring the slope into a state of limit equilibrium [12]. The strength of the soil is usually described by Mohr Coulomb criterion as a function of the cohesion c and friction angle φ. F can be given by c tanφ F = = (3) c cr cr tanφ cr where c cr = c / F and φ = tan 1 (tanφ / F ) are the strength parameters necessary only to maintain the slope in limit equilibrium. In order to demonstrate the internal relationship between the combination of strength parameters and stability state, one may consider a homogeneous slope with shear strength parameters c and φ. The location of critical slip surface and factor of safety F can be cr cr uniquely determined, and c/tan φ = c /tanφ is obtained from Eq. (3). Let another slope be comprised of soil with shear parameters c = wcc and φ = 1 tan ( w φ tan φ), and other parameters remain constant. The location of critical slip surface and factor of safety cr cr F' can also be determined. Let c /tan φ = c /tanφ, which means that the parameters are all the same under limit equilibrium state. At the moment c/tanφ = c /tanφ and w c = wφ = w. Based on the definition of factor of safety, F'=wF is obtained. The relationship is given by F / tanφ = F / tanφ F / c = F / c Many researchers have developed stability charts of simple homogeneous slopes by the relationship described above [6,12,13]. To demonstrate the theoretical relationship between c / tanφ and stability state (F/tan φ, F/c and location of critical slip surface), the multi-step slope from Ref. [14] was selected as the analysis example. The soil parameter values are listed as follows: unit weight γ=18 kn/m 3, cohesion c=60 kpa, and friction angle φ =18. The factor of safety and critical failure surface are obtained by KEM. Five different combinations of strength parameters (c and φ) with the same value of c/tan φ were considered. The results are shown in Table 1 and Fig. 2. The location of critical slip surface and the values of F/tan φ and F/c remain the same for the constant value of c/tan φ. (4)

Ke ZHANG, et al/trans. Nonferrous Met. Soc. China 23(2013) 1459 1464 1461 Five different values of c/tan φ were also considered. The results are shown in Fig. 3 and Table 2. As c/tan φ increases, the critical slip surface moves towards the inside of slope and the failure mode changes from Table 1 F/tan φ and F/c with same value of c/tan φ Case w c w φ c/tan φ F F/tan φ F/c No.1 0.5 0.5 184.661 0.658 4.050 0.022 No.2 1.0 1.0 184.661 1.317 4.053 0.022 No.3 1.5 1.5 184.661 1.976 4.054 0.022 No.4 2.0 2.0 184.661 2.634 4.053 0.022 No.5 2.5 2.5 184.661 3.293 4.054 0.022 shallow slip to deep slip (local slip to global slip). F/tan φ increases with the increase of c/tan φ, but F/c decreases. 3.2 Back analysis procedure The back analysis is one where average shear strength parameters (c a and tan φ a ) are calculated from the known slope geometry, unit weight and factor of safety [15]. It is recommended to select factor of safety for existing landslide based on the developing stage and deformation characteristic of landslide (Table 3) [16]. Table 3 Factors of safety for different development stages of landslide Development stage Local deformation Deformation characterization Creep Factor of safety 1.05 1.00 Global 1.00 0.90 Microslip deformation <0.90 Concretion Violent slip >1.05 Fig. 2 Location of critical slip surfaces with same value of c/tan φ Fig. 3 Location of critical slip surfaces with different values of c/tan φ Table 2 F/tan φ and F/c with different values of c/tanφ c/tan φ F/tan φ F/c 3 0.671 0.223 15 1.234 0.082 60 2.149 0.036 150 3.558 0.024 300 5.658 0.019 It has been shown that for a given slope, the location of critical slip surface and value of F/tan φ and F/c are related only to c/tan φ. Different combinations of c and φ with the same value of c/tan φ result in the same location of critical slip surface and value of F/tan φ and F/c. We can find a specific value of c/tan φ whose critical slip surface is almost consistent with the actual failure surface. This can be treated as a one-dimensional search problem, simpler than multi-variate optimization [4,5]. Bisection method is used to search the value of c/tan φ. The shear strength parameters of landslide slip can be determined with the known factor of safety and failure surface of existing landslide. In this work, the positional parameter L is defined to describe the position of critical failure surface. L is the horizontal distance from the vertex of the slope to the failure surface at crest, as shown in Fig. 1. The positional parameter of actual landslide L a can be measured easily by geologic site exploration. For inhomogeneous slope, the results by the proposed method are average shear strength parameters. If the survey region is mostly made of certain rock or soil, the parameters calculated therefore can be regarded as those of this rock or soil. The flow chart of back analysis procedure is shown in Fig. 4. Back analysis procedure is as follows. 1) The positional parameter of landslide L a and factor of safety F a are obtained according to geologic site exploration. 2) One of unknown shear strength parameters is assumed as an initial value, and tan φ is selected in this work.

1462 Ke ZHANG, et al/trans. Nonferrous Met. Soc. China 23(2013) 1459 1464 3) c/tan φ is searched by the bisection method, and corresponding factor of safety F and positional parameter of critical slip surface L are obtained by KEM. 4) If L L a /L a <ε, go to step 5; otherwise, go to step 3. 5) The corresponding value of F/tan φ is calculated. F/ tan φ = Fa/ tan φa is obtained based on the above finding. The friction angle of existing landslide is tanφa = Fa tan φ / F, hence the cohesion is c a = c tan φ / tan φ. a The properties of the material, a heavily kaolinized granite, based on direct shear tests, are listed as follows: unit weight γ=21.5 kn/m 3, cohesion c=6.9 kpa, friction angle φ =37. The position of groundwater surface is plotted in Fig. 5. The location of critical failure surface obtained by KEM is shown in Fig. 5, and the corresponding factor of safety is 0.96. The accuracy of the new back analysis is verified based on a theoretical failure surface and its factor of safety by KEM. This slope is treated as a post-failure problem in which the critical failure surface and factor of safety (F a =0.96) are known but shear strength parameters are assumed to be unknown. The back analysis is now performed as follows. Assume tan φ =0.30, and the range of cohesion c is fixed as [0, 10 kpa]. Searching c/tan φ by the bisection method, we obtain c=2.81 kpa (i.e., c / tanφ =9.37) and the corresponding factor of safety F=0.38. As F a =0.96, the friction angle and cohesion of landslide slip can be determined, tan φ a =0.30 0.96/0.38=0.76 (i.e., φ a = 37.23 ) and c a =9.37 0.76=7.12 kpa. The shear strength parameters by the proposed method agree well with their correct solution with an error of less than 2%. Fig. 4 Flow chart of back analysis of shear strength parameters 4 Example analysis 4.1 Example 1 The first example is a China clay pit slope shown in Fig. 5. LEY [17,18] investigated the stability of this slope, which was considered to be potentially unstable. 4.2 Example 2 The failure accident, called Dongfeng landslide, occurred on 24 July 2003 in the right bank of Jing River, with L of 19 m [19]. The cross-section was reproduced, as shown in Fig. 6. The slope is comprised of loess, whose unit weight=18.5 kn/m 3. Drill hole sampling has been carried out at crest. There are three layers in this slope, Malan loess in the upper part and old loess in the lower part. The average mechanical parameters of different soil strata based on laboratory tests are summarized in Table 4. We assume an initial value of tan φ=0.35, and the range of cohesion c is fixed as [0, 100 kpa]. c=31.25 kpa (i.e., c/tanφ=89.28) and the corresponding factor of Fig. 5 Slope geometry and critical failure surface by back analysis for example 1 Fig. 6 Slope geometry and critical failure surface by back analysis for example 2

Ke ZHANG, et al/trans. Nonferrous Met. Soc. China 23(2013) 1459 1464 1463 Table 4 Mechanical parameters of different soil strata for example 2 Type Cohesion, c/kpa Friction angle, φ/( ) Malan loess (Q 3 eol ) 30.20 20.00 Old loess (Q 1+2 eol ) 50.19 31.96 has good converging speed. We obtain that c=14.06 kpa (i.e., c/tan φ =46.87) and the corresponding factor of safety F=0.47. The factor of safety at failure can be considered to be equal to unity (F a =1.0), thus we obtain tan φ a =0.30 1/0.47=0.64 (i.e., φ a =32.62 ), and c a =46.87 0.64=30.00 kpa. safety F=0.68 are obtained by the bisection method. The factor of safety at failure can be considered to be equal to unity (F a =1.0), thus we obtain tanφ a =0.35 1/0.68 =0.51 (i.e., φ a =27.02 ), and c a =89.28 0.51=45.53 kpa. The shear strength parameters by back analysis are slightly smaller than those of old loess, demonstrating the validity of the proposed method. 4.3 Example 3 Landslide is located in an open pit mining slope, with slip mass height of 112 m, slope angle before failure of 42, and L a of 10 m. The cross-section was reproduced, as shown in Fig. 7. Unit weight of slip mass is taken as 18 kn/m 3. Assume tan φ =0.30, and the range of cohesion c is fixed as [0, 50 kpa]. The bisection method converges within 5 iterations, and the iterative procedure is shown in Fig. 8. The result illustrates that the proposed method Fig. 7 Slope geometry and critical failure surface by back analysis for example 3 Fig. 8 Iterative process 5 Conclusions 1) When the slope geometry, unit weight and working conditions in a slope are given, the location of the critical slip surface and the value of F / tan φ and F/ c are related only to the value of c / tan φ. 2) A rigorous back analysis combining KEM was presented with strong theoretical background. The shear strength parameters of landslide slip can be back calculated according to the known positional parameter L and the factor of safety in a specific cross-section. 3) Three examples were given for demonstrating the validity of the new technique. The shear strength parameters obtained by back analysis are almost consistent with their correct solutions or test results. References [1] YAMAGAMI T, UETA Y. Back analysis of average strength parameters for critical slip surfaces [C]//BALASUBRAMANIAM A S. Proceedings of the Computer and Physical Modelling in Geotechnical Engineering. Rotterdam: Balkema, 1989: 53 67. [2] DUNCAN J M, STARK T D. Soil strengths from back analysis of slope failures [C]//RAYMOND B S, ROSS W B. Proceedings Specialty Conference Stability and Performance of Slopes and Embank-II. Berkeley: ASCE, 1992: 890 904. [3] WESLEY L D, LEELARATNAM V. Shear strength parameters from back-analysis of single slips [J]. Geotechnique, 2001, 51(4): 373 374. [4] NGUYEN V U. Back calculation of slope failure by the secant method [J]. Geotechnique, 1984, 34(3): 223 227. [5] LI Shou-ju, SHANGGUAN Zi-chang, LIU Ying-xi. Identification procedure for shear strength parameters of geotechnical materials using hybrid genetic algorithm [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 676 680. (in Chinese) [6] JIANG J C, YAMAGAMI T. Charts for estimating strength parameters from slips in homogeneous slopes [J]. Computers and Geotechnics, 2006, 33: 294 304. [7] JIANG J C, YAMAGAMI T. A new back analysis of strength parameters from single slips [J]. Computers and Geotechnics, 2008, 35: 286 291. [8] GUSSMANN P. Kinematical elements for soils and rocks [C]// EISENSTEIN Z. Proceedings of 4th International Conference on Numerical Methods in Geomechanics. Edmonton: Balkema, 1982: 47 52. [9] CAO Ping, GUSSMANN P. Kinematical element method and slope stability analysis [J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(6): 663 666. (in Chinese) [10] GUSSMANN P. Effective KEM solutions for the limit load and the slope stability problem [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(14): 1061 1077.

1464 Ke ZHANG, et al/trans. Nonferrous Met. Soc. China 23(2013) 1459 1464 [11] LI Feng, WANG Xiao-rui, LUO Xiao-hui, GUO Yuan-cheng. Assessment methods of chance constrained on bottom stability of foundation pit [J]. Rock and Soil Mechanics, 2010, 31(12): 3867 3874. (in Chinese) [12] MICHALOWSKI R L. Stability charts for uniform slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(4): 351 355. [13] BELL J M. Dimensionless parameters for homogenous earth slopes [J]. Journal of Soil Mechanics and Foundation Engineering Division, ASCE, 1966, 92(5): 51 65. [14] SHI Wei-min, YE Xiao-ming, ZHENG Ying-ren. Stability analysis of step-shaped slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(5): 698 701. (in Chinese) [15] DUNCAN J M, WRIGHT S G. Soil strength and slope stability [M]. Hoboken: John Wiley & Sons, 2005. [16] XU Han-bin, WANG Jun. Selection of landslide stability factor in inverse calculation [J]. Acta Geologica Sichuan, 1999, 19(1): 86 89. (in Chinese) [17] LEY G M M. The properties of hydrothermally altered granite and their application to slope stability in open cast mining [D]. London: London University, 1972. [18] DUNCAN C W, CHRISTOPHER W M. Rock slope engineering [M]. Oxon: Spon Press, 2005. [19] ZHANG Chang-liang. Study on the three-dimensional limit equilibrium of slope [D]. Xi an: Chang an University, 2008. (in Chinese) 边坡滑带抗剪强度参数的严格反分析方法 张科 1, 曹平 1, 保瑞 1,2 1. 中南大学资源与安全工程学院, 长沙 410083; 2. 中国有色金属工业昆明勘察设计研究院, 昆明 650000 摘要 : 提出一种边坡滑带抗剪强度参数的严格反演方法 采用运动单元法求解安全系数和临界滑动面以克服极限平衡法的不足 研究抗剪强度参数组合与稳定状况间的理论关系 结果表明,c/tan φ 控制滑动面位置 F/tan φ 和 F/c 随着 c/tan φ 的增大, 滑动面位置向坡内移动 基于上述研究结果, 根据某个剖面的已知安全系数和滑动面位置, 可快速反算滑带抗剪强度参数 将提出的方法应用于 3 个计算实例, 用于证明本方法的有效性 反分析所得的抗剪强度参数与理论精确解和实验结果很接近 关键词 : 边坡稳定 ; 反分析 ; 运动单元法 ; 抗剪强度参数 ; 临界滑动面 (Edited by Hua YANG)