Ch. 11: Liquids and Intermolecular Forces

Similar documents
Chemistry: The Central Science

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Intermolecular Forces, Liquids, and Solids

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces Pearson Education, Inc.

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 11. Liquids and Intermolecular Forces

Ch. 9 Liquids and Solids

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces

- intermolecular forces forces that exist between molecules

Chapter 12 Intermolecular Forces and Liquids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids

CHEMISTRY. Chapter 11 Intermolecular Forces Liquids and Solids

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc.

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes

Chapter 11 Intermolecular Forces, Liquids, and Solids

Intermolecular Forces and Liquids and Solids Chapter 11

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces

9/2/10 TYPES OF INTERMOLECULAR INTERACTIONS

Chapter 11. Intermolecular Forces and Liquids & Solids

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

Chem 112 Dr. Kevin Moore

Chapter 14. Liquids and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

Chapter 11 Intermolecular Forces, Liquids, and Solids

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline

Intermolecular Forces, Liquids, & Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

Chapter 11. Liquids, Solids, and Intermolecular Forces. Water, No Gravity. Lecture Presentation

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

PHASE CHANGES. * melting * boiling * sublimation. * freezing * condensation * deposition. vs.

Liquids, Solids and Phase Changes

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Liquids, Solids, and Phase Changes

Intermolecular Forces and Liquids and Solids

What determines the phase of a substance? Temperature Pressure Interparticle Forces of Attraction

Unit Five: Intermolecular Forces MC Question Practice April 14, 2017

Liquids & Solids. For the condensed states the ave KE is less than the attraction between molecules so they are held together.

They are similar to each other. Intermolecular forces

Chapter #16 Liquids and Solids

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs)

Question 2 Identify the phase transition that occurs when CO 2 solid turns to CO 2 gas as it is heated.

They are similar to each other

Chapter 10. Liquids and Solids

RW Session ID = MSTCHEM1 Intermolecular Forces

Some Properties of Solids, Liquids, and Gases

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

Liquids and Solids The Condensed States of Matter

- As for the liquids, the properties of different solids often differ considerably. Compare a sample of candle wax to a sample of quartz.

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids

Liquids and Intermolecular Forces. Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson UNIT I STUDY GUIDE

Property of liquid and Phase Diagram for EN 2017

Chapter 10 Liquids, Solids, and Intermolecular Forces

2) Of the following substances, only has London dispersion forces as its only intermolecular force.

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113

CHAPTER 10. States of Matter

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules?

q i = 0 aa + bb cc + dd q = si mi!t qsolid=>liquid = # moles!h fusion qliquid=>gas = # moles!h vaporization i=1

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

States of matter. Chapter 11. Kinetic Molecular Theory of Liquids and Solids. Kinetic Molecular Theory of Solids Intermolecular Forces

Chapter 10. Liquids and Solids

What biological molecules have shapes and structures that depend on intermolecular forces?

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

Intermolecular Forces and Liquids and Solids

Ch 11: Intermolecular Forces, Liquids, and Solids

Chapter 11: Intermolecular Forces. Lecture Outline

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13

Ch. 11 States of matter

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state

Chapter 14. Liquids and Solids

Intermolecular forces Liquids and Solids

The Liquid and Solid States

Some Properties of Solids, Liquids, and Gases

CHAPTER 6 Intermolecular Forces Attractions between Particles

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes)

ngac (ttn793) H11: Solids and Liquids mccord (51600) 1

AP Chemistry: Liquids and Solids Practice Problems

ENTROPY

Solids, liquids and gases

Chap. 12 INTERMOLECULAR FORCES

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces

13.1 States of Matter: A Review 13.2 Properties of Liquids A. Evaporation B. Vapor Pressure C. Surface Tension 13.3 Boiling Point and Melting Point

CHAPTER 11: Intermolecular Forces, Liquids, and Solids. Are there any IDEAL GASES? The van der Waals equation corrects for deviations from ideality

Intermolecular Forces

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

Professor K. Intermolecular forces

CHEMISTRY Matter and Change. Chapter 12: States of Matter

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

The Liquid and Solid States

Transcription:

Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between molecules or ions based on their composition and molecular structure and be able to compare the relative strengths of these intermolecular forces Explain the concept of polarizability and how it relates to dispersion forces Explain the concepts of viscosity, surface tension, and capillary action. List the names of various changes of state for a pure substance and indicate which are endothermic and which are exothermic. Interpret heating curves and calculate the enthalpy changes related to temperature changes and phase changes Define critical pressure, critical temperature, vapor pressure, normal boiling point, normal melting point, critical point, and triple point Interpret and sketch phase diagrams. Explain how water s phase diagram differs from most other substances and why. Describe how the molecular arrangements characteristic of nematic, smectic, and cholesteric liquid crystals differ from ordinary liquids and from each other. Recognize the features of molecules that favor formation of liquid crystalline phases. Physical properties of substances are understood in terms of kinetic-molecular theory (chapter 10): Gases are highly compressible and assume the shape and volume of a container. Gas atoms/molecules are far apart and do not interact much with one another. Liquids are nearly incompressible and assume the shape, but not the volume, of a container. Liquids molecules are held together more closely than gas molecules, but not so rigidly that the molecules cannot slide past each other. Solids are incompressible and have a definite shape and volume. Solid molecules are packed closely together. The molecules are so rigidly packed that they cannot easily slide past each other. 1

Solids and liquids are condensed phases. Solids with highly ordered structures are said to be crystalline. States of Matter The state (phase) a substance is in at a particular temperature and pressure depends on: The kinetic energy of the particles The strength of the attractions between the particles Converting a gas into a liquid or solid requires the molecules to get closer to each other. Cooling or compressing the gas. Converting a solid into a liquid or gas requires the molecules to move farther apart. Heating the gas or reducing the pressure on it. 2

Intermolecular Forces The forces holding solids and liquids together are called intermolecular forces. Intermolecular forces are weaker than intramolecular forces (e.g. ionic, metallic, or covalent bonds) 3

Intermolecular Forces ion-dipole hydrogen bonding dipole-dipole dispersion forces (London) van der Waals forces The strength of these intermolecular forces is directly related to the melting/boiling points, enthalpy of fusion, enthalpy of vaporization, and solubility of the substances. Dispersion forces The ease with which the electron distribution in a molecule is distorted is called its polarizability. Dispersion forces are found in all substances. Induced dipoles lead to intermolecular attractions. 4

London dispersion forces Dispersion forces tend to increase with increasing molar mass. MM Boiling Pt. (g/mol) (K) F 2 38 85 Cl 2 71 239 Br 2 160 332 I 2 254 458 Factors Affecting Dispersion Forces Number of electrons in an atom (more electrons, more dispersion force) Size of atom or molecule/molecular weight Shape of molecules with similar masses (more compact, less dispersion force) The shape of the molecule affects the dispersion forces: long, thin molecules (like n-pentane tend to have stronger dispersion forces than short, round ones (like neopentane). This is due to the increased surface area in n-pentane. 5

Polar Covalent Bonds and Electronegativity Although atoms often form compounds by sharing electrons, the electrons are not always shared equally. Electronegativity is the ability of atoms in a molecule to attract electrons to itself. Dipole-Dipole Forces Molecules that have permanent dipoles are attracted to each other via electrostatic attractions. The partial positive, δ +, end of one is attracted to the partial negative, δ, end of the other and vice-versa. These forces are only important when the molecules are close to each other. 6

Dipole-Dipole Forces Influence of dipole-dipole forces is seen in the boiling points of simple molecules. MM (g/mol) N 2 28 77 CO 28 81 Br 2 160 332 ICl 162 370 Boiling Pt (K) Dipole-Dipole Forces Dipole-dipole forces increase with increasing polarity. MW Dipole Boiling (g/mol) Moment, μ (D) Pt (K) CH 3 CH 2 CH 3 44 0.1 231 CH 3 OCH 3 46 1.3 248 CH 3 CHO 44 2.7 294 CH 3 CN 41 3.9 355 7

Which is Stronger: Dipole Dipole Interactions or Dispersion Forces? If two molecules are of comparable size and shape, dipole dipole interactions will likely be the dominating force. If one molecule is much larger than another, dispersion forces will likely determine its physical properties. Boiling Points of Simple Hydrogen-Containing Compounds 8

Hydrogen Bonding A special form of dipole-dipole attraction, which enhances dipole-dipole attractions. H-bonding is strongest when X and Y are N, O, or F Hydrogen bonding in ice results in an ordered, open arrangement. Density of ice at 0 C is 0.917 g/ml vs liquid water at 0 C is 1.00 g/ml 9

Ion-dipole forces water -d O dipole H H +d Determining Intermolecular Forces All chemicals exhibit dispersion forces. The strongest force dictates the extent of attractions between molecules. When the shapes of two substances have comparable molar masses and shapes, the dispersion forces are approximately equal. When the molecules of two substances differ widely in molar masses, and there is no hydrogen bonding, dispersion forces tend to determine which substance has the stronger intermolecular attractions. 10

Comparing intermolecular forces and the influence of hydrogen bonding in acetic acid and 1-propanol. 1) Two molecules with comparable molar masses and shapes have roughly equal dispersion forces. 2) Two molecules with very different molar masses and there is no H-bonding, dispersion force determines the substance with stronger attractions. Viscosity Viscosity is the resistance of liquids to flow. Viscosity increases with 1) stronger intermolecular forces and 2) decreasing temperature. 11

Surface Tension Surface tension results from the net inward force experienced by the molecules on the surface of a liquid. It causes water to bead up when in contact with nonpolar surfaces. Those forces are called the surface tension. Cohesive and adhesive forces Cohesive forces are between the molecules in the liquid Adhesive forces are between the molecules and the surface of another substance The rise of liquids up narrow tubes is called capillary action. Adhesive forces attract the liquid to the wall of the tube. Cohesive forces attract the liquid to itself. Water has stronger adhesive forces with glass; mercury has stronger cohesive forces with itself. 12

Properties of liquids Viscosity the resistance of liquids to flow; the thickness Surface tension energy required to break through the surface or to disrupt a liquid drop and make the drop spread out like a film. Cohesive forces forces between liquid molecules Adhesive forces forces between liquid molecules and another substance Capillary action the rise of liquids up narrow tubes and other surfaces Phase changes Conversion from one state of matter to another is called a phase change. Changes of state involve energy (at constant T) Ice + (heat of fusion) water Water + (heat of vaporization) steam 13

Phase changes Energy changes associated with changes of state The heat of fusion is the energy required to change a solid at its melting point to a liquid. The heat of vaporization is the energy required to change a liquid at its boiling point to a gas. The heat of sublimation is the energy required to change a solid directly to a gas. For water DH fus = 6.01 kj/mol or 334 J/g DH vap = 40.67 kj/mol or 2258 J/g 14

Heating Curve for Water Heating/Cooling Curve for Water The total heat is the sum of each step q total = q i The ice is heated The ice melts to water The water is heated The water evaporates to steam The steam is heated q ice = s ice mδt q fus = ΔH fus m q water = s water mδt q vap = ΔH vap m q steam = s steam mδt 15

Example: Heating curve problem Determine the amount of heat (in kj) required to heat 500. g of ice from -50.0 C to steam at 200. C. s ice = 2.03 J/gK DH fus = 334 J/g s water = 4.184 J/gK DH vap = 2258 J/g s steam =1.84 J/gK q ice, -50.0 to 0 C = +50 750 J q fus, ice to water = +167 000 J q water, 0 to 100 C = +209 200 J q vap, water to steam = +1 129 000 J q steam, 100 to 200. C = +92 000 J q total = 1 647 950 J 1.65 10 3 kj Note that most of the heat is used to convert water into steam. Example: Heating curve problem Determine the amount of heat (in kj) required to convert 42.0 g of ethanol from -155 C to ethanol vapor at 78 C. ethanol (C 2 H 5 OH) melts at -114 C and boils at 78 C. The enthalpy of fusion of ethanol is 5.02 kj/mol and the enthalpy of vaporization is 38.56 kj/mol. The specific heats of solid and liquid ethanol are 0.97 J/gK and 2.3 J/gK, respectively. 16

Critical Temperature: The highest temperature at which a distinct liquid phase can form Critical Pressure: Pressure required to bring about liquefaction at this critical temperature. Supercritical Fluid: Above this critical point, we have a supercritical fluid where the density is similar to a liquid and the viscosity is similar to a gas. It can behave as a solvent. Vapor Pressure As more molecules escape the liquid, the pressure they exert increases. 17

Temperature effects on the distribution of energy in a liquid E needed to evaporate liquid Liquids that evaporate rapidly are volatile Vapor pressure curves The boiling point of a liquid is the temperature at which the vapor pressure equals atmospheric pressure. The normal boiling point is the temperature at which its vapor pressure is 760 torr. 18

Equilibrium Vapor Pressure & the Clausius-Clapeyron Equation Clausius-Clapeyron equation used to find heat of vaporization, H vap. The logarithm of the vapor pressure P is proportional to H vap and to 1/T. P ln P1 DH R 1 T2 T 2 vap 1 1 Clausius-Clapeyron Equation Liquid bromine has a vapor pressure of 400. torr at 41.0 C and a normal boiling point of 58.2 C. Calculate the heat of vaporization of bromine (in kj/mol). P DH 2 vap 1 1 ln P1 R T2 T1 19

Phase Diagrams Phase diagrams display the state of a substance at various pressures and temperatures and the places where equilibria exist between phases. Phase Diagram of Water Note the high critical temperature and critical pressure. These are due to the strong van der Waals forces between water molecules. The slope of the solidliquid line is negative. 20

Phase Diagram: CO 2 Info from P-T phase diagrams From a (pressure-temperature) phase diagram we can find: the normal melting point the normal boiling point the triple point whether the liquid is more or less dense than the solid the vapor pressure curve the sublimation pressure curve the critical temperature (T c ) and critical pressure (P c ) 21

Liquid Crystals Some chemical compounds have an intermediate liquid crystal phase in a temperature range between the solid and liquid phases. Most liquids are isotropic (disordered in all directions), whereas liquid crystals are anisotropic and have a degree of order. Three main types of molecular arrangements in liquid crystals include nematic, smectic, and Cholesteric. 22

Liquid Crystals Rod-shaped and contain double or triple bond near the middle and/or contain aromatic groups. Polar groups create a dipole moment and promote alignment 23