Matter vs Anti-matter

Similar documents
The Matter-Antimatter Asymmetry and New Interactions

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Lecture 18 - Beyond the Standard Model

Leptogenesis with Composite Neutrinos

A model of the basic interactions between elementary particles is defined by the following three ingredients:

The Standard Model of particle physics and beyond

Electroweak phase transition in the early universe and Baryogenesis

The first one second of the early universe and physics beyond the Standard Model

arxiv:hep-ph/ v2 8 Mar 2006

Astroparticle Physics and the LC

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ )

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Physics Spring Week 7 INFLATION, BEFORE AND AFTER

Aspetti della fisica oltre il Modello Standard all LHC

Implications of a Heavy Z Gauge Boson

Recent progress in leptogenesis

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Testing leptogenesis at the LHC

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Supersymmetry in Cosmology

The Origin of Matter. Koichi Funakubo Dept. Physics Saga University. NASA Hubble Space Telescope NGC 4911

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Astroparticle Physics at Colliders

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Week 10 Cosmic Inflation: Before & After. Joel Primack

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Baryogenesis and Leptogenesis

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

Electroweak baryogenesis. Abstract

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis with type II see-saw in SO(10)

Elements of Grand Unification

Implications of an extra U(1) gauge symmetry

Electroweak Baryogenesis

Neutrino Mass Models

Big Bang Nucleosynthesis and Particle Physics

Supersymmetry, Dark Matter, and Neutrinos

Higgs Boson Phenomenology Lecture I

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Axions Theory SLAC Summer Institute 2007

Neutrinos as a Unique Probe: cm

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

SUPERSYMETRY FOR ASTROPHYSICISTS

Higgs Physics and Cosmology

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Natural Nightmares for the LHC

The Higgs Mechanism and the Higgs Particle

Lepton-flavor violation in tau-lepton decay and the related topics

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Baryogenesis and Particle Antiparticle Oscillations

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

U(1) Gauge Extensions of the Standard Model

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Antonio Pich. IFIC, CSIC Univ. Valencia.

arxiv: v2 [hep-ph] 19 Nov 2013

Theory of CP Violation

Beyond the Standard Model

The Standard Model and beyond

The Higgs Boson and Electroweak Symmetry Breaking

Big Bang Nucleosynthesis

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

Leptogenesis via varying Weinberg operator

Two-Higgs-Doublet Model

SU(3)-Flavons and Pati-Salam-GUTs

Baryogenesis. η = 6.1 ± Seminar Cosmology Supervisor: Dr. Tomislav Prokopec. Author: Jan Weenink

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Lepton Flavor Violation

SUSY models of neutrino masses and mixings: the left-right connection

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Higgs field as the main character in the early Universe. Dmitry Gorbunov

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Inflation from a SUSY Axion Model

EDMs and flavor violation in SUSY models

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

Is SUSY still alive? Dmitri Kazakov JINR

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

Anomaly and gaugino mediation

Moduli Problem, Thermal Inflation and Baryogenesis

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Fermions of the ElectroWeak Theory

Cosmological Family Asymmetry and CP violation

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Testing Higgs Relaxation Leptogenesis: Why Isocurvature Is More Promising Than CP Violation

Introduction to Supersymmetry

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

Flavour and Higgs in Pati-Salam Models

Family Replicated Gauge Group Models

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Lepton-flavor violation in tau-lepton decay and the related topics

Transcription:

Baryogenesis

Matter vs Anti-matter Earth, Solar system made of baryons B Our Galaxy Anti-matter in cosmic rays p/p O(10 4 ) secondary Our Galaxy is made of baryons p galaxy p + p p + p + p + p galaxy γ Cluster of Galaxies No strong γ rays are observed Near clusters are made of baryons anti-galaxy

1 BESS experiment BESS97

Asymmetry between matter and anti-matter How Large Asymmetry? 0.26 0.25 0.005 4 He Baryon density # b h 2 0.01 0.02 0.03 Big Bang Nucleosynthesis n B s = (6 8) 10 11 Y p D H 3 He H 0.24 0.23 0.22 10!3 10!4 D/H p CMB s: entropy density 10!5 3 He/H p 10!9 Baryogenesis 7 Li/H p 5 2 before BBN after inflation 10!10 1 2 3 4 5 6 7 8 9 10 Baryon-to-photon ratio " 10

Baryogenesis Sakharov s Condition (1) B Violation (2) C, CP Violation (3)Out of Equilibrium

1. Necessary Obviously 2. e.g. A + B C + D A c + B c C c + D c C trans. If C inv. Γ(A c + B c C c + D c ) = Γ(A + B C + D) B = 0 3. Thermal Equilibrium T invariance + CPT invariance CP invariance B = 0 B = T r(e H/T B) = T r((cp T )(CP T ) 1 e H/T B) = T r((cp T ) 1 e H/T B(CP T ) = T r(e H/T B) = 0

Baryogenesis Mechanism Electroweak Baryogenesis Leptogenesis via Heavy Majorana Neutrino Affleck-Dine Mechanism......

Electroweak Baryogenesis B violation C, CP violation Out of Equilibrium Sphaleron Process Kobayashi-Maskawa 1st order EW phase transition Electroweak Baryogenesis

Vacuum Structure of SU(2) gauge Field E Multiple Vacuum Structure A a µ Chern-Simons Number N CS = g2 32π 2 d 3 xɛ ijk T r [A j j A k ig3 A ia j A k ] A 0 = 0 gauge

Baryon Number Current j µ B Qγ µ Q = 1 2 [ Qγ µ (1 γ 5 )Q + Qγ µ (1 + γ 5 )Q] EW Fermions couple chirally to W, B J µ B Anomaly W n f : number of generation B = µ j µ B = µj µ L = n f ( g 2 d 4 x µ j µ B = t=t f d 3 xj 0 B W 32π 2 W a µν W aµν t=0 W aµν = 1 2 ɛµναβ W αβ ) g 2 32π 2 F F µν µν d 3 xj 0 B = n f [N CS (t f ) N CS (0)]

µ j µ B = µj µ L = n f d 4 x µ j B K 0 B = ( ) g 2 32π 2 µk µ g 2 32π 2 µk µ K µ = ɛ µναβ ( W a ναa a β g 3 ɛ abca a νa b αa c β k µ = ɛ µναβ F να B β = t=t f d 3 xj 0 B t=0 d3 xj 0 B = B = n f g 2 32π 2 ( t=t f d 3 xk 0 t=0 d3 xk 0 ) = ɛ ( ijk Wij a Aa k g 3 ɛ ) abca a i Ab j Ac k = ɛ ( ijk ( i A a j ja a i + gɛ abca b i Ac j )Aa k g 3 ɛ ) abca a i Ab j Ac k = ɛ ( ijk 2 i A a j Aa k + 2g 3 ɛ ) abca 1 i Ab j Ac k = ɛ ijk T r ( A i j A k ig 3 A ) ia j A k d 4 x µ j µ B t=t = d 3 xjb 0 d 3 xjb 0 = n f [N CS (t f ) N CS (0)] f t=0 )

Sphaleron E Multiple Vacuum Structure B = L = n f = 3 Tunneling by instanton d 4 x(w a µν W a µν) 2 0 A a µ d 4 x[t r(w µν W µν ) + T r( W µν W µν ) 2T r(w µν W µν ] 0 ( ) 16π 2 4S E 2 g 2 N CS 0 S E 8π2 g 2 N CS Γ exp ( 4π α W ) 10 170 too small!

Sphaleron E Multiple Vacuum Structure B = L = n f = 3 Tunneling by instanton Finite Temperature Sphaleron Γ Γ exp ( 4π α W A a µ ) M 4 W exp ( 2M W α W T 10 170 ) too small! T < M W (α W T ) 4 T M W

Sphaleron Saddle-point solution in Weinberg-Salam theory A 0 = 0 E = d 3 x gauge, static configuration [ 1 4 W ijw a ij a + 1 ] 4 F ijf ij + (D i φ) (D i φ) + V (φ) F ij = 0 Ansatz E = 4πv g A a i = 2 ɛ ija x j g r 2 f(ξ) ξ = rgv 0 φ = i v 2 τ x r f(0) = h(0) = 0 f( ) = h( ) = 1 [ ( ) 2 dξ 4 df 8 dξ ξ (f(1 f)) 2 2 + 1 2 ξ2 ( dh dξ ) 2 + (h(1 f)) 2 + 1 4 ( h(ξ) ( 0 1 λ g 2 ) ξ 2 (h 2 1) 2 ] )

E = 4πv g 0 dξ + 1 2 ξ2 ( dh dξ [ ( ) 2 4 df 8 dξ ξ (f(1 f)) 2 2 ) 2 + (h(1 f)) 2 + 1 4 ( λ g 2 ) ξ 2 (h 2 1) 2 ]

E = 4πv g 0 dξ[ ] = 2 4π g 2 1 2 gv 0 dξ[ ] = 2M W α W 0 dξ[ ] Sphaleron rate Γ(T ) M 4 W exp E sph (T ) M W (T ) α W ε (3.2 < ε < 5.4) High temperature magnetic screening length Γ(T ) = κ(α W T ) 4 ( E ) sph(t ) T no Boltzmann suppression = (α W T ) 1

CP Violation in Standard Model Quark ψ jl = Mass Term ( Uj ) D j L U jr D jr (j = 1,, n f ) M D jk DjR D kl M U jkūjru kl Redefine U R, ψ L M U jkūjru kl M U = diag(m u, m c, m t ) Redefine D R M D jl U lk D jr D kl M D = diag(m d, m s, m b ) U unitary matrix = CKM matrix

d s b L = U D L D L = U d s b mass eigenstate still can define phase of mass eigenstate U V 1 UV 2 V 1, V 2 : diagonal unitary number of independent phases L 2n f 1 relevant phase n 2 f (2n f 1) 1 2 n f (n f 1) = 1 2 (n f 1)(n f 2) unitary matrix orthogonal matrix n f = 3 only one phase δ CP δ CP 0 CP violation

EW Phase Transition Higgs potential V High T V (φ, T = 0) = λ( φ 2 v 2 ) V takes min. at! = 0 W in thermal eq. M W 0 g 2 W 2 φ 2 V g 2 T 2 2 φ 2 V eff g2 2 T 2 φ 2 2λv 2 φ 2 2 λ T > g v v T=0 φ

V High T V takes min. at! = v W not in thermal eq. 2 M W gφ > 3T V (φ, T ) = V (φ, T = 0) for φ > 3T/g 3T v > g λ g v g < T < 3 v g λ < 2 6 2πα W 3 v T=0 φ Higgs mass m H 2 λv < 40GeV small Higgs mass

However, Small CP Violation EW Phase Transition is 2nd Order 1st Order Higgs mass m H 80GeV experiment m H 114GeV EW Baryogenesis may not work

Baryogenesis Mechanism Electroweak Baryogenesis Leptogenesis via Heavy Majorana Neutrino Affleck-Dine Mechanism......

Leptogenesis Heavy Majorana Neutrino small neutrino mass by see-saw mechanism Super-K discovery N { ν + φ ( L = +1) ν + φ ( L = 1) ν neutrino, φ Higgs Deacy Process φ φ N ν N ν N φ ν

Interference term Γ(N l + φ) Γ(N l + φ) ɛ 1 = Γ(N l+φ) Γ(N l+ φ) Γ(N l+φ)+γ(n l+ φ) = 3 16π 3 16π δ eff [ ] 1 (hh ) 11 Im(hh ) 2 13 M 1 M 3 + Im(hh ) 2 12 M 1 M 2 h 33 2 M 1 M 3 h 33 Largest (M 1 M 1, M 2 ) ɛ 1 3 16π δ eff m ν3 M 1 φ 2

CP Violation CP pahse in mass matrix of N Γ(N ν + φ) Γ(N ν + φ) Out of Equilibrium Condition Spharelon Process (L + B) = 0 n /s N (L B) 0 B 0 B = 8N g + 4N H 22N g + 13N H (B L) 0.3(B L) EQ N g : # of generations, N H : # of Higgs doublets 1/T Successful Baryogenesis [Fukugita-Yanagida (1986)]

Decay Rate Γ Ni = Γ(N i l + φ) + Γ(N i l + φ) = 1 8π (hh ) ii M i out of EQ Decay Γ Ni < H(T = M i ) g1/2 M 2 i 3M G m ν1 = (hh φ ) 2 11 M 1 4g 1/2 < 10 3 ev φ 2 M G ( ΓN1 H ) T =M 1 φ = 174GeV g 100

ε = 10 16 M 1 = 10 10 neutrino mass Plümacher (1998)

Y EQ Y N Y L Buchmuller, Plümacher (2000)

Chemical Equilibrium chemical potential for massless particles gt 2 6 µ i (fermion) n i n i = gt 2 3 µ i (boson) Sphaleron interaction O B+L = (q Li q Li q Li l Li ) i (3µ qi + µ li ) = 0 i total hypercharge = 0 (µ qi + 2µ ui µ di µ li µ ei + 2µ φ /N) = 0 i d L c L d L s L s L Sphaleron t L u L ν e ν µ b L ν τ b L

Yukawa interaction L = h dij dri q Lj φ h uij ū Ri q Lj φ c h eij ē Ri q Lj φ µ qi µ φ µ dj = 0 µ qi + µ φ µ uj = 0 µ li µ φ µ ej = 0 mixing in Yukawa couplings µ li = µ l µ qi = µ q µ e = 2N + 3 6N + 3 µ l µ d = 6N + 1 6N + 3 µ l µ u = 2N 1 6N + 3 µ l µ φ = 4N 6N + 3 µ l µ q = 1 3 µ l

n B = B 6 T 2 n L = L 6 T 2 B = N(2µ q + µ u + µ d ) L = N(2µ l + µ e ) B = 8N g + 4N H 22N g + 13N H (B L) 0.3(B L)

Baryogenesis Mechanism Electroweak Baryogenesis Leptogenesis via Heavy Majorana Neutrino Affleck-Dine Mechanism......

Affleck-Dine Mechanism Affleck, Dine (1985) In Scalar Potential (= sauark, slepton, higgs) of MSSM (minimal supersymmetric standard model) There exist Flat Directions = ( Flat if SUSY and no cutoff ) Φ (AD-field) Dynamics of AD Field Baryon Number Generation

Supersymmetry (SUSY) Fermion Boson Hierarchy Problem Keep electroweak scale against radiative correction Coupling Constant Unification in GUT quark lepton photon graviton squarks slepton photino gravitino

SUSY Breaking Scheme Low Energy SUSY (m q, m l 1TeV m q, m l ) (A) Gravity Mediated SUSY Breaking SUSY sector M SUSY gravity Observable sector (s)quark,(s)lepton Squark, slepton masses Gravitino m q, m l M 2 SUSY M p m 3/2 10 2 3 GeV 10 2 3 GeV M SUSY 10 11 13 GeV

(B) Gauge Mediated SUSY Breaking SUSY sector M SUSY gauge int. Messenger sector M F Squark, slepton masses gauge int. Observable sector (s)quark,(s)lepton m q, m l g2 M F 16π 2 Gravitino m 3/2 M 2 SUSY M p 102 3 GeV kev GeV M F 10 4 6 GeV

Affleck-Dine Mechanism Affleck, Dine (1985) In Scalar Potential (= sauark, slepton, higgs) of MSSM(minimal supersymmetric standard model) There exist Flat Directions = Φ ( Flat if SUSY and no cutoff ) (AD-field) V (Φ) = m 2 Φ Φ 2 + Φ 2n+4 M 2n + A(Φ n+3 + Φ n+3 ) + SUSY breaking U(1) symmetry Non-renormalizable term A-term U(1) A m 3/2 M n

Dynamics of Affleck-Dine Field During Inflation Φ has a large value H m Φ Φ Oscillation V A-term Kick in phase direction Baryon Number Generation n B = i( Φ Φ Φ Φ) θ Φ 2 ImΦ Φ ReΦ

AD Baryogenesis V = (m 2 Φ ch 2 ) Φ 2 + λ Φ 2n+4 M 2n + ã m 3/2 M n (Φ n+3 + Φ n+3 ) Φ q, l, H In general Φ has a baryon number U B (1) : Φ e iα Φ Noether current j B,µ = 1 2i (Φ µ Φ µ Φ Φ) baryon density n B = j B,0 Potential A-term violates U (1) B during inflation Φ e iθ 0 CP, out of eq.