General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

Similar documents

An Example file... log.txt

Optimal Control of PDEs

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Framework for functional tree simulation applied to 'golden delicious' apple trees

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

Vectors. Teaching Learning Point. Ç, where OP. l m n

Examination paper for TFY4240 Electromagnetic theory

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

An Introduction to Optimal Control Applied to Disease Models

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

TELEMATICS LINK LEADS

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

This document has been prepared by Sunder Kidambi with the blessings of

Matrices and Determinants

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

New method for solving nonlinear sum of ratios problem based on simplicial bisection

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Loop parallelization using compiler analysis

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

Damping Ring Requirements for 3 TeV CLIC

Here are proofs for some of the results about diagonalization that were presented without proof in class.

4.3 Laplace Transform in Linear System Analysis

A Functional Quantum Programming Language

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Computer Systems Organization. Plan for Today

Redoing the Foundations of Decision Theory

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Constructive Decision Theory

Planning for Reactive Behaviors in Hide and Seek

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS


Rarefied Gas FlowThroughan Orifice at Finite Pressure Ratio

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Towards a numerical solution of the "1/2 vs. 3/2" puzzle

ETIKA V PROFESII PSYCHOLÓGA

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

DISSIPATIVE SYSTEMS. Lectures by. Jan C. Willems. K.U. Leuven

New BaBar Results on Rare Leptonic B Decays

Stochastic invariances and Lamperti transformations for Stochastic Processes

Synchronizing Automata Preserving a Chain of Partial Orders

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

Testing SUSY Dark Matter

H A H i g h A v a i l a b i l i t y H A H A C l i e n t S y s t e m A v a i l a b i l i t y

F O R SOCI AL WORK RESE ARCH

SCOTT PLUMMER ASHTON ANTONETTI

Sample Exam 1: Chapters 1, 2, and 3

T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, )

* +(,-/.$0 0,132(45(46 2(47839$:;$<(=

Building Products Ltd. G Jf. CIN No. L26922KA199SPLC018990

Exponentially Rare Large Fluctuations: Computing their Frequency

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

A Study on Dental Health Awareness of High School Students

The incident energy per unit area on the electron is given by the Poynting vector, '

SOLAR MORTEC INDUSTRIES.

Application of ICA and PCA to extracting structure from stock return

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

Optimization of a parallel 3d-FFT with non-blocking collective operations

Lecture 4: Hartree-Fock Theory

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

U ight. User s Guide

1. CALL TO ORDER 2. ROLL CALL 3. PLEDGE OF ALLEGIANCE 4. ORAL COMMUNICATIONS (NON-ACTION ITEM) 5. APPROVAL OF AGENDA 6. EWA SEJPA INTEGRATION PROPOSAL

Surfaces of Section I

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following:

cº " 6 >IJV 5 l i u $

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

Synopsis of Numerical Linear Algebra

Manifold Regularization

Agent-based Proof Search with Indexed Formulas

Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4

The Study of 3 rd Overtone Crystal Oscillator

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

Research of Application the Virtual Reality Technology in Chemistry Education

The Fourier series are applicable to periodic signals. They were discovered by the

ADVANCES IN MATHEMATICS(CHINA)

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

Continuing Education and Workforce Training Course Schedule Winter / Spring 2010

Harlean. User s Guide

Towards a High Level Quantum Programming Language

Klour Q» m i o r L l V I* , tr a d itim i rvpf tr.j UiC lin» tv'ilit* m in 's *** O.hi nf Iiir i * ii, B.lly Q t " '

Surface Modification of Nano-Hydroxyapatite with Silane Agent

Advanced Use of Pointers. CS2023 Winter 2004

The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

Final exam: Automatic Control II (Reglerteknik II, 1TT495)

Optimizing Stresses for Testing DRAM Cell Defects Using Electrical Simulation

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Ed S MArket. NarROW } ] T O P [ { U S E R S G U I D E. urrrrrrrrrrrv

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

6. Convert 5021 centimeters to kilometers. 7. How many seconds are in a leap year? 8. Convert the speed 5.30 m/s to km/h.

Transcription:

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator E. D. Held eheld@cc.usu.edu Utah State University General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.1/9

Introduction Goal of a general neoclassical closure theory: Capture collisional, free-streaming, trapping and drift-orbit physics in closure relations for long time scale, electromagnetic fluid simulations of magnetized plasmas. Allow for 1. complicated geometry, 2. varying collisionality, and 3. numerical tractability. General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.2/9

$ "# % /.- - # Solve drift kinetic equation (DKE) in Invert DKE operator Closures of interest for 5-moment fluid model are! () '& Difficulties:, +. * 1. 6-dimensional configuration space,. ( 7 6 5 5 34 21 2. disparate time scales, General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.3/9

] S Q M : G @ G G L < \ D K R F P G S Q b d L @ \ K R S ; g S @ A d DKE operator is complicated Separating out parallel speed dependence, NO HJI CED @Y> N T NZ2[ G X UWV NT S ; B*@ 9*@ A =?> ; 9: 8 X R Ǹ ;: T \ H_I 9 @ ; B*@ 9*@ A =?^ HaI @Y> :NT N Zc[ G X UWV NT S ; B*@ 9*@A = S X R ;f 9: e. b 9 ; X > B X 9 d b < S B*@ where General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.4/9

j u o u u y l ˆ s x t u ~ Ž y o ˆ x s Ž s s o o k o p Ž DKE operator is complicated Separating out parallel speed dependence, { } z vjw res o n { { 2 u Wƒ { ~ k q*o i*o p m?n k ij h k kj { 2Œ u {`2 i ˆ v_w i o k q*o i*o p m?š vaw o n j{ { c u Wƒ { k q*o i*op m j s n op op. i k n q i Ž l q*o where General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.4/9

³ ª ² ž ª ² ª º ¹ º º º ª º ª š ÆÅ ª º º É ¹ É º DKE operator is complicated Separating out parallel speed dependence, J œe «2± W «ª * * š? «2 `«2µ ² _ * * š? «c± W «ª a * * š ª š š» º. ª * where Low-beta, bounce-averaged form is Å * Ä ÀÂÇ * š ª ÀÂÄ ¾ ½ ¼ ÀÂÁ Ã Ë Êš È General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.4/9

Basis function expansion aides diagonalization Ì ÐÏ Ï Ò Î ÐÏ ÑÎ Ó Ø Ý Ó Ú Î ØÙ Ð Ý Þ Ü ëê Ü é Use expansion in spherical harmonics as guide ìîí ç Ü è Ø æ â ãåä Û Ü Þàß á ÓÔÖÕ Í Î General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.5/9

Basis function expansion aides diagonalization ï óò ò õ ñ óò ôñ ö ü ñ úû ù ó ð þ þ Use expansion in spherical harmonics as guide þ ú ö ú ÿ ÿ ý þ ö Öø ð ñ Expand in solutions of separated bounce-averaged eigenvalue equation: ñ ñ ñ ÿ ÿ General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.5/9

Basis function expansion aides diagonalization! #" " %! #" $! L ' B 1 ' L & + & -! +, * #! +E R F 1 + 1 & -! # > > K / <; / : Use expansion in spherical harmonics as guide => 8 / 9 + 7 4 5 6. / 1 2 3 &')( Expand in solutions of separated bounce-averaged eigenvalue equation:! JE HI G!?E!?' D C @A??' Laguerre polynomials serve as energy eigenfunctions:. / +, &' &OQP ( #! M 1S2 3 #!NM General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.5/9

X Y y w g g w Y u r Z ts Œ Perturbative expansion necessary for diagonalization : and integrate over W TVU Multiply through by bv xzy bv loq p imlon h ikj g h fg èd {} ~ c b `a _ W T U ^ \] X [ ˆ ƒ i š i w w Ž Ž œ Š Œ ož electrons frequency i š i w Ž Ž œ w Š ož ions General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.6/9

Æ Ä Ä Â ÁÀ Ò Æ Ä Ä Ê æ á ß í éè ì éè ë éè ê éè æ á ß Perturbative expansion necessary for diagonalization : and integrate over V Multiply through by ³ÃË Ê ÅzÆ ³Ã»o¾ ½ ¹m»o¼ ¹kº ±eµ Ç}ÈÉ ³ ±² ª ª «ÎÑ ÐÏ ÌÍ Î Diagonalizable systems include ³Ã ŠƻӾ ½ ¹m» ¼ ¹ º ÇÔÈÉ ± µ ³ ±² and ¹ä ã ¹ Ù Ü Ù ÄâÛ Ù ÜÞÝ Ù ÄÚÛ Ø Ø å ß à ß ÕÖ æoç electrons frequency ¹ä ã ¹ Ù Ü Ù ÄâÛ Ø Ø å ß à î ß Ù Ü Ý Ù ÄÚÛ ÕÖî æoç ions General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.6/9

ò ó ÿ ó ô! ÿ ÿ > :9 = :9 < :9 ; :9 Perturbative expansion necessary for diagonalization : and integrate over ñ ïvð Multiply through by ü ü úeþ ý ü úû ù ñ ï ð ø ö ò õ Diagonalizable systems include ü # #$ " ú þ ý ü úû ù and ü " ú þ ý ü úû ù 7 7 8 6 5 4 *.- * 3, 2 1 ' *.-#/ * +, ) ) %&(' electrons frequency 7 7 8 6 1? * - / * - * +, 2 5 4 * 3, ) ) %&? ions General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.6/9

Balance electron free-streaming with e-e and e-i collisions C AB @ Electrons have X X SUT NW V SUT O.R O PQ C(N E M L C B GIHKJ DFE General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.7/9

Balance electron free-streaming with e-e and e-i collisions \ Z[ Y \ o n b \ [ q np Electrons have m m iuj dl k iuj e.h e fg \(d ^ c b \ [ _I`Ka ]F^ Expand in eigenvectors of, _I`Ka, and multiply through by : \ w rx b \ i r tvu s r ] ^ \ i r m d ^Y General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.7/9

Balance electron free-streaming with e-e and e-i collisions š y œ ~ Š ~ y { ~ Ž Œ ~ ž Œ Œ ž Electrons have ŠU. ( ŠU Œ ~ ˆ ƒ { I K K} z{ Expand in eigenvectors of, I K, and multiply through by : Š v } Solution to all orders has form ž Ž œ Œ General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.7/9

² Å Ã Balance ion drifting with time dependence. Ions have Å ÁU ÁU ¼Ä ½.À ÁUÂà ²(¼½ ³¾» ²ƒº $ ¹ µi F³ ± ª ª «General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.8/9

Ó æ à ä Î ë Ó é è Ò ÑÐ Ê Ô í Î Balance ion drifting with time dependence. Ions have æ âuã È É âuã Ýå Þ.á âuãä Ó(ÝÞ Ôß Ü ÓƒÛ Ò Ø$ÙÚ ÕÖI ÊFÔ ÐÑ±Ò Ì Ï ËÈ Ì Í Ê Æ Ç È É :, and multiply through by ÓçÛ Ö èê Ø ÙÚ, Expand in eigenvectors of Ó ñ íò Ó Û â í ð ÏÙ È Ì Õ(ï î Ê Ó â í Ì Ï ËÈ Ì Í ÇìÈ É General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.8/9

ÿ û ÿ þý # û * " û Balance ion drifting with time dependence. Ions have õ ö ýþ±ÿ ù ü øõ ù ú ó ô õ ö :, and multiply through by, Expand in eigenvectors of "! õ ù ü ù ü øõ ù ú ôìõ ö ' $ & %$ Expansion in Laguerre polynomials and substitution using diagonalizes system: ýþ,+ * # ( * ( õ ù ü )( ù ü øõ ù ú ô õ ö General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.8/9

? U N R 9 Z? X W = <; 3 @ \ 9 :F f ] 3 3 9 B @ K U U W u u f f BR qf R \ R @ :F f ] 3 q 9 Balance ion drifting with time dependence. Ions have U PQ / 1 PQ KT LO PQSR?KL @M J?IH = E FG BC D 3A@ ;<>= 58: 4/6587 3 -./21 :, and multiply through by?vh C D WY E FG, Expand in eigenvectors of? ` \a? H P \ _ :F / 5 B^ ] 3? P \ 58: 4/65 7.[/21? d b c? H X%b Expansion in Laguerre polynomials and substitution using diagonalizes system: f? ` \ a e Hf? \ e ;<,g / 5 \)e 58: 4/65 7./21 Solution to all orders has form { jz Uy KxT j s \ e ik d q U Kwv c U Kt R s \ e nporq kl m i h H \)e } 1 \ j e. y ~ Z H ;UY / 5 \ e 58: 4/ 587 K ~ Hf \)e where General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.8/9

Conclusions ƒ ƒ ƒ Ž From calculate closures of interest Œ ˆŠ ƒ ˆ Diagonalizing via expansion in basis functions permits 1. integration along essential characteristics of orbits) in complicated magnetic fields, (drift or free-streaming 2. truncation of integration helped by collisional effects, 3. reduction of configuration space variables hence numerical tractability, and, 4. simple prescription for higher-order corrections. Closures include collisional, free-streaming, trapping and drift-orbit physics for ions and electrons. General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator p.9/9