Parameters characterizing cloud turbulence

Similar documents
ε measured in deep cumulus clouds range

Introduction. Effect of aerosols on precipitation: - challenging problem - no agreement between the results (quantitative and qualitative)

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D06220, doi: /2011jd016603, 2012

Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

The mechanism of first raindrops formation in deep convective clouds

Aerosol effects on cloud dynamics, microphysics and precipitation: numerical simulations with WRF with spectral (bin) microphysics

Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes

Effects of aerosols on precipitation from orographic clouds

Factors Determining the Impact of Aerosols on Surface Precipitation from Clouds: An Attempt at Classification

Vertical microphysical profiles and closure calculations

Effect of Turbulent Enhancemnt of Collision-coalescence on Warm Rain Formation in Maritime Shallow Convection

Ice multiplication in clouds: modeling new processes

A Numerical Study of Urban Aerosol Impacts on Clouds and Precipitation

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp );

Critical comments to results of investigations of drop collisions in turbulent clouds

A Novel Approach for Simulating Droplet Microphysics in Turbulent Clouds

Chapter 7 Precipitation Processes

Aerosol Indirect Effect on Long-lasting Mesoscale Convective Systems: A Modeling Study

Comparison of collision velocity differences of drops and graupel particles in a very turbulent cloud

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006

PRECIPITATION PROCESSES

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah

J12.4 SIGNIFICANT IMPACT OF AEROSOLS ON MULTI-YEAR RAIN FREQUENCY AND CLOUD THICKNESS

Chapter 7: Precipitation Processes. ESS5 Prof. Jin-Yi Yu

The Role of Post Cold Frontal Cumulus Clouds in an Extratropical Cyclone Case Study

High-resolution simulation results of kinematic and dynamic collision statistics of cloud droplets

Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics

Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch , p

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting

New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel

Snow Microphysical Retrieval Based on Ground Radar Measurements

In this chapter we explain the processes by which nonprecipitating cloud droplets and ice crystals grow large enough to fall as precipitation

Atmospheric Science Letters. The role of air turbulence in warm rain initiation

Air stability. About. Precipitation. air in unstable equilibrium will move--up/down Fig. 5-1, p.112. Adiabatic = w/ no exchange of heat from outside!

A hierarchy of one- and two-moment microphysical parameterizations in the COSMO model

UNRESOLVED ISSUES. 1. Spectral broadening through different growth histories 2. Entrainment and mixing 3. In-cloud activation

THE EFFECTS OF GIANT CCN ON CLOUDS AND PRECIPITATION: A CASE STUDY FROM THE SAUDI ARABIA PROGRAM FOR THE ASSESSMENT OF RAINFALL AUGMENTATION

TURBULENT COLLISION-COALESCENCE OF CLOUD DROPLETS AND ITS IMPACT ON WARM RAIN INITIATION

Investigation of Droplet Size Distributions and Drizzle Formation Using A New Trajectory Ensemble Model. Part II: Lucky Parcels

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN

A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING

ERAD THE EIGHTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

A REVIEW OF OUR UNDERSTANDING OF THE AEROSOL CLOUD INTERACTION FROM THE PERSPECTIVE OF A BIN RESOLVED CLOUD SCALE MODELLING

Utilization of spectral bin microphysics and bulk parameterization schemes to simulate the cloud structure and precipitation in a mesoscale rain event

Rain Enhancement and Fog Elimination by Seeding with Charged Droplets. Part I: Theory and Numerical Simulations

Rogers and Yau Chapter 10: Drop breakup, snow, precip rate, and bulk models

CONVECTIVE CLOUD MICROPHYSICS IN A HIGH-RESOLUTION NWP MODEL

PHYSICAL GEOGRAPHY. By Brett Lucas

The role of air turbulence in warm rain initiation

Real case simulations using spectral bin cloud microphysics: Remarks on precedence research and future activity

Precipitations. Terminal Velocity. Chapter 7: Precipitation Processes. Growth of Cloud Droplet Forms of Precipitations Cloud Seeding

THE SEARCH FOR THE OPTIMAL SIZE OF HYGROSCOPIC SEEDING PARTICLES

MICROPHYSICAL AND PRECIPITATION FORMATION PROCESSES AND RADAR SIGNATURES

Warm Rain Precipitation Processes

6.2 Meteorology. A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather.

Aviation Hazards: Thunderstorms and Deep Convection

PUBLICATIONS. Journal of Geophysical Research: Atmospheres

Physics of the Convective Boundary Layer based on Radar/Lidar Profiler measurements and simulation

Rogers and Yau Chapter 12: Precipitation Processes (emphasizing stratiform rain convection and severe storms will be next lecture)

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops:

Using Cloud-Resolving Models for Parameterization Development

9 Condensation. Learning Goals. After studying this chapter, students should be able to:

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air

Growth of raindrops. Do raindrops looks like tear drops?

Linear relation between convective cloud drop number concentration and depth for rain initiation

A new look at statistical evaluations of cloud seeding experiments WMA Meeting 9-12 April 2013 San Antonio, Texas

A critical review of the design, execution and evaluation of cloud seeding experiments

Remote Sensing of Precipitation

Satellite measurements of CCN and cloud properties at the cloudy boundary layer: The Holy Grail is it achievable?

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc.

Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio Stel (1)

Correspondence to: C. N. Franklin

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting

Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km

Diffusional and accretional growth of water drops in a rising adiabatic parcel: effects of the turbulent collision kernel

Explain the parts of the water cycle that are directly connected to weather.

Trade wind inversion. is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above.

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7

Universities Space Research Association, Huntsville, Alabama. (Manuscript received 15 April 2005, in final form 7 December 2005) ABSTRACT

Solutions to questions from chapter 11 in GEF Cloud Physics

Terminal velocity. 1. The collision cross-sectional area is. π (r 1 + r 2 ) 2 πr The relative collection velocity is.

Temp 54 Dew Point 41 Relative Humidity 63%

Lawrence Carey 1, William Koshak 2, Harold Peterson 3, Retha Matthee 1 and A. Lamont Bain 1 1

Atmos. Chem. Phys., 15, , doi: /acp Author(s) CC Attribution 3.0 License.

Clouds on Mars Cloud Classification

TOWARD ASSESSING THE EFFECT OF AEROSOLS ON DEEP CONVECTION: A NUMERICAL STUDY USING THE WRF-CHEMISTRY MODEL

TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst

Summary of riming onset conditions for different crystal habits. Semi-dimension: width / lateral dimension (perpendicular to c-axis)

Why Is the Mountain Peak Cold? Lecture 7: Air cools when it rises. Vertical Thermal Structure. Three Things Need To Be Explained

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Mystery of ice multiplication in warm based precipitating shallow cumulus clouds

Kinematic and dynamic pair collision statistics of sedimenting inertial particles relevant to warm rain initiation

Convective Structures in Clear-Air Echoes seen by a Weather Radar

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh

1 INTRODUCTION 2 MODEL SETUP

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up

EARTH SCIENCE. Prentice Hall Water in the Atmosphere Water in the Atmosphere Water in the Atmosphere.

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

Transcription:

Turbulent effects on cloud microstructure and precipitation of deep convective clouds as seen from simulations with a 2-D spectral microphysics cloud model N. Benmoshe, A. Khain, M. Pinsky, and A. Pokrovsky Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Israel פברואר 2010 שבט ת ש"ע

Parameters characterizing cloud turbulence a) Turbulent kinetic energy: E= (<u 2 +w 2 >)/2 b) Dissipation rate ε c) Reynolds number Re λ d) Mixing length e) External turbulent scale L f) Turbulent coefficient K l

Collision enhancement factor (Pinsky et al 2008) d f dt m /2 = f ( m') f( m m') P K ( m m') dm' 0 0 col f( m) f( m') P K ( m, m') dm' col g g P kern Collision enhancement factor Pcol = PκernPclust Is the enhancement factor due to the increase in relative velocity between droplets and the increase in the collision efficiency P clust is the enhancement factor due to the droplet clustering.

Figure 1. Mean normalized collision kernel in turbulent flow for three cases: stratiform clouds (left panel), cumulus clouds (middle) and cumulonimbus (right panel). Pressure is equal to 1000mb.(After Pinsky et al, 2008)

P clust is calculated as (Pinsky and Khain 2003; Pinsky et al 2008) : NN P ( St, St ) = = 1+ 0.333 ( St St ) clust 1 2 1 2 1 2 N1 N2 0.317 St 1 St 2 and are the Stokes numbers of colliding droplets and N N1 2 and are the droplet concentrations Pclust ~1 2 Relative contribution of different mechanisms to the collision rate enhancement: Transport effect: ~20% Clustering effect: ~20% Collision efficiency: ~60%

Hebrew University Cloud Model (HUCM) with spectral (bin) microphysics (Khain et al 2004, 2008) 8 types of hydrometeors: a) water drops, b) plate crystals; c) columnar crystals; d) dendrites; e) snow; f) graupel; g) hail; h) aerosols Each distribution function is defined on mass grid containing 43 bins. The minimum size corresponds to a 2 micron drop. The maximum size corresponds to hail of 6 cm in diameter. Computational area: 25 km x 16 km. Model resolution: 50 m x 50 m Time steps range from 0.5 to 5 s.

The K-epsilon theory (1.5 order closure) ε αkn x W z U z W x U K z E W x E U t E + + + = + + 2 2 2 2 2 2 2 0.5 K = C k le l CE ε 3/ 2 = ( ) ΔxΔz l C.. C. C k k 19 0 93 19 + = 2 C k = 0. z θ θ g N = 2 the turbulent coefficient dissipation rate mixing length (Skamarock et al., 2005) The Brunt-Vaisala frequency coefficient = 0 0 76 min 0 2 2 N if N E. ΔxΔz, N if ΔxΔz l

1 L l S TKE 2 / 3 tot = ( εl) Evaluation ofr 1/2 = min, cl 15 λeν L is the external turbulent scale (Grabowski and Clark, 1993) Total kinetic energy of turbulence u ' = TKE tot Characteristic velocity fluctuation λ = u' Re λ = 15ν ε u'λ Taylor microscale Taylor microscale Reynolds number

Turbulent effects on precipitation Model calculates in each grid point and at each time step: a) dissipation rate ε b) Reynolds number Re c) Collision enhancement factor λ This procedure makes it possible to investigate effects of turbulence on precipitation formation.

Simulations of single clouds in LBA-SMOCC experiment ------------------------------------------------------------------------------------------------ Cloud type : CCN : stratification : freezing level concentration(1%s) cm 3 ----------------------------------------------------------------------------------------------- Blue ocean: 200; 700 Andeae et al (2004) 4.1 km Green-Ocean : 900, 1200, 1700 Andeae et al (2004) 4.1 km Smoky : 5000, 10000 Andeae et al (2004) 4.1 km

TURBULENT CLOUD STRUCTURE AND ITS TIME EVOLUTION

Figure 1. Fields of Re λ (left), Total turbulent kinetic energy (middle) and dissipation rate (right) at different time instances during development of smoky cloud (with turbulent collision kernel)

TKE tot 264700 160000 95100 66260 18410 9746 4490 1300 shear production 1710 1076 buoyancy production 644 382 224 70 34 14 Figure 2. Fields of total kinetic energy (upper), wind shear production (middle) and buoyancy production term in the rectangle area marked in Figure 4 in panel b

Figure 3. Vertical profiles of time averaged maximum values of the dissipation rates in S gr, S tur, BO gr and Bo tur (averaging within the period 3600 s to 4800 s)

Figure 4. Shows time dependencies of cloud averaged total kinetic energy (left), גRe (middle) and dissipation rate (right) in all experiments

Conclusions concerning turbulent cloud structure: a) Turbulent structure of clouds is highly inhomogeneous b) Cloud averaged turbulent parameters agree well with measurements (Panchev 1971; Mazin et al, 1989; Weil et al, 1993; Pinsky and Khain 2003) c) Aerosols invigorate clouds and cloud turbulence d) In case the turbulent kernel is used cloud turbulence is slightly weaker than in case of gravitational kernel e) Effects of aerosols and of turbulent kernel on cloud turbulence are opposite. It seems that aerosol effects are stronger.

a b c d e f גRe g ε h TKE tot i Figure 5. Fields of CWC, RWC in GO_gr (left) and in GO_tur (right) at t=2220 s and turbulent parameters ( and ) in the GO_tur case(bottom row). TKE tot Re ג ε

Figure 6. Mass distribution functions at different heights calculated in the GO/S_gr (left) and GO/S_tur (right) simulations (solid lines). The distributions measured in situ at 5/4 Oct 2002 in the green ocean clouds at nearly the same height levels are plotted by dashed lines (after Andreae et al 2004). CCN concentration is 1500/8000 cm -3

6 S, gravitational & turbulent kernels GO, gravitational & turbulent kernels 5.5 a b Figure 7. Vertical profiles of effective radius in (a) the GO clouds and ( b) S-clouds. Red and blue dots denote gravitational and turbulent kernels. The profile (z) plotted according to in-situ observations is presented according to Freud et al (2008). In Panel b green line corresponds to polluted period and black line corresponds to transition period.

7 2800 6.5 6 2600 5.5 2400 5 4.5 4 3.5 3 Height of 0 dbz, grav Height of 0 dbz, turb Height of 20 dbz, grav Height of 20 dbz, turb 0 2000 4000 6000 8000 1 10 4 1.2 10 4 CCN concentration, cm -3 a 2200 2000 1800 Time of 20 dbz, turb Time of 0 dbz, grav Time of 0 dbz, turb Time of 20 dbz, grav 0 2000 4000 6000 8000 1 10 4 1.2 10 4 CCN concentration, cm -3 b Figure 8. (a) Dependence of height of the formation of radar reflectivity of 0 dbz and 20 dbz on the CCN concentration in cases of utilization of gravitational and turbulent collision kernels. (b) Dependence of time of the formation of radar reflectivity of 0 dbz and 20 dbz on the CCN concentration in cases of utilization of gravitational and turbulent collision kernels. The time of cloud formation is 1800 s.

1700 1600 1500 1400 1300 1200 1100 1000 Time of surface precip, grav Time of surface precip., turb 900 0 2000 4000 6000 8000 1 10 4 CCN concentration, cm -3 Figure 10. Dependence of the time of surface precipitation onset on the CCN concentration in cases of utilization of gravitational and turbulent collision kernels. The time is counted from the beginning of the cloud formation (t=1800s)

0.3 0.25 Accumulated rain 30 min, grav Accumulated rain 30 min, turb 0.2 0.15 0.1 0.05 0 0 2000 4000 6000 8000 1 10 4 CCN concentration, cm -3

GO_gr GO_tur S_gr S_tur S_gr S_tur Figure 9. The fields of graupel contents in GO_gr (left) and GO_tur (right) (upper row) and in S_gr (left) and S_tur (right) (middle row) at time instances corresponding to the formation of the first graupel in cases when gravitational kernels were used. Bottom: The fields of graupel contents in S_gr (left) and S_tur (right) in 8 minutes after formation of first graupel.

a b c d Figure 12. The fields of radar reflectivity in GO_gr (left) and GO_tur (right) during fall of warm rain.

Figure 13. Fields of total ice content and RWC in S-gr (left panels) and S_tur (right panels)

4 3.5 Accumulated rain 60 min, grav Accumulated rain 60 min, turb 3 2.5 2 1.5 1 0.5 0 2000 4000 6000 8000 1 10 4 CCN concentration, cm -3 Figure 14. Dependence of accumulated rain at the surface on the CCN concentration obtained using gravitational and turbulent collision kernels 60 min after cloud formation.

RAIN ACCUMULATION PER UNIT SQUARE, mm 8 7 6 5 4 3 2 1 Precipitations under different conditions GO gr, CCN=200 cm -3 (rand100) GO tur, CCN=200 cm -3 (rand(100) S gr, CCN=10,000 cm -3 (rand100) S tur, CCN=10,000 cm -3 (rand(100) a 0 0 20 40 60 80 100 120 TIME, min Figure 15. Accumulated rain at the surface in GO and S clouds, gravitational and turbulental

CONCLUSIONS 1) The turbulent structure of mixed-phase convective clouds observed in the LBA-SMOC field experiment was simulated with the CCN concentration varying from 200 to 10000 cm-3. 2) The simulations have been carried out using 2-D Hebrew University cloud model with spectral (bin) microphysics (HUCM) with uniform resolution of 50 m within the computational area 25.6 x 16 km. 3) Collision kernels were calculated in each grid point and at each time step. Cloud turbulence: 4) Turbulence in clouds turned out to be highly inhomogeneous so that maximum values of dissipation rate and may be by order of magnitude higher than the values averaged over the entire cloud. The elongated zones of enhanced turbulence are located at the edges of ascending bubbles. They represent large scale turbulent intermittency in clouds. 5) Turbulence in polluted clouds turned out to be more intense than that in clouds developing in the clean atmosphere.

Rain drop formation: 6) The model reproduces accurately the DSD shapes in blue-ocean, green-ocean and smoky clouds measured in situ during the LBA-SMOC field experiment, as well as the vertical profiles of effective radius in these clouds. 7) The observed DSDs are reproduced better in simulations when the turbulent collision kernels were used. 8) It is shown that first raindrops form when the effective radius reaches 13.5-14 um. 9) It is shown that turbulence leads to acceleration of raindrop formation by 30-100%, which is a very significant effect. The turbulence decreases the height of the first raindrop formation from several hundred meters to ~1 km. Surface rain: 10)Turbulence is the one of the main mechanism causing warm rain at the surface, especially for the CCN concentrations exceeding 700 cm-3. 11) The effect of turbulence-induced enhancement of drop collisions on the cold precipitation is just opposite: in polluted air turbulence decreases surface rain by about 30%-40% as compared with the cases when the gravitational kernels are used. 12) Thus, the role of turbulent induced collision rate enhancement is somehow opposite to that of small aerosols playing the role of CCNs.

THANK YOU!