Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Similar documents
Supplementary Information. Single Crystal X-Ray Diffraction

Supporting Information

Supporting Information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Supporting Information

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Supporting Information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction.

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 155 parameters 10 restraints

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Supporting Information

Supporting Information. Table of Contents

SUPPLEMENTARY MATERIAL

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

Structure Report for J. Reibenspies

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Experimental. Crystal data. C 18 H 22 N 4 O 6 M r = Monoclinic, P2=n a = (5) Å b = (4) Å c = (5) Å = 104.

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines.

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Electronic Supplementary Information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Decomposition of Ruthenium Olefin Metathesis. Catalysts

metal-organic compounds

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

metal-organic compounds

,

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Supporting Information

Supporting Information. Table of Contents

2-Methoxy-1-methyl-4-nitro-1H-imidazole

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

metal-organic compounds

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Supporting Information for the Article Entitled

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Electronic Supplementary Information

metal-organic compounds

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Electronic Supplementary Information

Halogen bonding of N-bromosuccinimide by grinding

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

ion, as obtained from a search of the Cambridge Structural database (CSD), December 2013.

The structure of chloro-bis(triphenylphosphine)silver(i) dimethylsulfoxide solvate, [AgCl(PPh 3

Electronic Supplementary Information (ESI)

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supplementary Information

Supporting information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 245 parameters 2 restraints

OH) 3. Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, Wrocław, Poland

Supporting Information. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper*

Supporting information for: Enormous Lattice Distortion Through Isomorphous Phase Transition. in Organic-Inorganic Hybrid Based on Haloantimonate(III)

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

Hassan Osseili, Debabrata Mukherjee, Klaus Beckerle, Thomas P. Spaniol, and Jun Okuda*

Seth B. Harkins and Jonas C. Peters

1, The crystal data of TAHD and TAND S2-S3. 2, The thermal analysis of HTAHD, TAHD, HTAND and. 3, The AFM images of TAHD and TAND S6

Supporting information. for. isatins and α-amino acids

Manganese-Calcium Clusters Supported by Calixarenes

electronic reprint 2-Hydroxy-3-methoxybenzaldehyde (o-vanillin) revisited David Shin and Peter Müller

metal-organic compounds

CHAPTER 2 CRYSTALLOGRAPHIC ANALYSIS

Supporting Information

Supporting Information

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

Electronic Supplementary Information (ESI)

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Supporting Infromation

Supporting Information

Transcription:

Supplementary File Modification of Boc-protected CA508 via acylation and Suzuki-Miyaura Coupling Martin Pisár, Eva Schütznerová 2, Filip Hančík, Igor Popa 3, Zdeněk Trávníček 3 and Petr Cankař, * Department of rganic Chemistry, Faculty of Science, Palacký University, 7. listopadu 92/2, 77 46 lomouc, Czech Republic; martin.pisar0@upol.cz (M.P.); Filda.Hancik@seznam.cz (F.H.) 2 Institute of Molecular and Translation Medicine, Faculty of Medicine, Palacký University, Hněvotínská 5, 77900 lomouc, Czech Republic; eva.schutznerova@upol.cz 3 Department of Inorganic Chemistry, Faculty of Science, Palacký University, 7. listopadu 92/2, 77 46 lomouc, Czech Republic; igor.popa@upol.cz (I.P.); zdenek.travnicek@upol.cz (Z.T.) * Correspondence: petr.cankar@upol.cz; Tel.: +42-058-563-4437 Table of Contents. H and 3 C MR spectra... S2 2. Crystallographic data for structures 5 and 3... S23 S

H and 3 C MR spectra of 3 H 2 H 2 H 2 H 2 S2

H and 3 C MR spectra of 5 H 2 H 2 H.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 H 2 H 2 H 80 70 60 50 40 30 20 0 00 90 80 70 60 50 40 30 20 S3

H and 3 C MR spectra of 6 C C H Si impurity 2 0 9 8 7 6 5 4 3 2 0 C C H Si 80 60 40 20 00 80 60 40 20 0 S4

H and 3 C MR spectra of 7 H H 2 H 2 Si H H 2 H 2 Si S5

H and 3 C MR spectra of 8 H 2 H 2 Si.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 H 2 H 2 Si S6

H and 3 C MR spectra of 9 S7

H and 3 C MR spectra of 0 H H 2 H 2 H H 2 H 2 S8

H and 3 C MR spectra of c H 2 H Br.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 H 2 H Br 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S9

H and 3 C MR spectra of 2b.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S0

H and 3 C MR spectra of 2c.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S

H and 3 C MR spectra of 2d.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S2

H and 3 C MR spectra of 2e.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S3

H and 3 C MR spectra of 2f 2.0.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S4

H and 3 C MR spectra of 2g 2.0.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S5

H and 3 C MR spectra of 2h.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S6

H and 3 C MR spectra of 2i 2.0.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S7

H and 3 C MR spectra of 2j 2.0.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S8

H and 3 C MR spectra of 2k 2.0.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S9

H and 3 C MR spectra of 2l 2.0.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S20

H and 3 C MR spectra of 2m.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S2

H and 3 C MR spectra of 2n 2.0.5.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0.5.0 0.5 0 68 60 52 44 36 28 20 2 04 96 88 80 72 64 56 48 40 32 24 6 S22

Single crystal X-ray analysis The single crystal X-ray data of 3 (CCDC 45332) and 5 (CCDC 453320) were obtained using an Xcalibur2 diffractometer (xford Diffraction Ltd., UK) equipped with a Sapphire2 CCD detector, and with MoKα radiation (monochromator Enhance, xford Diffraction Ltd.) and ω- scan technique at 20 K. Additional details regarding structure determinations, such as crystal data and structure refinements, selected bond lengths and angles of covalent as well as noncovalent contacts are summarized below. Data collection and reduction were performed by the CrysAlis software package. The structure was solved by direct methods using SHELX 2 and refined on F 2 using a full-matrix least-squares procedure. All H-atoms were located from difference Fourier maps and refined using a riding model, with C H = 0.95 Å (CH) aromatic, 0.98 Å (CH 3 ), H = 0.84 Å and H = 0.88 Å (H) aromatic, and with U iso (H) =.2U eq (CH, H, H) and.5u eq (CH 3 ). The H-atoms of the H 2 groups were refined freely. Molecular graphics were drawn using DIAMD. 3 Crystal data and structure refinements for 3 and 5 are given in Tables S and S2, sets of covalent and non-covalent bonding in Tables S3 S6, and parts of crystal structures are depicted in Figures S S4 (see below). xford Diffraction, CrysAlis RED and CrysAlis CCD Software (Version.7.33.52), xford Diffraction Ltd., Abingdon, xfordshire, UK. 2 G.M. Sheldrick, A short history of SHELX, Acta Crystallogr., Sect. A 64 (2008) 2 22. 3 K. Brandenburg DIAMD, Release 4.., Crystal Impact GbR, Bonn, Germany, 205. S23

Table S. Crystal data and structure refinement for 5. Empirical formula C 4 H 8 6 3 Formula weight 38.34 Temperature 30(2) K Wavelength 0.7073 Å Crystal system Monoclinic Space group P2/c Unit cell dimensions a = 6.2539(2) Å α= 90. b = 9.759(4) Å β= 94.809(3). c = 24.3894(9) Å γ = 90. Volume 482.20(0) Å 3 Z 4 Density (calculated).427 Mg/m 3 Absorption coefficient 0.05 mm - F(000) 672 Crystal size 0.350 x 0.250 x 0.50 mm 3 Theta range for data collection 3.269 to 24.990. Index ranges -7 h 7, -9 k, -28 l 28 Reflections collected 204 Independent reflections 260 [R(int) = 0.0287] Completeness to theta = 24.99 99.9 % Absorption correction Semi-empirical from equivalents Max. and min. transmission.000 and 0.985 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 260 / 0 / 227 Goodness-of-fit on F 2.009 Final R indices [I>2sigma(I)] R = 0.032, wr2 = 0.0733 R indices (all data) R = 0.0445, wr2 = 0.0760 Largest diff. peak and hole 0.20 and -0.80 e. Å -3 S24

Table S2. Crystal data and structure refinement for 3. Empirical formula C 9 H 26 6 5 Formula weight 48.46 Temperature 20(2) K Wavelength 0.7073 Å Crystal system Triclinic Space group P- Unit cell dimensions a = 6.060(2) Å α= 98.555(4). b =.9685(5) Å β= 00.026(4). c = 4.7997(7) Å γ = 97.02(3). Volume 040.93(8) Å 3 Z 2 Density (calculated).335 Mg/m 3 Absorption coefficient 0.099 mm - F(000) 444 Crystal size 0.400 x 0.250 x 0.200 mm 3 Theta range for data collection 3.06 to 24.999. Index ranges -7 h 7, -2 k 4, -7 l 7 Reflections collected 9776 Independent reflections 3667 [R(int) = 0.0246] Completeness to theta = 24.999 99.7 % Absorption correction Semi-empirical from equivalents Max. and min. transmission.000 and 0.866 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3667 / 0 / 293 Goodness-of-fit on F 2.06 Final R indices [I>2sigma(I)] R = 0.0359, wr2 = 0.0987 R indices (all data) R = 0.0508, wr2 = 0.02 Largest diff. peak and hole 0.87 and -0.90 e. Å -3 Table S3. Bond lengths [Å ] and angles [ ] for 5. ()-C(7).3663(5) ()-H(A) 0.8400 ()-C().3744(6) ()-C(0).3933(6) ()-(2).4096(5) C()-(6).373(7) C()-C(2).3752(8) (2)-C(3).326(6) (2)-C(0).2097(6) C(2)-(3).3805(6) C(2)-C(3).4322(8) (3)-C(0).3226(6) (3)-C().5033(5) (3)-(4).278(5) C(3)-(5).3446(7) (4)-C(4).490(7) C(4)-C(9).3896(9) C(4)-C(5).392(9) (5)-H(5D) 0.857(7) S25

(5)-H(5C) 0.908(8) C(5)-C(6).3836(8) C(5)-H(5A) 0.9500 (6)-H(6D) 0.898(8) (6)-H(6C) 0.88(7) C(6)-C(7).383(2) C(6)-H(6A) 0.9500 C(7)-C(8).3856(9) C(8)-C(9).3793(8) C(8)-H(8A) 0.9500 C(9)-H(9A) 0.9500 C()-C(4).539(9) C()-C(3).544(9) C()-C(2).536(9) C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 C(3)-H(3A) 0.9800 C(3)-H(3B) 0.9800 C(3)-H(3C) 0.9800 C(4)-H(4A) 0.9800 C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(7)-()-H(A) 09.5 C()-()-C(0) 25.79() C()-()-(2).54(0) C(0)-()-(2) 22.09(0) (6)-C()-() 23.48(2) (6)-C()-C(2) 29.73(2) ()-C()-C(2) 06.78() C(3)-(2)-() 03.99(0) C()-C(2)-(3) 22.7(2) C()-C(2)-C(3) 05.50() (3)-C(2)-C(3) 3.69(2) C(0)-(3)-C() 9.47(0) (4)-(3)-C(2) 4.8() (2)-C(3)-(5) 22.6(2) (2)-C(3)-C(2) 2.4() (5)-C(3)-C(2) 25.70(2) (3)-(4)-C(4) 3.80() C(9)-C(4)-C(5) 9.3(2) C(9)-C(4)-(4) 24.42(2) C(5)-C(4)-(4) 6.44(2) C(3)-(5)-H(5D) 7.6() C(3)-(5)-H(5C) 20.4(0) H(5D)-(5)-H(5C) 20.(5) C(6)-C(5)-C(4) 20.52(3) C(6)-C(5)-H(5A) 9.7 C(4)-C(5)-H(5A) 9.7 C()-(6)-H(6D) 3.() C()-(6)-H(6C).4() H(6D)-(6)-H(6C) 4.6(5) C(7)-C(6)-C(5) 9.80(3) C(7)-C(6)-H(6A) 20. C(5)-C(6)-H(6A) 20. ()-C(7)-C(6) 7.73(2) S26

()-C(7)-C(8) 22.26(3) C(6)-C(7)-C(8) 20.0(2) C(9)-C(8)-C(7) 20.2(3) C(9)-C(8)-H(8A) 9.9 C(7)-C(8)-H(8A) 9.9 C(8)-C(9)-C(4) 20.3(3) C(8)-C(9)-H(9A) 9.8 C(4)-C(9)-H(9A) 9.8 (2)-C(0)-(3) 27.6(2) (2)-C(0)-() 2.00(2) (3)-C(0)-().37() (3)-C()-C(4).2() (3)-C()-C(3) 0.98(0) C(4)-C()-C(3) 0.2(2) (3)-C()-C(2) 08.0(0) C(4)-C()-C(2) 3.04(2) C(3)-C()-C(2).75(2) C()-C(2)-H(2A) 09.5 C()-C(2)-H(2B) 09.5 H(2A)-C(2)-H(2B) 09.5 C()-C(2)-H(2C) 09.5 H(2A)-C(2)-H(2C) 09.5 H(2B)-C(2)-H(2C) 09.5 C()-C(3)-H(3A) 09.5 C()-C(3)-H(3B) 09.5 H(3A)-C(3)-H(3B) 09.5 C()-C(3)-H(3C) 09.5 H(3A)-C(3)-H(3C) 09.5 H(3B)-C(3)-H(3C) 09.5 C()-C(4)-H(4A) 09.5 C()-C(4)-H(4B) 09.5 H(4A)-C(4)-H(4B) 09.5 C()-C(4)-H(4C) 09.5 H(4A)-C(4)-H(4C) 09.5 H(4B)-C(4)-H(4C) 09.5 S27

Table S4. Bond lengths [Å] and angles [ ] for 3. ()-C(0).322(2) ()-C().482(9) (2)-C(0).207(2) (3)-C(5).358(2) (3)-C(7).405(9) (4)-C(5).950(9) (5)-C(5).323(2) (5)-C(6).4892(9) ()-C(3).374(2) ()-C(0).386(2) ()-(2).409(9) (2)-C().38(2) (3)-(4).2773(9) (3)-C(2).374(2) (4)-C(4).48(2) (5)-C().355(2) (5)-H(5B) 0.90(2) (5)-H(5A) 0.87(2) (6)-C(3).342(2) (6)-H(6B) 0.88(2) (6)-H(6A) 0.88(2) C()-C(2).437(2) C(2)-C(3).382(2) C(4)-C(9).387(2) C(4)-C(5).395(2) C(5)-C(6).377(2) C(5)-H(5C) 0.9500 C(6)-C(7).382(2) C(6)-H(6C) 0.9500 C(7)-C(8).375(2) C(8)-C(9).38(2) C(8)-H(8A) 0.9500 C(9)-H(9A) 0.9500 C()-C(2).505(3) C()-C(4).509(2) C()-C(3).56(2) C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 C(3)-H(3A) 0.9800 C(3)-H(3B) 0.9800 C(3)-H(3C) 0.9800 C(4)-H(4A) 0.9800 C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(6)-C(9).52(2) C(6)-C(7).509(3) C(6)-C(8).59(3) C(7)-H(7A) 0.9800 C(7)-H(7B) 0.9800 C(7)-H(7C) 0.9800 C(8)-H(8A) 0.9800 C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800 S28

C(9)-H(9A) 0.9800 C(9)-H(9B) 0.9800 C(9)-H(9C) 0.9800 C(0)-()-C() 9.67(2) C(5)-(3)-C(7) 5.27(2) C(5)-(5)-C(6) 9.3(2) C(3)-()-C(0) 26.6(4) C(3)-()-(2).78(2) C(0)-()-(2) 2.79(3) C()-(2)-() 04.20(2) (4)-(3)-C(2) 4.5(3) (3)-(4)-C(4) 4.32(3) C()-(5)-H(5B) 2.5(3) C()-(5)-H(5A) 6.7(2) H(5B)-(5)-H(5A) 4.8(8) C(3)-(6)-H(6B) 8.4(3) C(3)-(6)-H(6A) 3.6(3) H(6B)-(6)-H(6A) 7.0(9) (2)-C()-(5) 22.9(5) (2)-C()-C(2) 2.7(4) (5)-C()-C(2) 25.60(5) (3)-C(2)-C(3) 22.59(4) (3)-C(2)-C() 3.90(4) C(3)-C(2)-C() 05.48(4) (6)-C(3)-() 24.26(5) (6)-C(3)-C(2) 29.34(5) ()-C(3)-C(2) 06.37(4) C(9)-C(4)-C(5) 9.42(5) C(9)-C(4)-(4) 5.42(4) C(5)-C(4)-(4) 25.2(4) C(6)-C(5)-C(4) 9.85(5) C(6)-C(5)-H(5C) 20. C(4)-C(5)-H(5C) 20. C(5)-C(6)-C(7) 9.58(5) C(5)-C(6)-H(6C) 20.2 C(7)-C(6)-H(6C) 20.2 C(8)-C(7)-C(6) 2.45(5) C(8)-C(7)-(3) 7.53(4) C(6)-C(7)-(3) 20.98(4) C(7)-C(8)-C(9) 8.83(5) C(7)-C(8)-H(8A) 20.6 C(9)-C(8)-H(8A) 20.6 C(8)-C(9)-C(4) 20.8(5) C(8)-C(9)-H(9A) 9.6 C(4)-C(9)-H(9A) 9.6 (2)-C(0)-() 27.56(5) (2)-C(0)-() 2.9(5) ()-C(0)-() 0.53(4) ()-C()-C(2) 07.60(4) ()-C()-C(4).64(3) C(2)-C()-C(4) 3.0(6) ()-C()-C(3) 0.38(3) C(2)-C()-C(3).66(6) C(4)-C()-C(3) 0.92(5) C()-C(2)-H(2A) 09.5 S29

C()-C(2)-H(2B) 09.5 H(2A)-C(2)-H(2B) 09.5 C()-C(2)-H(2C) 09.5 H(2A)-C(2)-H(2C) 09.5 H(2B)-C(2)-H(2C) 09.5 C()-C(3)-H(3A) 09.5 C()-C(3)-H(3B) 09.5 H(3A)-C(3)-H(3B) 09.5 C()-C(3)-H(3C) 09.5 H(3A)-C(3)-H(3C) 09.5 H(3B)-C(3)-H(3C) 09.5 C()-C(4)-H(4A) 09.5 C()-C(4)-H(4B) 09.5 H(4A)-C(4)-H(4B) 09.5 C()-C(4)-H(4C) 09.5 H(4A)-C(4)-H(4C) 09.5 H(4B)-C(4)-H(4C) 09.5 (4)-C(5)-(5) 28.79(5) (4)-C(5)-(3) 24.97(5) (5)-C(5)-(3) 06.24(3) (5)-C(6)-C(9) 02.3(3) (5)-C(6)-C(7) 09.25(4) C(9)-C(6)-C(7).37(5) (5)-C(6)-C(8) 09.84(3) C(9)-C(6)-C(8) 0.43(5) C(7)-C(6)-C(8) 3.25(5) C(6)-C(7)-H(7A) 09.5 C(6)-C(7)-H(7B) 09.5 H(7A)-C(7)-H(7B) 09.5 C(6)-C(7)-H(7C) 09.5 H(7A)-C(7)-H(7C) 09.5 H(7B)-C(7)-H(7C) 09.5 C(6)-C(8)-H(8A) 09.5 C(6)-C(8)-H(8B) 09.5 H(8A)-C(8)-H(8B) 09.5 C(6)-C(8)-H(8C) 09.5 H(8A)-C(8)-H(8C) 09.5 H(8B)-C(8)-H(8C) 09.5 C(6)-C(9)-H(9A) 09.5 C(6)-C(9)-H(9B) 09.5 H(9A)-C(9)-H(9B) 09.5 C(6)-C(9)-H(9C) 09.5 H(9A)-C(9)-H(9C) 09.5 H(9B)-C(9)-H(9C) 09.5 S30

Table S5. Selected hydrogen bonds for 5 [Å and ]. D H A d(d H) d(h A) d(d A) <(DHA) ()-H(A)...(6)# 0.84 2.09 2.8754(5) 55.4 C(2)-H(2A)...(2) 0.98 2.55 3.08(8) 6.4 C(3)-H(3B)...(2)#2 0.98 2.55 3.4507(9) 53.2 C(4)-H(4A)...(2) 0.98 2.35 2.898(7) 4.8 (6)-H(6D)...(2)#3 0.898(8) 2.307(8) 3.045(6) 47.9(4) (5)-H(5D)...(4) 0.857(7) 2.262(6) 2.8409(7) 24.9(3) (5)-H(5C)...(2)#4 0.908(8) 2.99(8) 3.04(7) 54.0(4) (5)-H(5C)...(3)#4 0.908(8) 2.645(7) 3.2768(5) 27.4(2) (6)-H(6C)...(2) 0.88(7) 2.5(6) 2.7273(6) 26.0(4) Symmetry transformations used to generate equivalent atoms: # -x+2,-y+2,-z+; #2 x-,y,z; #3 x+,y,z; #4 -x,-y+,-z+ Figure S. A part of the crystal structure of 5 showing the formation of supramolecular D chain and selected H, H and H hydrogen bonds (dashed lines) Figure S2. A part of the crystal structure of 3 showing the formation of supramolecular D chain and selected H, H and C H hydrogen bonds (dashed lines) S3

Table S6. Selected hydrogen bonds for 3 [Å and ]. D H A d(d H) d(h A) d(d A) <(DHA) C(2)-H(2A)...(2) 0.98 2.57 3.23(2) 5.9 C(4)-H(4B)...(4)# 0.98 2.67 3.628(2) 66.8 C(7)-H(7B)...(4) 0.98 2.40 2.99(2) 8. C(8)-H(8A)...(4) 0.98 2.45 2.998(2) 5.3 C(9)-H(9C)...(2)#2 0.98 2.65 3.57(2) 56.6 (5)-H(5B)...()#3 0.90(2) 2.66(2) 3.3269(9) 3.9(7) (5)-H(5B)...(2)#3 0.90(2) 2.3(2) 2.997(2) 63.4(9) (6)-H(6B)...(2) 0.88(2) 2.7(2) 2.744(2) 22.9(6) (5)-H(5A)...(4) 0.87(2) 2.25(2) 2.842(2) 24.5(5) (6)-H(6A)...(5)#4 0.88(2) 2.45(2) 3.5(2) 36.9(7) Symmetry transformations used to generate equivalent atoms: # -x+,-y,-z+; #2 -x+2,-y+,-z+; #3 -x,-y,-z+; #4 x+,y,z Figure S3. A part of the crystal structure of 5 showing the formation of supramolecular layers and selected C H non-covalent contacts (dashed lines) Figure S4. A part of the crystal structure of 3 showing the formation of supramolecular layers and selected C H and H non-covalent contacts (dashed lines) S32