WIENER INDICES OF BENZENOID GRAPHS*

Similar documents
Hexagonal Chains with Segments of Equal Lengths Having Distinct Sizes and the Same Wiener Index

Discrete Applied Mathematics

RELATION BETWEEN WIENER INDEX AND SPECTRAL RADIUS

On a Class of Distance Based Molecular Structure Descriptors

Paths and walks in acyclic structures: plerographs versus kenographs

Modified Zagreb M 2 Index Comparison with the Randi} Connectivity Index for Benzenoid Systems

Zagreb Indices: Extension to Weighted Graphs Representing Molecules Containing Heteroatoms*

TWO TYPES OF CONNECTIVITY INDICES OF THE LINEAR PARALLELOGRAM BENZENOID

HOSOYA POLYNOMIAL OF THORN TREES, RODS, RINGS, AND STARS

Wiener Index of Graphs and Their Line Graphs

A NOVEL/OLD MODIFICATION OF THE FIRST ZAGREB INDEX

The Linear Chain as an Extremal Value of VDB Topological Indices of Polyomino Chains

Extremal Graphs with Respect to the Zagreb Coindices

The Story of Zagreb Indices

Discrete Applied Mathematics archive Volume 156, Issue 10 (May 2008) table of contents Pages Year of Publication: 2008 ISSN: X

ON SOME DEGREE BASED TOPOLOGICAL INDICES OF T io 2 NANOTUBES

THE WIENER INDEX AND HOSOYA POLYNOMIAL OF A CLASS OF JAHANGIR GRAPHS

About Atom Bond Connectivity and Geometric-Arithmetic Indices of Special Chemical Molecular and Nanotubes

CALCULATING THE DEGREE DISTANCE OF PARTIAL HAMMING GRAPHS

Computing Banhatti Indices of Hexagonal, Honeycomb and Derived Networks

Vertex-Weighted Wiener Polynomials for Composite Graphs

THE GENERALIZED ZAGREB INDEX OF CAPRA-DESIGNED PLANAR BENZENOID SERIES Ca k (C 6 )

On the Inverse Sum Indeg Index

Computing distance moments on graphs with transitive Djoković-Winkler s relation

ORDERING CATACONDENSED HEXAGONAL SYSTEMS WITH RESPECT TO VDB TOPOLOGICAL INDICES

Extremal Values of Vertex Degree Topological Indices Over Hexagonal Systems

Wiener Indices and Polynomials of Five Graph Operators

ON THE GENERALIZED ZAGREB INDEX OF DENDRIMER NANOSTARS

Research Article. Generalized Zagreb index of V-phenylenic nanotubes and nanotori

CCO Commun. Comb. Optim.

Applications of Isometric Embeddings to Chemical Graphs

Counting the average size of Markov graphs

On the harmonic index of the unicyclic and bicyclic graphs

Topological indices: the modified Schultz index

Calculating the hyper Wiener index of benzenoid hydrocarbons

Kragujevac J. Sci. 33 (2011) UDC : ZAGREB POLYNOMIALS OF THORN GRAPHS. Shuxian Li

CHEMICAL GRAPH THEORY

K-DOMINATION ON HEXAGONAL CACTUS CHAINS

On the difference between the revised Szeged index and the Wiener index

THE EDGE VERSIONS OF THE WIENER INDEX

Wiener Index of Degree Splitting Graph of some Hydrocarbons

arxiv: v1 [math.co] 15 Sep 2016

Canadian Journal of Chemistry. On Topological Properties of Dominating David Derived Networks

Estimating the Spectral Radius of a Graph by the Second Zagreb Index

On the sextet polynomial of fullerenes

The Graovac-Pisanski index of a connected bipartite graph is an integer number

arxiv: v1 [math.co] 3 Jul 2017

Acta Chim. Slov. 2003, 50,

Harmonic Temperature Index of Certain Nanostructures Kishori P. Narayankar. #1, Afework Teka Kahsay *2, Dickson Selvan. +3

CCO Commun. Comb. Optim.

Clar number of catacondensed benzenoid hydrocarbons

An Application of the permanent-determinant method: computing the Z-index of trees

Normal components, Kekulé patterns, and Clar patterns in plane bipartite graphs

Redefined Zagreb, Randic, Harmonic and GA Indices of Graphene

MULTIPLICATIVE ZAGREB ECCENTRICITY INDICES OF SOME COMPOSITE GRAPHS. Communicated by Ali Reza Ashrafi. 1. Introduction

On Trees Having the Same Wiener Index as Their Quadratic Line Graph

Extremal trees with fixed degree sequence for atom-bond connectivity index

Zagreb indices of block-edge transformation graphs and their complements

Iranian Journal of Mathematical Chemistry, Vol. 4, No.1, March 2013, pp On terminal Wiener indices of kenograms and plerograms

arxiv: v1 [math.co] 6 Feb 2011

M-Polynomial and Degree-Based Topological Indices

The Fibonacci numbers for the molecular graphs of linear phenylenes

Estimating Some General Molecular Descriptors of Saturated Hydrocarbons

Improved bounds on the difference between the Szeged index and the Wiener index of graphs

(Received: 19 October 2018; Received in revised form: 28 November 2018; Accepted: 29 November 2018; Available Online: 3 January 2019)

On π-electron configuration of cyclopenta-derivatives of benzenoid hydrocarbons

THE HOSOYA INDEX AND THE MERRIFIELD-SIMMONS INDEX OF SOME GRAPHS. Communicated by Alireza Ashrafi. 1. Introduction

Generalized Wiener Indices in Hexagonal Chains

Some Computational Aspects for the Line Graph of Banana Tree Graph

PAijpam.eu M-POLYNOMIALS AND TOPOLOGICAL INDICES OF SILICATE AND OXIDE NETWORKS Muhammad Javaid 1, Chahn Yong Jung 2

On the Randić index. Huiqing Liu. School of Mathematics and Computer Science, Hubei University, Wuhan , China

COUNTING RELATIONS FOR GENERAL ZAGREB INDICES

The expected values of Kirchhoff indices in the random polyphenyl and spiro chains

Extremal Topological Indices for Graphs of Given Connectivity

A Method of Calculating the Edge Szeged Index of Hexagonal Chain

Electron content of rings of fully benzenoid hydrocarbons

How Good Can the Characteristic Polynomial Be for Correlations?

JOURNAL OF MATHEMATICAL NANOSCIENCE. Connective eccentric index of fullerenes

A new version of Zagreb indices. Modjtaba Ghorbani, Mohammad A. Hosseinzadeh. Abstract

QSPR Analysis of Degree-Based Topological Indices with physical properties of Benzenoid Hydrocarbons

Resonance graphs of kinky benzenoid systems are daisy cubes

An Algorithm for Computation of Bond Contributions of the Wiener Index

VERTEX-WEIGHTED WIENER POLYNOMIALS OF SUBDIVISION-RELATED GRAPHS. Mahdieh Azari, Ali Iranmanesh, and Tomislav Došlić

Mathematical model for determining octanol-water partition coeffi cient of alkanes

More on Zagreb Coindices of Composite Graphs

Correlation of domination parameters with physicochemical properties of octane isomers

The PI Index of the Deficient Sunflowers Attached with Lollipops

Topological Properties of Benzenoid Systems. IX *. On the Sextet Polynomial

Harary Index and Hamiltonian Property of Graphs

THE REVISED EDGE SZEGED INDEX OF BRIDGE GRAPHS

M-polynomials and Degree based Topological Indices for the Line Graph of Firecracker Graph

The maximum forcing number of a polyomino

Some Topological Indices of L(S(CNC k [n]))

Wiener index of generalized 4-stars and of their quadratic line graphs

New Lower Bounds for the First Variable Zagreb Index

M-POLYNOMIALS AND DEGREE-BASED TOPOLOGICAL INDICES OF SOME FAMILIES OF CONVEX POLYTOPES

Estimation of the HOMO-LUMO Separation

arxiv: v1 [cs.dm] 9 Jun 2011

On the higher randić indices of nanotubes

Transcription:

Bulletin of the Chemists and Technologists of Macedonia, Vol., No., pp. 9 (4 GHTMDD 444 ISSN 5 6 Received: February, 4 UDC: 547 : 54 Accepted: March 8, 4 Original scientific paper WIENER INDICES OF BENZENOID GRAPHS* Damir Vukičević, Nenad Trinajstić Department of Mathematics, University of Split, Teslina, HR- Split, Croatia The Rugjer Bošković Institute, P. O. Box 8, HR- Zagreb, Croatia trina@rudjer.irb.hr Formulae are derived for Wiener indices of a class of pericondensed benzenoid graphs consisting of three rows of hexagons of various lengths. A corresponding computer program is prepared. Results obtained are checked against numbers computed by Pascal-oriented pseudocode that is based on ring-matrices of benzenoid graphs. This program can compute the Wiener index of any benzenoid system and not just for pericondensed benzenoids considered in this paper. Keywords: benzenoid graph; pericondensed benzenoids; ring-matrix; Wiener index INTRODUCTION *Dedicated to the th anniversary of this journal. The Wiener index W is the first topological index (graph-theoretical invariant to be used in chemistry []. It was introduced in 947 by Harold Wiener, then a chemistry student at the Brooklyn College, as the path number for characterization of alkanes [,]. In a chemical language, the Wiener index is equal to the sum of all shortest carboncarbon bond paths in a molecule. In a graphtheoretical language, the Wiener index is equal to the count of all shortest distances in a (molecular graph. First mathematical definition of this index, based on the concept of graph-theoretical distance as encoded in the distance matrix [4] is due to Hosoya [5]. Since its inception the Wiener index was used in a numerous structure-property studies [6 ]. Explicit formulas for several classes of benzenoid graphs were also proposed in recent years [ 8]. Note that benzenoid graphs are graphtheoretical representions of benzenoid hydrocarbons [9, ]. In this paper we give formulas for the calculation of the Wiener index of pericondensed benzenoid graphs made up from three rows of hexagons of various lengths (in a chemical language a subclass of pericondensed benzenoids [9, ]. A pericondensed benzenoid graph is a benzenoid graph in which internal vertices appear, that is, vertices that belong to three hexagons. Coronene and a number of its derivatives, such as dibenzo[a,j]coronene, dibenzo [bc,kl]coronene, naphtho[,-a]coronene, enumerous derivatives of perylene, anthathrene, peropyrene, etc., such as benzo[ghi]perylene, dibenzo[fg,op]anthathrene, naphtho[,,8-bcd]peropyrene and many other kinds of benzenoids belong, for example, to the studied class of pericondensed benzenoids. They possess interesting mathematical, physical, chemical, biological and technological properties [ 5]. In the application section we give a Pascaloriented pseudocode by which the Wiener index for any benzenoid graph can be calculated.

4 D. Vukičević, N. Trinajstić Let abc,, N. Denote by (,, DERIVATION OF FORMULAS G a b c a pericondensed benzenoid graph given below: First, we need to prove several Lemmas that will imply our main result. Lemma : Let n N and let L( n be a benzenoid chain depicted below: c benzenoid rings b benzenoid rings a benzenoid rings n - times Its Wiener index is given by 6n 6n W( L( n = n. Proof: Label vertices of L( n as on the following benzenoid chain: y y... y y n Also denote x x x x n... {, } {, } n. {,,..., n } { } X = x x x Y = y, y,..., y. n W( Ln ( = duv (, duv (, duv (, uv X uv Y u X v Y n n n n n i n n = ( j i ( j i ( i j ( j i n i= j= i i= j= i i= j= i= j= i 6n 6n = Lemma : Let n N. 896n 64n WGn nn n ( (,, = 98 6. Bull. Chem. Technol. Macedonia,,, 9 (4

Wiener indices of benzenoid graphs 5 Proof: Label vertices of Gn (, nn, as on the following pericondensed benzenoid graph: x 4, x 4, x 4, x 4,n x, x x,, x, x, x, x,n x,n x, x, x,... x,n Also denote WGn ( (, nn, = { } { } {,,,..., n } {,,,..., n } {,,,..., n } { n } S = x x x x,,,, S = x x x x,,,, S = x x x x uv, S S uv, S S4 u S S v S S4,,,, S = x, x, x,..., x. 4 4, 4, 4, 4, = duv (, duv (, duv (, = WLn ( ( WLn ( ( duv (, duv (, duv (, u S u S u S v S4 v S v S n n ( ( (( ( = W( L( n i j 6( n 4 n i= j= n n n n ( i j ( n ( i j ( n 8. i= j= i= j= Using the Lemma and eliminating the signs of the absolute value, we get ( (, n, n W G n = ( ( ( n ( ( ( ( ( n 6 6 = ( n n i b b ( i j ( j i ( 6( n (( 4 ( n i= j= i= j= i n i b b ( i j ( j i 8( n i= j= i= j= i ( ( ( n i b b ( i j ( i= j= i= j= i j i ( n. Glas. hem. tehnol. Makedonija,,, 9 (4

6 D. Vukičević, N. Trinajstić After some involved algebraic manipulations, we get 896n 64n WGn nn n ( (,, = 98 6. Lemma : Let abc,, Nsuch that b< c a. we have a 6a 5b b c W( G( abc,, = 6 a 6ab 6b ab 64 6c 6ac 6a c 6bc 64abc b c c 6 ac. Proof: Label vertices of Gabc (,, as on the following pericondensed benzenoid graph: x 7,b x 8,b x 9,b x,b Also denote...... x 7, x 8, x 9, x, x 7, x 8, x 9, x, x, x x,4 x, x x,4 x,,, x, {,,, } {,,, } S = x x x x,,.,4 S = x x x x,,,,4 x, x = {,,..., ( c b } = {,,..., ( c b } = {,,..., ( a b } = {,,..., ( a b } S x x x,,, S x x x 4 4, 4, 4, S x x x 5 5, 5, 5, S x x x 6 6, 6, 6, {,,..., b} {,,..., b} {,,..., b} { b} S = x x x 7 7, 7, 7, S = x x x 8 8, 8, 8, S = x x x 9 9, 9, 9, S = x, x,..., x.,,,,... x,(c b - - x 4,(c - b - - x 4, x 4,... x 5, x 5,... x 5,(a b - - x 5, 6, x x 6, 6,... x 6,(a b - - Bull. Chem. Technol. Macedonia,,, 9 (4

( (,, W G a b c Wiener indices of benzenoid graphs 7 = d( u, v d( u, v d( u, v { u, v} S S S7 S8 S9 S { u, v} S7 S8 S S S4 { u, v} S7 S8 S uv, S9 S S S5 S6 uv, S9 S S u S S4 u S S4 v S5 S6 v S d( u, v d( u, v d( u, v u S v S5 S6 = d( uv, d( uv, d( uv, d( uv, { } { } u S S4 u S5 S6 v S7 S8 S9 S v S7 S8 S9 S ( (,, ( ( ( ( ( ( ( ( ( ( ( ( c b a b c b ( i= j= i= ( a b b c b ( i= i= j= ( = W G b b b W L a W L b W L c W L b ( 4i 4j 5 6 6 7 4 5 6 4 5 6 7 8i ( a b b i= j= ( i j 4 4 4 5 5 6. ( ( 4 5 6 4 5 6 7 8i 4i 4j 4 5 5 6 Using Lemmas and, we get ( (,, W G a b c 896b 64b 6a 6a 6b 6b 98 6b a b 6c 6c 6b 6b c b ( c b ( a b ( 4i 4j 5 6 6 7 ( 4 5 6 4 5 6 7 8i i= j= = ( c b ( a b ( a b ( ( i j i= ( c b b i= i= j= b i= j= ( 4 5 6 4 5 6 7 8i 4i 4j 4 5 5 6 4 4 4 5 5 6. After a straightforward algebra, we get a 6a 5b b c W( G( abc,, = 6 a 6ab 6b ab 64 6c 6ac 6a c 6bc 64abc b c c 6 ac. Glas. hem. tehnol. Makedonija,,, 9 (4

8 D. Vukičević, N. Trinajstić Lemma 4: Let abc,, Nsuch that c b< a. W ( G( a, b, c 98a 6a b b = 4a 4ab 8a b 8b 8ab 8c ac 8a c 8bc 4b c 6c 8ac 4bc. 4c Proof: Note that G( a, b, c is a subgraph of pericondensed benzenoid graph G( a, b, b Gabc and G( a, b, b as on the following graph:. Label vertices of graphs (,,... x 5, x 5,... x,c x x 5, 5,t x,c x,c x 4,c x, x, x, x, x, x, x, x 7,x x, x 4,... x 4, x, x 4, x 6, x 6,x 6, 7, x 7, x 7,t x 6,t x 8, x 8, x 8, x 8,t... x, x, x, x 9, x 9, x x 9, 9,a - b - x,a - b - where t = ( b c. Also denote {,,..., c} {,,..., c} {,,..., c} {,,..., c} S = x x x,,, S = x x x,,, S = x x x,,, S = x x x 4 4, 4, 4, = {,,..., ( b c } = {,,..., ( b c } = { x ( b c } = {,,..., ( b c } S x x x 5 5, 5, 5, S x x x S 6, 6, 6, 6, 6, 6, S7 x7, x7, x7, S8 = { x8,, x8,,..., x8,( b c } {,,..., ( a b } { ( a b } S = x x x 9 9, 9, 9, S = x, x,..., x.,,, Bull. Chem. Technol. Macedonia,,, 9 (4

Wiener indices of benzenoid graphs 9 ( (,, W G abc {, } = d( u, v d( u, v d( u, v = uv S S S S4 S5 S6, S6, S7 S8 S9 S u S5 u S5 v S S S S4 v S6, S6, d( u, v d( u, v d( u, v d( u, v d( u, v d( u, v (, {, } u S5 u S5 u S5 u v S5 u S6, u S6, v S7 v S8 v S9 S v S v S6, S d u v u S6, u S6, v S S7 S9 v S4 S8 S ( ( ( b c (, d u v c = W( G( a, b, b ( 4 4i 4j 4 i= j= ( ( b c b c b c b c ( ( ( ( i j b c i j 8 b c i= j= i= j= ( ( b c b c ( i j 6( b c ( 4 ( b c 6 i= j= ( ( ( ( b c a b a b ( 4 i j ( 5 6 6 7 4i i= j= i= b c i c b ( i j ( ( b c i ( i i= j= i= i= ( a b ( b b a b i= i= i= i= ( i ( i ( 4 i 5 ( 4 i Using the last Lemma and eliminating the signs of absolute value, we get ( (,, W G abc ( ( = ( b c c = W( G( a, b, b ( 4 4i 4j 4 i= j= ( ( ( b c i b c b c ( i j ( j i ( b c i= j= i= j= i ( b c i b c b c ( i j ( j i 8( b c i= j= i= j= i ( ( ( ( ( ( b c i b c b c ( i j ( j i 6( b c ( b c 6 i= j= i= j= i ( b c a b a b ( 4 i j ( 5 6 6 7 4i i= j= i= b c i c b ( i j ( ( b c i ( i i= j= i= i= ( a b ( a b b b ( i ( i ( i ( i 4 5 4. i= i= i= i=. Glas. hem. tehnol. Makedonija,,, 9 (4

D. Vukičević, N. Trinajstić After a rather involved algebra, we get 98a 6a b b 4c W( G( a, b, c = 4a 4ab 8a b 8b 8 ab 8c ac 8a c 8bc 4b c6c -8ac -4bc. Lemma 5: Let ab, Nsuch that b a. 46b 6b W( G( a b a a a a ab a b b ab,, = 8 6 4 6 8 6. Proof: Denote by S the set of vertices marked by black dots on the following pericondensed benzenoid graph and denote by S the set of remaining vertices: ( ( ( { } ( b a ( ( W G aba,, = d uv, d uv, d uv, { } uv, S u S uv, S u S a ( ( ( i= j= ( ( = W G a, a, a 8i 8 j W L b a. Using Lemmas and, we get ( b a i= j= ( a ( a 896 64 W( G( abc,, = 98 6( a ( b a a 6( b a 6 ( 8i 8j ( b a. After involved, but straightforward algebraic manipulations, we get 46b 6b W( G( a b a a a a ab a b b ab,, = 8 6 4 6 8 6. Lemma 6: Let abc,, Nsuch that c a b. Bull. Chem. Technol. Macedonia,,, 9 (4

Wiener indices of benzenoid graphs 97a a 46b 6b 49c W( G( abc,, = 5 4a ab 8ab 8b 8ab 8c ac 4a c bc 8b c 4c 4ac 8 bc. Proof: Denote by S the set of vertices marked by black dots on the following pericondensed benzenoid graph, denote by S the single vertex marked by black square, denote by S the set of vertices marked by black triangles and by S 4 the set of remaining vertices: ( (,, = (, (, (, (, (, (, W G a b c d u v d u v d u v d u v d u v d u v { } ( b a ( (,, ( 6 6 ( b a c i= j= u, v S S4 u S u S u, v S u S u S v S S4 v S v S4 v S a = W G a a c i j i= j= ( ( ( ( i ( ( a c a c i j W L b a a c 4 5 4 i= Using Lemmas and 4, we get ( (,, W G abc ( b a a i= j= = i= ( a ( 6i 6j ( ( a c i. 98a 6a 4a 4a( a 8a ( a 8( a 8a( a = ( a- 4c 8c ac 8a c 8bc 4b c6c -8ac -4( a- c ( ( b a c 6 b a 6 b a ( ( a c ( a c i j ( b a i= j= a c 4 5 ( 4 i ( ( a c i. i= i= After some algebraic manipulations, we get { } ( Glas. hem. tehnol. Makedonija,,, 9 (4

D. Vukičević, N. Trinajstić 97a a 46b 6b 49c W( G( abc,, = 5 4a ab 8ab 8b 8ab 8c ac 4a c bc 8b c 4c 4ac 8 bc. From Lemmas 6 the main result follows. Theorem : Let abc,, N. ( (,, W G a b c THE MAIN RESULT 98c 6c b 4c 4cb 8c b b 4a 8b 8 cb, a b< c 8a ac 8c a 8ba 4b a6a -8ca -4ba 97c c 46b 5 4c cb 8c b 6b 49a 8b 8cb ac, a< c b 8a 4ca ba 8b a 4a 4ca 8ba 46b 8a a 6a 4ab, a= c b 6b 6ab 8b 6ab = c 6c 5b b a 6 c 6cb 6b cb 64, b< a c 6a 6ac 6c a 6ba 64abc b a a 6ca a 6a 5b b c 6 a 6ab 6b ab 64, b< c< a 6c 6ac 6a c 6bc 64abc b c c 6ac 97a a 46b 6b 5 4a ab 8a b 8b 8ab, c< a b 49c 8c ac 4a c bc 8b c 4c 4ac 8bc 98a 6a b b 4a 4ab 8a b 8b 8 ab, c b< a 4c 8c ac 8a c 8bc 4b c6c -8ac -4bc Bull. Chem. Technol. Macedonia,,, 9 (4

Wiener indices of benzenoid graphs APPLICATIONS Computer program based on the theorem Here we give a program written in Mathematica that uses the theorem from above to calculate values of G(a,b,c. a 6a 5b b c g [ a_, b_, c_ ] = 6 a 6ab 6b ab 64 6c 6ac 6a c 6bc 64abc b c c 6ac 98a 6a b b 4c g [ a_, b_, c_ ] = 4a 4ab 8a b 8b 8 ab 8c ac 8a c 8bc 4b c6c -8ac -4bc 46b 6b gaa [ _, b_, c_ ] = 8a a 6a 4ab 6ab 8b 6ab 97a a 46b 6b 49c gba [ _, b_, c_ ] = 5 4a ab 8ab 8b 8ab 8c ac 4a c bc 8b c 4c 4ac 8bc g a b c Which [ _, _, _] = [ <= && <, [,, ], < && <=, [,, ], == && <=, [, ], < && <=, [,, ], < && <, [,, ], < && <=, [,, ], <= && <, [,, ] ] = Array g, { 5,5,5} a b b c g c b a a c c b g b c b a a c c b g a a b b a a c g c b a b c c a g abc c a a b g b a b c c b b a g a b c ar Calculations Using this program we calculated values for G( a b c for five values of a:,,, a, b, c 5. These values are given below Glas. hem. tehnol. Makedonija,,, 9 (4

4 D. Vukičević, N. Trinajstić a = b\ c 4 5 7 44 78 6 5 65 944 498 76 97 8 756 57 4 485 7 967 94 948 5 79 574 88 44 7 a = b\ c 4 5 44 654 68 68 58 65 85 4 746 59 8 8 54 9 4 7 96 4 597 4 5 574 89 4 65 4 a = b\ c 4 5 78 68 594 5 74 944 4 5 88 54 79 54 4 967 4 545 94 67 5 88 4 579 994 457 a = 4 b\ c 4 5 68 5 86 456 498 746 88 978 464 756 894 9 4 94 597 94 7 48 5 44 65 994 44 498 a = 5 b\ c 4 5 6 58 74 456 5986 76 59 464 56 57 9 54 9 58 4 948 4 67 48 494 5 7 4 457 498 555 Bull. Chem. Technol. Macedonia,,, 9 (4

Wiener indices of benzenoid graphs 5 Use of the ring-matrix Let us describe the notion of the ring-matrix of a benzenoid graph by the following example. For the following multiply-connected benzenoid graph, that is, a benzenoid graph with a hole [6]: and the corresponding ring-matrix is given by: The connection between the ring-matrix and a benzenoid graph is illustrated below: Here we give a program, written in a Pascal-based pseudocode, that calculates Wiener index of a benzenoid system from its ring-matrix. We have used this program to verify our formulas. The results given by this program coincide with the results given in subsection 4.. Here is the program: Glas. hem. tehnol. Makedonija,,, 9 (4

6 D. Vukičević, N. Trinajstić. Read dimensions of the ring-matrix and store ring-matrix in array a (locations a(,-a(na,ma.. Add columns a(x, and a(x,ma, <=x<=na consisting of zeros and add rows a(,y and a(na,y consisting of zeros.. Set all entries of array g to zero. 4. For each <=i<=na and <=j<=*ma do if ( ((i% == AND ((j% == {symbols a%b here and forward mean a mod b } if ( (a[i - ][j/] == AND (a[i][j/] == AND (a[i][j/ ] == {symbols a/b here and forward mean integer division} g[(i - * ( * ma j][(i - * ( * ma j] = ; else if ( a[i-][j/] if ( j > g[(i - * ( * ma j][(i - * ( * ma j - ] = ; if ( j < * ma g[(i - * ( * ma j][(i - * ( * ma j ] = ; if ( a[i][j/] if ( j > g[(i - * ( * ma j][(i - * ( * ma j - ] = ; if ( i < na g[(i - * ( * ma j][i * ( * ma j] = ; if ( a[i][j/ ] if ( j < * ma g[(i - * ( * ma j][(i - * ( * ma j ] = ; if ( i < na g[(i - * ( * ma j][i * ( * ma j] = ; if ( ((i% == AND ((j% == if ( (a[i][j/] == AND (a[i-][j/ - ] == AND (a[i-][j/] == g[(i - * ( * ma j][(i - * ( * ma j] = ; else if ( a[i][j/] Bull. Chem. Technol. Macedonia,,, 9 (4

Wiener indices of benzenoid graphs 7 if ( j < * ma g[(i - * ( * ma j][(i - * ( * ma j ] = ; if ( j > g[(i - * ( * ma j][(i - * ( * ma j - ] = ; if (a[i-][j/ - ] if ( j > g[(i - * ( * ma j][(i - * ( * ma j - ] = ; if ( i > g[(i - * ( * ma j][(i - * ( * ma j] = ; if (a[i-][j/] if ( j < * ma g[(i - * ( * ma j][(i - * ( * ma j ] = ; if ( i > g[(i - * ( * ma j][(i - * ( * ma j] = ; if ( ((i% == AND ((j% == if ( (a[i][j/] == AND (a[i-][j/] == AND (a[i-][j/ ] == g[(i - * ( * ma j][(i - * ( * ma j] = ; else if ( a[i][j/] if ( j < * ma g[(i - * ( * ma j][(i - * ( * ma j ] = ; if ( j > g[(i - * ( * ma j][(i - * ( * ma j - ] = ; if (a[i-][j/] if ( j > g[(i - * ( * ma j][(i - * ( * ma j - ] = ; if ( i > g[(i - * ( * ma j][(i - * ( * ma j] = ; if (a[i-][j/ ] if ( j < * ma Glas. hem. tehnol. Makedonija,,, 9 (4

8 D. Vukičević, N. Trinajstić g[(i - * ( * ma j][(i - * ( * ma j ] = ; if ( i > g[(i - * ( * ma j][(i - * ( * ma j] = ; if ( ((i% == AND ((j% == if ( (a[i - ][j/] == AND (a[i][j/ - ] == AND (a[i][j/] == g[(i - * ( * ma j][(i - * ( * ma j] = ; else if ( a[i-][j/] if ( j > g[(i - * ( * ma j][(i - * ( * ma j - ] = ; if ( j < * ma g[(i - * ( * ma j][(i - * ( * ma j ] = ; if ( a[i][j/ - ] if ( j > g[(i - * ( * ma j][(i - * ( * ma j - ] = ; if ( i < na g[(i - * ( * ma j][i * ( * ma j] = ; if ( a[i][j/] if ( j < * ma g[(i - * ( * ma j][(i - * ( * ma j ] = ; if ( i < na g[(i - * ( * ma j][i * ( * ma j] = ; 5. Eliminate all colums and rows from g that contain entry. 6. Dijkstra's algorithm [7] is used to calculate distances between vertices. 7. Distances between vertices are summed up. REFERENCES Bull. Chem. Technol. Macedonia,,, 9 (4

[] S. Nikolić, N. Trinajstić and Z. Mihalić, The Wiener index: development and application, Croat. Chem. Acta, 68, 5 9 (995. [] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69, 7 (947. [] D. H. Rouvray and R. B. King, eds., Topology in Chemistry Discrete Mathematics of Molecules, Horwood, Chichester,. [4] Z. Mihalić, D. Veljan, D. Amić, S. Nikolić, D. Plavšić, N. Trinajstić, The distance matrix in chemistry, J. Math. Chem.,, 58 (99. [5] H. Hosoya, A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan, 44, 9 (97. [6] N. Trinajstić, ed., Mathematics and computational concepts in chemistry, Horwood/Wiley, New York, 986. [7] A. T. Balaban, ed., From chemical topology to threedimensional geometry, Plenum Press, New York, 997. [8] J. Devillers and A.T. Balaban, eds., Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach Sci. Publ., Amsterdam, 999. [9] R. Todeschini and V. Consonni, Handbook of molecular descriptors, Wiley-VCH, Weinheim,, pp. 497 5. [] M. V. Diudea, ed., QSPR/QSAR studies by molecular descriptors, Nova Sci. Publ. Huntington, NY.,. [] I. Gutman, D. Rouvray, A new theorem for the Wiener molecular branching index of trees with perfect matchings, Comput. Chem., 4, 9 (99. [] A. A. Dobrynin, Graphs of unbranched hexagonal systems with equal values of the Wiener index and different numbers of rings, J. Math. Chem., 9, 9 5 (99. [] A. A. Dobrynin, A new formula for the calculation of the Wiener index of hexagonal chains, MATCH Comm. Math. Comp. Chem., 5, 75 9 (997. [4] A. A Dobrynin, Formula for calculating the Wiener index of catacondensed benzenoid graphs, J. Chem. Inf. Comput. Sci., 8, 8 84 (998. [5] A. A. Dobrynin, Explicit relation between the Wiener index and the Schultz index of catacondensed benzenoid graphs, Croat. Chem. Acta, 7, 869 874 (999. [6] A. A. Dobrynin, A simple formula for the calculation of the Wiener index of hexagonal chains, Comput. Chem., 7, 869 874 (999. [7] A. A. Dobrynin, I. Gutman, The average Wiener index of hexagonal chains, Comput. Chem.,, 57 576 (999. [8] A. A. Dobrynin, I. Gutman, S. Klavžar and P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math., 7, 47 94 (. [9] I. Gutman and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 989. [] N. Trinajstić, On classification of polyhex hydrocarbons, J. Math. Chem., 5, 7 75 (99. [] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL., 99, Ch.. [] J. R. Dias, Handbook of polycyclic hydrocarbons. Part A. Benzenoid hydrocarbons, Elsevier, Amsterdam, 987. [] R. A. Hites and W. J. Simonsick, Jr., Calculated molecular properties of polycyclic aromatic hydrocarbons, Elsevier, Amsterdam, 987. [4] R. G. Harvey, Polycyclic aromatic hydrocarbons, Wiley- VCH, New York, 997. [5] S. Klavžar, I. Gutman, A. Rajapakse, Wiener numbers of pericondensed benzenoid hydrocarbons, Croat. Chem. Acta, 7, 979 999 (997. [6] N. Trinajstić, On the classification of polyhexes, J. Math. Chem., 9, 7 8 (99. [7] A. Gibbons, Algorithmic graph theory, Cambridge University Press, Cambridge, 985. R e z i m e VINEROVI INDEKSI NA BENZENOIDNI GRAFOVI Damir Vukičević, Nenad Trinajstić Zavod za matematiku, Sveučilište u Splitu, Teslina, HR- Split, Hrvatska Institut "Ru er Bošković", p.p. 8, HR- Zagreb, Hrvatska trina@rudjer.irb.hr Klu~ni zborovi: benzenoidni grafovi; perikondenzirani benzenoidi; prsteni-matrici; Vinerov indeks Izvedeni se formuli za Vinerovi indeksi na klasa od perikondenzirani benzenoidni grafovi koi se sostojat od tri reda na {estoagolnici so razli~na dol`ina. Za taa cel e podgotvena i soodvetna kompjuterska programa. Dobienite rezultati se provereni i sporedeni so broevite presmetani so psevdokod orientiran vo programskiot paket Paskal, koj e baziran na prsteni-matrici na benzenoidni grafovi. Ovaa programa mo`e da presmeta Vinerov indeks na koj i da e benzenoiden sistem, ne samo za perikondenzirani benzenoidi koi se razgledani vo ovoj trud.