Supporting Information

Similar documents
Pharmaceutical co-crystals of diflunisal and. diclofenac with theophylline

Difluoro-7,7,8,8-tetracyanoquinodimethane (F2- TCNQ) Single Crystals

Two-component molecular crystals: Relationship between the entropy term and the molecular volume of co-crystal formation

Why polymorphism? An Evaluation using Experimental Charge Densities Analysis

Crystallisation and physicochemical property characterisation of conformationally-locked co-crystals of fenamic acid derivatives

Supporting Information

Molecular Aggregation

Crystal and molecular structure of N-(p-nitrobenzylidene)- 3-chloro-4-fluoroaniline

Density Functional Theory

Supplementary Information

Electronic Supplementary Information β-ketoiminato-based Copper(II) Complexes as CVD. Precursors for Copper and Copper Oxide Layer.

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol).

The Interpretation of the Short Range Disorder in the Fluorene- TCNE Crystal Structure

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

CHARACTERIZATION OF WEAK INTRA- AND INTERMOLECULAR INTERACTIONS USING EXPERIMENTAL CHARGE DENSITY DISTRIBUTIONS

New Perspective on structure and bonding in water using XAS and XRS

Nucleotides containing variously modified sugars: energetics, structure, and mechanical properties

Probing Hydrogen Bond Energies by Mass Spectrometry

Structure and interactions in benzamide molecular crystals

Supporting Information

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig

Electronic Supplementary Information

Saccharin salts of biologically active hydrazone derivatives

CONTRIBUTION OF WEAK INTERMOLECULAR INTERACTIONS IN 3-ACETYL COUMARIN DERIVATIVES

Supporting Information

Research Article Polymorphs of Tolfenamic Acids: Stability Analysis Using Cluster Method

Screening for cocrystals of succinic acid and 4-aminobenzoic acid. Supplementary Information

research papers 612 doi: /s Acta Cryst. (2006). B62, Introduction Parthapratim Munshi and Tayur N.

Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

Electronic communication through molecular bridges Supporting Information

Supporting information for Template-directed proton conduction pathway in a coordination framework

List of Figures Page Figure No. Figure Caption No. Figure 1.1.

Supporting information

Effect of epoxy monomer structure on the curing process. and thermo-mechanical characteristics of tri-functional

An Anionic Metal Organic Framework For Adsorption and. Separation of Light Hydrocarbons

Supplementary Material

Experiment Section Fig. S1 Fig. S2

Supporting Information

Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations

Hydrogen and Halogen Bonds are Ruled by the Same Mechanisms S.J.Grabowski

Supporting Information

one ν im: transition state saddle point

Spin Transition and Structural Transformation in a

Etching-limited branching growth of cuprous oxide during ethanol-assisted. solution synthesis

Designing ternary cocrystals with hydrogen bonds and halogen bonds Srinu Tothadi and Gautam R. Desiraju

Uptake of OH radical to aqueous aerosol: a computational study

Physical Chemistry Analyzing a Crystal Structure and the Diffraction Pattern Virginia B. Pett The College of Wooster

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Interligand charge transfer in a complex of deprotonated cis-indigo dianions and tin(ii) phthalocyanine radical anions with Cp*Ir(III).

arxiv:physics/ v1 [physics.atm-clus] 21 Jun 2004

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

Structural Characterization and Rationalization of Formation, Stability, and Transformations of Benperidol Solvates

CHAPTER 8 REPORT ON HIGHER SHG EFFICIENCY IN BIS (CINNAMIC ACID): HEXAMINE COCRYSTAL

All made with XD could be done with other programs like JANA, Valray, Molly etc. Cheiron School

2013, 2011, 2009, 2008 AP

SUPPORTING INFORMATION

Chapter 4. The Physical transformations of pure substances Fall Semester Physical Chemistry 1 (CHM2201)

,

Theoretical study of solvent influence on the regiospecificity of the reaction of 3-phenyl-s-tetrazine with ketene-n,n-aminal

The Schrödinger equation for many-electron systems

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type

Rapid and precise thermochemical calculations by quantum chemical methods

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

SUPPORTING INFORMATION. Table S1: Use of different functionals and variation of HF exchange on IS/HS splitting

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

Supporting Information

Stability and solid-state polymerization reactivity of imidazolyl- and benzimidazolyl-substituted diacetylenes: pivotal role of lattice water

Supporting Information

Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation

Table of Contents Preface PART I. MATHEMATICS

Electronic Supplementary Information (ESI)

Computational Chemistry Using the University of Alaska WebMO Site

Electronic Supplementary Information. DPT tautomerisation of the wobble guanine thymine DNA base mispair is not mutagenic: QM and QTAIM arguments 1

Chapter 11. Intermolecular Forces and Liquids & Solids

Multiple Choice. Multiple Choice

Solubility Properties

metal-organic papers Di-l-pyridyl-1:2j 2 N:C 2 ;2:1j 2 N:C 2 -l-tetrahydrofuran-j magnesium(ii)] tetrahydrofuran hemisolvate

Theoretical UV/VIS Spectroscopy

Chem Hughbanks Exam 3, April 19, 2012

Name: Date: A) B) C) D) E)

Crystal structure of DL-Tryptophan at 173K

Are the Bader Laplacian and the Bohm Quantum Potential Equivalent?

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen , China

ELECTRONIC STRUCTURE OF MAGNESIUM OXIDE

ANSWERS CIRCLE CORRECT SECTION

Chem Hughbanks Exam 3A, Solutions

Effect of the cation on the stability of cation-glyme complexes and their interactions with the [TFSA] - anion

13 Energetics II. Eg. Na (g) Na + (g) + e - ΔH = +550 kj mol -1

Computational Modeling Software and their applications

AP Chemistry Chapter 7: Bonding

Oxygen Reduction Reaction

Validation of Experimental Crystal Structures

The Abstraction of Iodine from Aromatic Iodides by Alkyl Radicals. Steric and Electronic Effects 1

Lecture 4: Band theory

Chem 112 Dr. Kevin Moore

N- and S-Oxidation Model of the Flavin-containing MonoOxygenases

One- and two-center energy components in the atoms in molecules theory

1. Hydrogen atom in a box

Transcription:

Supporting Information Three Polymorphic Forms of Ciprofloxacin Maleate: Formation Pathways, Crystal Structures, Calculations and Thermodynamic Stability Aspects Artem O. Surov a, Andrei V. Churakov b, German L. Perlovich a,* a Institution of Russian Academy of Sciences, G.A. Krestov Institute of Solution Chemistry RAS, 153045, Ivanovo, Russia. E-mail: glp@isc-ras.ru b Institute of General and Inorganic Chemistry RAS, Leninskii Prosp. 31,119991, Moscow, Russia. *To whom correspondence should be addressed: Telephone: +7-4932-533784; Fax: +7-4932- 336237; E- mail glp@isc-ras.ru

Figure S1. Experimental PXRD patterns of ciprofloxacin maleate form I, form II, form III and ciprofloxacin maleate monohydrate obtained by solution crystallization

Figure S2. Experimental and calculated PXRD patterns of ciprofloxacin maleate polymorphs

Figure S3. DSC thermogram and TG analysis of ciprofloxacin maleate monohydrate

(a) (b) (c) (d) Figure S4. Hydrogen bonded supramolecular unit in the crystal structures of (a) ciprofloxacin maleate monohydrate and (b) norfloxacin maleate monohydrate. Packing arrangements of (c) ciprofloxacin maleate monohydrate and (d) norfloxacin maleate monohydrate. The maleate ions are colored red, water molecules are colored blue.

Figure S5. Selected intermolecular C H O (green), N O (light blue) and F C contacts in the crystal structure of form I derived from the Bader analysis of periodic electron density. The interaction energies are given in kj mol -1.

Figure S6. Selected hydrogen bonds (blue) and intermolecular C H O (green) contacts in the crystal structure of form II derived from the Bader analysis of periodic electron density. The interaction energies are given in kj mol -1.

Figure S7. Selected hydrogen bonds (blue), intermolecular C H O (green) and and F H contacts in the crystal structure of form III derived from the Bader analysis of periodic electron density. The interaction energies are given in kj mol -1.

Figure S8. DSC traces for the polymorphs of ciprofloxacin maleate and ciprofloxacin maleate monohydrate

Figure S9. DSC and TG analysis for ciprofloxacin maleate

Figure S10. PXRD analysis of residual materials after solubility of ciprofloxacin maleate form I, form II and form III in the ph 1.2 solution. Note that form III transforms to form II during solubility experiment.

Details of the DFT calculations DFT computations with periodic boundary conditions (solid-state DFT calculations) were performed using the CRYSTAL14. The B3LYP functional was employed with an all-electron Gaussian-type localized orbital 6-31G(d,p) basis set. According to previous results, S1-S5 the B3LYP/6-31G** level of approximation provides reliable and consistent results in studying the various intermolecular (noncovalent) interactions in molecular crystals. The default CRYSTAL14 computation options are used to achieve an appropriate level of accuracy in evaluating the Coulomb and Hartree-Fock exchange series and the exchange-correlation contribution. Tolerance on energy controlling the self-consistent field convergence for geometry optimizations and frequencies computations is set to 1 10-9 and 1 10-10 hartree, respectively. The shrinking factor, reflecting the density of the k-points grid in the reciprocal space, was set at least to 3. The space groups and unit cell parameters of the considered cocrystal obtained in the single-crystal X-ray studies are fixed and structural relaxations are limited to the positional parameters of atoms. The atomic positions from experiment are used as the starting point in the solid-state DFT computations. All the optimized structures correspond to the minimum point on the potential energy surface. References S1 Oddershede, J.; Larsen, S. Charge density study of naphthalene based on X-ray diffraction data at four different temperatures and theoretical calculations. J. Phys. Chem. A, 2004, 108, 1057-1063. S2 Munshi, P.; Guru Row, T. N. Exploring the Lower Limit in Hydrogen Bonds: Analysis of Weak CH O and CH π Interactions in Substituted Coumarins from Charge Density Analysis. J. Phys. Chem. A, 2005, 109, 659-672. S3 Munshi, P.; Thakur, T. S.; Guru Row, T. N.; Desiraju, G. R. Five varieties of hydrogen bond in 1-formyl-3-thiosemicarbazide: an electron density study. Acta Cryst. B, 2006, 62, 118-127. S4 Munshi, P.; Guru Row, T. N. Intra-and intermolecular interactions in small bioactive molecules: cooperative features from experimental and theoretical charge-density analysis. Acta Cryst. B, 2006, 62, 612-626. S5 Vener, M. V.; Manaev, A. V.; Egorova, A. N.; Tsirelson, V. G. QTAIM study of strong H-bonds with the OH A Fragment (A= O, N) in three-dimensional periodical crystals. J. Phys. Chem. A, 2007, 111, 1155-1162.

Table S1. Characteristics of the intermolecular (noncovalent) interactions in the ciprofloxacin maleate form I calculated by the solid-state DFT method coupled with the Bader analysis of the periodic wave-function* Interaction D(D A)/ Å ρ b / 2 ρ b / G b / (D(H A)/ Å) a.u. a.u. a.u. E int / kj mol -1 Hydrogen bonds N3-H32 O22 a 2.782 (1.940) 0.046 0.123 0.033 36.9 N3-H31 O22 b 2.791 (1.932) 0.034 0.107 0.026 29.8 C-H O(F) contacts C17-H171 O23 c 3.330 (2.378) 0.017 0.046 0.012 13.6 C15-H151 O23 d 3.162 (2.519) 0.013 0.043 0.010 11.2 C3-H3 F3 d 3.248 (2.401) 0.010 0.041 0.009 10.4 C22-H22 O3 e 3.221 (2.563) 0.011 0.039 0.009 9.8 C14-H142 O2 e 3.196 (2.544) 0.011 0.037 0.009 9.7 C17-H172 O2 f 3.413 (2.522) 0.011 0.036 0.008 9.2 C17-H171 O24 c 3.342 (2.672) 0.009 0.036 0.008 9.0 C7-H72 O23 g 3.420 (2.748) 0.010 0.035 0.008 8.7 C5-H5 O1 e 3.475 (2.656) 0.010 0.033 0.008 8.6 C23-H23 O3 e 3.283 (2.672) 0.008 0.031 0.007 7.4 C16-H162 O24 c 3.198 (2.840) 0.007 0.029 0.006 6.9 C6-H62 O22 h 3.602 (2.706) 0.007 0.023 0.005 5.5 C15-H152 O21 a 3.373 (2.891) 0.006 0.024 0.005 5.4 C6-H62 O23 g 3.486 (2.854) 0.005 0.021 0.004 4.8 C14-H141 O1 i 3.675 (2.953) 0.005 0.020 0.004 4.7 C16-H161 O3 j 3.639 (2.911) 0.006 0.020 0.004 4.7 Other interactions C6 F1 k 3.121 0.008 0.036 0.007 8.4 N1 O23 g 3.114 0.009 0.029 0.007 7.5 C9 F1 i 3.155 0.007 0.032 0.006 7.2 N3 O23 d 2.949 0.007 0.029 0.006 7.1 H72 H151 h 2.373 0.007 0.027 0.005 6.0 C6-H61 N2 d 3.855 (3.014) 0.008 0.022 0.005 5.5 C21 O24 c 3.277 0.006 0.023 0.005 5.2 C24 O21 c 3.221 0.006 0.023 0.005 5.1 C11 O2 l 3.296 0.006 0.019 0.004 4.6 C4 C12 l 3.318 0.006 0.020 0.004 4.4 H61 H152 k 2.504 0.005 0.020 0.004 4.1 H23 H72 m 2.535 0.005 0.019 0.004 4.1 H5 H152 k 2.401 0.005 0.019 0.004 4.0 C12 C23 g 3.570 0.006 0.017 0.003 3.8 C2 C13 l 3.477 0.006 0.016 0.003 3.7 H9 H141 i 2.550 0.004 0.017 0.003 3.5 C1 N1 l 3.521 0.004 0.014 0.003 3.3 C10 C22 g 3.601 0.004 0.011 0.002 2.6 E latt, kj mol -1 286.2 *The X A and H A distances, D(X A) and D(H A), where X, A = O, N and C; the X-H A angle, (D- H A); the electron density ρ b, the Laplacian of the electron density 2 ρ b and local electronic kinetic energy density G b at the bond critical point; the energy of the intermolecular noncovalent interaction E int. Symmetry codes: a (2-x, 1-y, 1-z); b (x, y, z); c (1-x, 1-y, 1-z); d (1+x, y, z); e (1-x, -y, 1-z); f (1.5-x, 0.5+y, 1.5-z); g (0.5+x, 0.5-y, 0.5+z); h (-0.5+x, 0.5-y, 0.5+z); i (2-x, -y, 1-z); j (1.5-x, -0.5+y, 1.5-z); k (-1+x, y, z); l (1-x, -y, 1-z); m (- 0.5+x, 0.5-y, -0.5+z);

Table S2. Characteristics of the intermolecular (noncovalent) interactions in the ciprofloxacin maleate form II calculated by the solid-state DFT method coupled with the Bader analysis of the periodic wave-function* Interaction D(D A)/ Å ρ b / 2 ρ b / G b / (D(H A)/ Å) a.u. a.u. a.u. E int / kj mol -1 Hydrogen bonds N3-H32 O22 a 2.750 (1.832) 0.052 0.138 0.038 42.3 N3-H31 O23 b 2.972 (2.277) 0.019 0.055 0.014 15.9 N3-H31 O24 b 3.011 (2.312) 0.013 0.049 0.011 12.9 N3-H31 O3 c 3.055 (2.409) 0.012 0.042 0.010 11.0 C-H O contacts C12-H12 O23 d 3.217 (2.475) 0.012 0.040 0.009 10.5 C17-H172 O3 e 3.391 (2.549) 0.012 0.037 0.009 9.9 C14-H142 O22 f 3.280 (2.699) 0.010 0.035 0.008 8.8 C22-H22 O2 g 3.314 (2.594) 0.009 0.032 0.007 8.1 C15-H151 O24 b 3.220 (2.741) 0.008 0.032 0.007 7.7 C5-H5 O23 d 3.258 (2.547) 0.008 0.031 0.007 7.4 C15-H152 O21 a 3.262 (2.743) 0.008 0.030 0.006 7.1 C5-H5 O1 h 3.429 (2.578) 0.008 0.027 0.006 6.8 C16-H161 O23 d 3.493 (2.633) 0.008 0.027 0.006 6.7 C17-H171 O3 c 3.272 (2.804) 0.006 0.026 0.005 6.0 C16-H162 O24 i 3.456 (2.829) 0.006 0.025 0.005 5.8 C17-H171 O21 i 3.416 (2.762) 0.006 0.025 0.005 5.6 C16-H162 O21 i 3.286 (2.852) 0.006 0.025 0.005 5.6 C16-H162 O1 e 3.682 (2.848) 0.006 0.023 0.005 5.5 C14-H141 O21 a 3.443 (2.787) 0.006 0.021 0.004 4.9 C7-H71 O22 i 3.802 (2.882) 0.006 0.021 0.004 4.7 C14-H141 O2 j 3.272 (2.833) 0.005 0.021 0.004 4.7 C23-H23 O2 g 3.458 (2.920) 0.004 0.018 0.004 3.9 C7-H72 O1 e 4.057 (3.182) 0.005 0.017 0.003 3.9 Other interactions O3 O23 k 3.309 0.009 0.039 0.008 9.4 C15 O22 f 2.972 0.009 0.037 0.008 8.7 H9 H72 e 2.320 0.008 0.029 0.006 6.4 C17 O24 i 3.142 0.006 0.027 0.005 6.1 H172 H172 l 2.442 0.007 0.026 0.005 5.6 H152 H161 f 2.397 0.007 0.025 0.005 5.5 C8 C8 e 3.588 0.006 0.018 0.004 4.3 C9 C13 e 3.486 0.006 0.018 0.004 4.2 C2 C10 e 3.604 0.006 0.017 0.003 3.9 H62 H62 m 2.855 0.005 0.019 0.003 3.9 C12 H23 d 3.142 0.004 0.012 0.002 2.7 E latt, kj mol -1 266.4 *The X A and H A distances, D(X A) and D(H A), where X, A = O, N and C; the electron density ρ b, the Laplacian of the electron density 2 ρ b and local electronic kinetic energy density G b at the bond critical point; the energy of the intermolecular noncovalent interaction E int. Symmetry codes: a (x, y, z); b (x, 1.5-y, 0.5+z); c (-1+x, y, z); d (1-x, 1-y, 1-z); e (2-x, 1-y, 2-z)j f (1-x, 0.5+y, 1.5-z); g (- 1+x, 0.5-y, -0.5+z); h (2-x, -0.5+y, 1.5-z); i (1-x, -0.5+y, 1.5-z); j (2-x, -0.5+y, 1.5-z); k (1+x, 1.5-y, 0.5+z); l (1-x, 1-y, 2-z); m (2-x, -y, 2-z).

Table S3. Characteristics of the intermolecular (noncovalent) interactions in the ciprofloxacin maleate form III calculated by the solid-state DFT method coupled with the Bader analysis of the periodic wave-function* Interaction D(D A)/ Å ρ b / 2 ρ b / G b / (D(H A)/ Å) a.u. a.u. a.u. E int / kj mol -1 Hydrogen bonds N3-H32 O22 a 2.791 (1.850) 0.047 0.123 0.033 37.2 N3-H31 O22 b 2.838 (2.022) 0.029 0.090 0.023 25.6 N3-H31 O23 c 3.116 (2.589) 0.009 0.035 0.008 8.6 C-H O(F, N) contacts C15-H151 O23 d 3.254 (2.411) 0.013 0.040 0.010 11.0 C17-H172 O23 c 3.201 (2.558) 0.012 0.040 0.009 10.3 C16-H162 O24 c 3.435 (2.532) 0.012 0.036 0.009 9.9 C9-H9 F1 e 3.180 (2.445) 0.009 0.037 0.008 9.2 C22-H22 O3 f 3.432 (2.536) 0.010 0.034 0.008 8.8 C5-H5 O1 g 3.392 (2.591) 0.010 0.032 0.007 8.3 C14-H141 O3 h 3.286 (2.600) 0.009 0.033 0.007 8.2 C6-H61 O2 i 3.086 (2.797) 0.009 0.035 0.007 8.2 C6-H62 F1 c 3.708 (2.753) 0.006 0.028 0.006 6.5 C6-H62 N2 c 3.402 (2.818) 0.008 0.025 0.005 6.1 C7-H71 O23 j 3.690 (2.809) 0.007 0.024 0.005 6.0 C14-H141 O22 b 3.454 (2.788) 0.007 0.025 0.005 6.0 C15-H152 O21 a 3.403 (2.920) 0.006 0.025 0.005 5.6 C16-H161 O3 g 3.711 (2.807) 0.007 0.023 0.005 5.6 C3-H3 O2 i 3.678 (2.760) 0.006 0.021 0.004 4.9 C7-H71 O21 c 3.365 (2.805) 0.005 0.020 0.004 4.6 C14-H142 O2 h 3.646 (2.988) 0.004 0.017 0.003 3.9 Other interactions C17-H172 C21 j 3.428 (2.730) 0.007 0.030 0.006 6.5 C16-H161 C22 j 3.428 (2.707) 0.009 0.028 0.006 6.4 F1 F1 e 3.009 0.004 0.027 0.005 5.9 O24 O24 k 3.252 0.006 0.024 0.005 5.8 C23 O21 d 3.222 0.007 0.022 0.005 5.4 C15-H152 C7 l 3.840 (2.928) 0.007 0.024 0.005 5.3 C22 O24 d 3.237 0.006 0.022 0.005 5.2 C3 C9 g 3.326 0.006 0.018 0.004 4.1 C1 C13 g 3.348 0.006 0.018 0.004 4.0 C11 O3 h 3.455 0.004 0.015 0.003 3.5 C17-H171 C6 l 3.716 (2.910) 0.004 0.016 0.003 3.4 H141 H22 b 2.703 0.004 0.015 0.003 3.1 C4 C10 g 3.685 0.004 0.014 0.003 3.0 C2 C9 g 3.679 0.004 0.012 0.003 2.9 E latt, kj mol -1 258.6 *The X A and H A distances, D(X A) and D(H A), where X, A = O, N and C; the X-H A angle, (D- H A); the electron density ρ b, the Laplacian of the electron density 2 ρ b and local electronic kinetic energy density G b at the bond critical point; the energy of the intermolecular noncovalent interaction E int. Symmetry codes: a (x, y, z); b (2-x, 1-y, 1-z); c (x, 1+y, z); d (2-x, -y, 1-z); e (2-x, 1-y, -z); f (x, -1+y, 1+z); g (1-x, 2-y, -z); h (2-x, 2-y, -z); i (1-x, 3-y, -z); j (1-x, 1-y, 1-z); k (1-x, -y, 1-z); l (x, -1+y, z)

Table S4. The weight, g (mg), solution concentrations, m (mol kg -1 ), and solution 0 enthalpies, H sol (kj mol -1 ), of ciprofloxacin maleate polymorphs in ph 1.2 media at 25.0 ºC. g m 10 Form I Form II Form III -3 298 H sol g m 10-3 298 H sol g m 10-3 H 298 sol 7.97 0.37 49.5 8.09 0.36 47.8 7.95 0.36 40.9 8.08 0.38 49.4 7.93 0.36 46.7 8.09 0.36 40.9 7.97 0.37 49.0 7.95 0.38 47.3 7.95 0.37 41.3 8.08 0.38 49.6 8.02 0.38 46.8 8.02 0.37 41.6 7.99 0.38 50.1 7.97 0.37 46.4 7.97 0.36 40.8 8.04 0.38 49.2 7.99 0.37 47.1 7.98 0.36 41.4 7.97 0.37 47.3 7.95 0.35 40.6 8.17 0.36 40.6 0 H sol =49.5±0.2 0 H sol =47.0±0.2 =41.0±0.3 0 H sol