IMPLEMENTATION OF FUNCTIONAL-TYPE A POSTERIORI ERROR ESTIMATES FOR LINEAR PROBLEMS IN SOLID MECHANICS. Maksim Frolov

Similar documents
A posteriori error estimates for a Maxwell type problem

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

A-priori and a-posteriori error estimates for a family of Reissner-Mindlin plate elements

Locking phenomena in Computational Mechanics: nearly incompressible materials and plate problems

Two Nonconforming Quadrilateral Elements for the Reissner-Mindlin Plate

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ANALYSIS OF A MIXED-SHEAR-PROJECTED QUADRILATERAL ELEMENT METHOD FOR REISSNER-MINDLIN PLATES

ANALYSIS OF MIXED FINITE ELEMENTS FOR LAMINATED COMPOSITE PLATES

ABHELSINKI UNIVERSITY OF TECHNOLOGY

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element

ABHELSINKI UNIVERSITY OF TECHNOLOGY

A posteriori error estimates applied to flow in a channel with corners

Some Remarks on the Reissner Mindlin Plate Model

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

A new approach for Kirchhoff-Love plates and shells

INNOVATIVE FINITE ELEMENT METHODS FOR PLATES* DOUGLAS N. ARNOLD

A NEW CLASS OF MIXED FINITE ELEMENT METHODS FOR REISSNER MINDLIN PLATES

ANALYSIS OF SOME LOW ORDER QUADRILATERAL REISSNER-MINDLIN PLATE ELEMENTS

A Mixed Nonconforming Finite Element for Linear Elasticity

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates)

arxiv: v1 [math.na] 27 Jan 2016

Numerische Mathematik

arxiv: v2 [math.na] 23 Apr 2016

Effective Minimization of Functional Majorant in A Posteriori Error Analysis

ANALYSIS OF A LINEAR LINEAR FINITE ELEMENT FOR THE REISSNER MINDLIN PLATE MODEL

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

arxiv: v1 [math.na] 19 Dec 2017

Adaptive methods for control problems with finite-dimensional control space

A Locking-Free MHM Method for Elasticity

Lourenço Beirão da Veiga, Jarkko Niiranen, Rolf Stenberg

Adaptive Time Space Discretization for Combustion Problems

A posteriori error estimates for some problems in linear elasticity

Yongdeok Kim and Seki Kim

Symmetry-Free, p-robust Equilibrated Error Indication for the hp-version of the FEM in Nearly Incompressible Linear Elasticity

Advances in Engineering Software

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER QUADRILATERAL MESHES. Zhong-Ci Shi and Xuejun Xu.

Recovery-Based A Posteriori Error Estimation

ENHANCED STRAIN METHODS FOR ELASTICITY PROBLEMS

Find (u,p;λ), with u 0 and λ R, such that u + p = λu in Ω, (2.1) div u = 0 in Ω, u = 0 on Γ.

Linear Cosserat elasticity, conformal curvature and bounded stiffness

A NEW STABILIZED ONE POINT INTEGRATED SHEAR ELASTIC PLATE ELEMENT

GEOMETRIC NONLINEAR ANALYSIS

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD

Some New Elements for the Reissner Mindlin Plate Model

Intrinsic finite element modeling of a linear membrane shell problem

A Posteriori Estimates for Cost Functionals of Optimal Control Problems

DUALITY BASED A POSTERIORI ERROR ESTIMATES FOR HIGHER ORDER VARIATIONAL INEQUALITIES WITH POWER GROWTH FUNCTIONALS

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates)

A posteriori error estimates for non conforming approximation of eigenvalue problems

Questions (And some Answers) (And lots of Opinions) On Shell Theory

A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES

A primer on Numerical methods for elasticity

Ultraconvergence of ZZ Patch Recovery at Mesh Symmetry Points

Finite Elements for Elastic Shell Models in

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

On the Justification of Plate Models

Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations

On the characterization of drilling rotation in the 6 parameter resultant shell theory

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model

Hierarchical Modeling of Heterogeneous Plates 1

2008 by authors and 2008 Springer Science+Business Media

Research Article Minimization of Functional Majorant in a Posteriori Error Analysis Based on H div Multigrid-Preconditioned CG Method

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

On angle conditions in the finite element method. Institute of Mathematics, Academy of Sciences Prague, Czech Republic

Numerische Mathematik

A UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL

A posteriori error estimates for Maxwell Equations

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

Numerical Solutions to Partial Differential Equations

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Niiranen, Jarkko; Khakalo, Sergei; Balobanov, Viacheslav Strain gradient elasticity theories in lattice structure modelling

On the adaptive finite element analysis of the Kohn-Sham equations

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations

Reliable numerical methods for Maxwell sequations. JYU Postgraduate Seminar

arxiv: v1 [math.na] 15 Nov 2017

Computers and Structures

Some remarks on the stability coefficients and bubble stabilization of FEM on anisotropic meshes

Bending Analysis of Symmetrically Laminated Plates

ROBUST BDDC PRECONDITIONERS FOR REISSNER-MINDLIN PLATE BENDING PROBLEMS AND MITC ELEMENTS

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Weak solutions to anti-plane boundary value problems in a linear theory of elasticity with microstructure

Optimal thickness of a cylindrical shell under dynamical loading

Complementarity based a posteriori error estimates and their properties

Local discontinuous Galerkin methods for elliptic problems

The Virtual Element Method: an introduction with focus on fluid flows

Numerical Solutions to Partial Differential Equations

AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

ETNA Kent State University

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

b i (x) u + c(x)u = f in Ω,

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS

Lecture Note III: Least-Squares Method

arxiv: v1 [math.na] 2 Sep 2015

Transcription:

IMPLEMENTATION OF FUNCTIONAL-TYPE A POSTERIORI ERROR ESTIMATES FOR LINEAR PROBLEMS IN SOLID MECHANICS Maksim Frolov Peter the Great St.Petersburg Polytechnic University AANMPDE11, FINLAND 06 10 August 2018

joint work with Prof. Sergey I. Repin 1,2,3 Dr. Maria Churilova 3 Olga Chistiakova 3 1 PDMI RAS (St. Petersburg) 2 University of Jyväskylä 3 Peter the Great St.Petersburg Polytechnic University Problems in 2D Classical Elasticity Cosserat Elasticity (microstructure) Reissner-Mindlin Plates

A priori and a posteriori estimates 3 Frolov M. Functional-type a posteriori error estimates in solid mechanics u exact solution. u h approximate solution (h a mesh parameter). u u h C(u,...)h α, α > 0 a priori error estimate. u u h M(u h,...) a posteriori error estimate. Efficiency index I eff = M/ u u h.

A posteriori error estimates 4 Frolov M. Functional-type a posteriori error estimates in solid mechanics 1. Error estimates in global norms Indicators Guaranteed and reliable estimates 2. Adaptive algorithms Construction of local indicators Convergence of adaptive algorithms

Key features of classical approaches to error control in FEM 5 Frolov M. Functional-type a posteriori error estimates in solid mechanics Element u h the exact solution of a discrete problem (Galerkin approximation). Simplicity of approaches and low computational costs are preferable by engineers. In most cases, indicators are considered rather than majorants (reliable functionals). It is better to have an estimate that is efficiently applicable, but reliable and robust to deviations.

Functional approach: General references 6 Frolov M. Functional-type a posteriori error estimates in solid mechanics Repin S.,Xanthis L.S. Comp.Meth.Appl.Mech.Engrg. 1996 Repin S. Math. Comput. 2000 Neittaanmäki P., Repin S. 2004 Repin S. 2008 Mali O., Neittaanmäki P., Repin S. 2014

Error estimation 7 Frolov M. Functional-type a posteriori error estimates in solid mechanics Constitutive Relation, Residual-Based, Postprocessing (SPR,...),... Boisse P., Perrin S., Coffignal G., Hadjeb K. 1999 Liberman E. 2001 Carstensen C. 2002, Carstensen C., Weinberg K. 2001, 2003, Carstensen C., Schöberl J. 2006, Carstensen C. et al. 2011, Carstensen C., Hu J. 2008, Hu J., Huang Y. 2010 Boroomand B., Ghaffarian M., Zienkiewicz O.C. 2004, Castellazzi G., de Miranda S., Ubertini F. 2011 Lovadina C., Stenberg R. 2005, Beirão da Veiga L., Chinosi C., Lovadina C., Stenberg R. 2008, Beirão da Veiga L., Niiranen J., Stenberg R. 2013...

Functional approach: KL and RM plates 8 Frolov M. Functional-type a posteriori error estimates in solid mechanics Neittaanmäki P., Repin S. East-West J. Numer. Math. 2001 Frolov M., Neittaanmäki P., Repin S. ECCOMAS 2004 Frolov M. Russ. J. Numer. Anal. Math. Model. 2004 Repin S., Frolov M. Zap. Nauchn. Sem. POMI 2004 (J. of Math. Sci., 2006) Frolov M., Neittaanmäki P., Repin S. Probl. Mat. Anal. 2005 (J. of Math. Sci., 2006) Frolov M. Mesh Methods for Boundary-Value Problems and Applications, Kazan, 2014 Frolov M., Chistiakova O. IOP Conf. Series: Materials Science and Engineering 208 (2017) 012043

Reissner-Mindlin plates 9 Frolov M. Functional-type a posteriori error estimates in solid mechanics This model describes a bending of linearly elastic plates of small to moderate thickness in terms of the pair of variables in Ω R 2 u = u(x) scalar-valued function (displacement), θ = θ(x) vector-valued function (rotations) Div (Cε(θ)) = γ in Ω, divγ = g in Ω, γ = λt 2 ( u θ) in Ω, t thickness of a plate; λ = Ek 2(1+ν), ε(θ) = 1 2 ( θ + ( θ)t ); gt 3 represents the transverse loading; C is the tensor of bending moduli; E and ν material constants; k a correction factor (5/6). (1)

Boundary conditions 10 Frolov M. Functional-type a posteriori error estimates in solid mechanics Γ D and Γ S are two non-intersecting parts of the boundary Γ; Γ D clamped part, u = 0, θ = 0 on Γ D ; Γ S free part, u/ n = θ n on Γ S, Cε(θ)n = 0 on Γ S ; Γ S supported part instead of u/ n = θ n on Γ S, one has u = 0 on Γ S. The case Γ = Γ D was considered in 2004-2005.

Weak formulation 11 Frolov M. Functional-type a posteriori error estimates in solid mechanics Find a triple (u, θ, γ) U Θ Q Cε(θ) : ε(ϕ) dω γ ϕ dω = 0, ϕ Θ, Ω Ω γ w dω = gw dω, w U, Ω ( Ω λ 1 t 2 γ ( u θ) ) τ dω = 0, τ Q, Ω U = { w W 1 2 (Ω) w = 0 on Γ D}, Θ = { ϕ W 1 2 (Ω, R2 ) ϕ = 0 on Γ D }, Q = L 2 (Ω, R 2 ). (2)

Assumptions 12 Frolov M. Functional-type a posteriori error estimates in solid mechanics Domain Ω R 2 bounded connected domain with Lipschitz-continuous boundary, g L 2 (Ω), C symmetric and there exist ξ 1 and ξ 2 ξ 1 κ 2 Cκ : κ ξ 2 κ 2 κ M 2 2 sym, κ 2 = κ : κ, where M 2 2 sym the space of symmetric tensors of 2nd rank. For an isotropic material Cκ = E 12(1 ν 2 ( (1 ν)κ + ν trκ I ), ) where I identity tensor of 2nd rank.

Elements of an error estimate 13 Frolov M. Functional-type a posteriori error estimates in solid mechanics (ũ, θ) an arbitrary pair of conforming approximations, eũ = u ũ, e θ = θ θ, e γ = γ γ errors. We introduce free elements 1 vector ỹ 2 arbitrary tensor κ divided into two parts κ = [ κ 1, κ 2 ], where ỹ, κ 1, κ 2 H(Ω, div) := { y L 2 (Ω, R 2 ) divy L 2 (Ω) }.

Auxiliary notations and inequalities 14 Frolov M. Functional-type a posteriori error estimates in solid mechanics e γ 2 Ω := Ω e γ 2 dx, e θ 2 := Ω Cε(e θ ) : ε(e θ ) dx ϕ 2 Ω c2 I ϕ 2 ϕ 2 Ω c2 II ϕ 2 1 Ω w 2 Ω + 1 Γ S w 2 Γ S c 2 III w 2 Ω 1 Ω ϕ 2 Ω + 1 Γ S ϕ 2 Γ S c 2 IV ϕ 2

Functional-type error majorant 15 Frolov M. Functional-type a posteriori error estimates in solid mechanics e θ 2 + λ 1 t 2 e γ 2 Ω â2 + λ 1 t 2ˆb 2 (3) â = C 1 sym( κ) ε( θ) + c I skew( κ) Ω + + c II c III Ω g + divỹ 2 Ω + Γ S ỹ n 2 Γ S + + c IV Ω ỹ + [div κ 1, div κ 2 ] 2 Ω + Γ S [ κ 1 n, κ 2 n] 2 Γ S, ˆb = ỹ γ Ω + c III Ω g + divỹ 2 Ω + Γ S ỹ n 2 Γ S. The estimate is exact for κ = Cε(θ) and ỹ = γ

Commercial software 16 Frolov M. Functional-type a posteriori error estimates in solid mechanics Hidden implementations. Algorithms behave different from version to version. ANSYS Mechanical: variety of elements (SHELL, SOLID,...). Incorrect settings? Locking? Bugs? Bathe K.-J., Dvorkin E.N. Int. J. Numer. Methods Eng. 1986, Simo J.C., Armero F. Int. J. Numer. Methods Eng. 1992. Can the functional approach provide reliable and efficient error control even on coarse meshes? Is this approach practically applicable for non-galerkin approximations as well as for Galerkin ones?

Example I 17 Frolov M. Functional-type a posteriori error estimates in solid mechanics radius 0.25 m thickness 0.0025 m E = 2e11 N/m 2 ν = 0.3 ANSYS Verification Manual: VM138, S.P. Timoshenko SHELL181-ELEMENT, Loading = 6585.175 N/m 2

Introduction Problem statement New error estimate for RM Numerics Conclusions Adaptation Example I. ANSYS solution 18 Frolov M. Functional-type a posteriori error estimates in solid mechanics

Example I. Error estimation: Results 19 Frolov M. Functional-type a posteriori error estimates in solid mechanics *Locking for Galerkin approximation: maximum of u is 0.027e-2 instead of 0.140e-2 DOFs 123 435 1635 6339* Error 0.689e5 0.359e5 0.181e5 0.842e4 Estimate 0.101e6 0.527e5 0.266e5 0.133e5 ratio 1.5 1.5 1.5 1.5

Conclusions 20 Frolov M. Functional-type a posteriori error estimates in solid mechanics The functional approach is suitable even for coarse meshes It is robust due to unknown information about numerical procedures The approach forms a good independent tool for error control for commercial software

Remarks and further tasks 21 Frolov M. Functional-type a posteriori error estimates in solid mechanics Task 1: Construction of adaptive algorithms Task 2: Complete theoretical justification (efficiency estimates) Task 3: Application of new approximations Previous work was partially supported by the Russian Foundation for Basic Research (14-01-31273-mol a, 14-01-00162-a) Current research is supported the Grant of the President of the Russian Federation MD-1071.2017.1

Solve-Estimate-Mark-Refine 22 Frolov M. Functional-type a posteriori error estimates in solid mechanics 1 S: compute ũ on a current finite element mesh; 2 E: compute estimate from individual loads to elements; 3 M: mark elements of a mesh with large local errors by some marking strategy; 4 R: divide marked elements and locally refine a mesh. Solver: Bathe K.-J., Dvorkin E.N. Int. J. Numer. Methods Eng. 1985 Estimator: Functional a posteriori error estimate, 2014 Marker: Local error indicator larger than prescribed threshold Refiner: Karavaev A.S., Kopysov S.P. Bulletin of Udmurt University 2013

Example II 23 Frolov M. Functional-type a posteriori error estimates in solid mechanics Carstensen C. et al. Comput. Methods Appl. Mech. Engrg. 2011 Razzaque plate side 1.0 m thickness 0.1 m E = 1092 N/m 2 ν = 0.3 Uniform loading Horizontal edges are hard clamped

Example II. Solver and a posteriori estimate 24 Frolov M. Functional-type a posteriori error estimates in solid mechanics Local error indicator: Solver and estimate comparison: Mesh 4x4 8x8 16x16 32x32 C. Ours C. Ours C. Ours C. Ours Disp. 0.67 0.64 0.76 0.75 0.78 0.78 0.79 0.79 Err. 16.1 18.3 4.7 4.9 1.7 1.4 0.9 0.9 I eff 0.35* 1.8 0.87* 1.8 0.97* 1.8 0.99* 1.8

Example II. Refinement: Uniform vs Adaptive 25 Frolov M. Functional-type a posteriori error estimates in solid mechanics Number of elements: 5174 vs 3076 Relative error: 0.62% vs 0.48%

Back to Example I 26 Frolov M. Functional-type a posteriori error estimates in solid mechanics Local error indicator and mesh adaptation:

Classical and Cosserat elasticity: a posteriori error control 27 Frolov M. Functional-type a posteriori error estimates in solid mechanics Repin S. de Gruyter 2008 (non-symmetric), Frolov M. Comp. Math. Math. Phys. 2013,... Repin S., Frolov M. Probl. Math. Anal. 2011, Frolov M. J. Appl. Math. Mech. 2014, RMMM, ENUMATH-2013, ACOMEN-2014, Churilova M., Frolov M. Mater. Phys. Mech. 2017,... Conclusions: explicit symmetry condition for tensor variable + standard FEM approximations = unsatisfactory results implicit symmetry condition + FE for mixed methods = reliable estimates with efficient implementation

Raviart Thomas approximation RT 0 ( ˆK) = P 1,0 ( ˆK) P 0,1 ( ˆK), where P i,j ( ˆK) space of polynomials over ˆK = ( 1, 1) ( 1, 1) power of i or less on ˆx 1 and j on ˆx 2. 28 Frolov M. Functional-type a posteriori error estimates in solid mechanics P.A. Raviart, J.M. Thomas. Lecture Notes in Mathematics. Berlin: Springer, 1977 Mapping of the reference square ˆK to arbitrary quadrilateral (DOFs normal components of a vector-field in the midpoints)

Arnold-Boffi-Falk approximation 29 Frolov M. Functional-type a posteriori error estimates in solid mechanics D.N. Arnold, D.Boffi, R.S. Falk. SIAM J. Numer. Anal., 2005 ABF 0 ( ˆK) = P 2,0 ( ˆK) P 0,2 ( ˆK) a wider space that includes the original DOFs on edges and two additional internal DOFs on every element (1) RT 0 ( ˆK) (2) ABF 0 ( ˆK) DOFs for elements under consideration

30 Frolov M. Functional-type a posteriori error estimates in solid mechanics THANK YOU FOR ATTENTION

31 Frolov M. Functional-type a posteriori error estimates in solid mechanics DEAR SERGEY IGOREVICH HAPPY BIRTHDAY WITH WARMEST REGARDS FROM ALMA MATER