MAD MAX. Javier Redondo Universidad de Zaragoza (Spain) Max Planck Institute für Physik

Similar documents
Axions as Dark matter candidates. Javier Redondo Ramón y Cajal fellow Universidad de Zaragoza (Spain)

Old problems and New directions on axion DM

New experiment for axion dark matter

Closing in on axion dark matter

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY)

Axion Detection With NMR

The QCD Axion. Giovanni Villadoro

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

The QCD axion, precisely.

The IBS/CAPP research plan

Status and prospects on the search for axions. Igor G. Irastorza Universidad de Zaragoza VIII CPAN DAYS, Zaragoza, 29 November 2016

MADMAX: A new road to axion dark matter detection OUTLINE:

The Axion Dark Matter experiment (ADMX) Phase 0

Solar Axions Globular Cluster Supernova 1987A Dark Matter Long-Range Force. Axion Landscape. Georg G. Raffelt, Max-Planck-Institut für Physik, München

(Mainly centered on theory developments)

Axion and ALP Dark Matter Search with the International Axion Observatory (IAXO)

Igor G. Irastorza Lab. Física Nuclear y Astropartículas, Departamento de Física Teórica Universidad de Zaragoza Martes Cuánticos, 2-Diciembre-2014

ADMX: Searching for Axions and Other Light Hidden Particles

Astrophysical and Cosmological Axion Limits

Axion and Dark Matter Studies in IBS

Cleaning up the Dishes Axions and the strong CP Problem

The Dark Matter Radio. Kent Irwin for the DM Radio Collaboration. DM Radio Pathfinder

Axions and Axion-Like Particles in the Dark Universe. Andreas Ringwald (DESY)

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun

International AXion Observatory IAXO

Axions and X-ray astronomy

(International AXion Observatory)

Small Scale experiments for fundamental physics

The IAXO (International Axion Observatory) Helioscope. Esther Ferrer Ribas, IRFU/SEDI

Testing axion physics in a Josephson junction environment

AXIONS AND AXION-LIKE PARTICLES

Search for Weakly Interacting Undiscovered Particles using Sub-THz Gyrotron

Axino Phenomenology in the Kim-Nilles mechanism

QCD axions with high scale inflation

Fundamental Physics with Atomic Interferometry

STAX. Paolo SPAGNOLO. INFN - Pisa

Axion dark matter search using the storage ring EDM method

Non Thermal Relics and Alternative Theories of Gravity

Searching for the Axion

The International Axion Observatory (IAXO) 8 th Patras Workshop on Axions, WIMPs and WISPs 22 July 2012, Chicago, IL, USA

Possible resonance effect of dark matter axions in SNS Josephson junctions

Summary. Leslie J Rosenberg" Vistas in Axion Physics Seattle, Washington April 26, 2012"

Manifestations of Low-Mass Dark Bosons

AXION theory motivation

New detection techniques for axion like particles

Axion Like Particle Dark Matter Search using Microwave Cavities

Reminder : scenarios of light new physics

Prospects for Cosmic Axion Detection with ABRACADABRA

Experimental WISP searches

Axion Dark Matter : Motivation and Search Techniques

Experimental Searches for the Axion and Axion-like Particles

I May A Second-Generation Cosmic Axion Experiment

SEARCHING FOR ULTRA-LIGHT HIDDEN PHOTONS

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Naturalness and mixed axion-higgsino dark matter

Georg G. Raffelt, Max-Planck-Institut für Physik, München. Dark Matter. Axion Dark Matter. Physics Colloquium, University of Sydney, 3 March 2014

AXIONS. 1. Introduction

3. Synchrotrons. Synchrotron Basics

LOW ENERGY SOLAR AXIONS

Latest results of CAST and future prospects. Theodoros Vafeiadis On behalf of the CAST collaboration

arxiv:hep-ph/ v1 18 Jan 2001

A short review of axion and axino parameters

A. Geraci, University of Nevada, Reno

PICO - Probe of Inflation and Cosmic Origins

Lattice QCD Input to Axion Cosmology

Inflation from a SUSY Axion Model

Theory Group. Masahiro Kawasaki

Clock based on nuclear spin precession spin-clock

A Radio For Hidden Photon Dark Matter

Photon Regeneration at Optical Frequencies

Understanding the scaling behaviour of axion cosmic strings

Searching for dark photon. Haipeng An Caltech Seminar at USTC

Helmholtz Institute UC Berkeley Physics. Axion2017 Osaka, Japan

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:

Very Dark Photons! (in Cosmology) Anthony Fradette. work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 2014 (arxiv:1407.

Vacuum Energy and. Cosmological constant puzzle:

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

Radiation-matter interaction.

Lecture 12 Cosmology III. Inflation The beginning?

Preliminary Results from the Yale Microwave Cavity Experiment

ATOMIC AND LASER SPECTROSCOPY

Master Project. Development of a time projection chamber based on Micromegas technology for CAST (CERN Axion Solar Telescope)

Journey at the axion mev mass frontier

Yang-Hwan Ahn Based on arxiv:

Laser Searches for New Particles at Fermilab. William Wester Fermilab

University of Trieste INFN section of Trieste. ALP signatures in low background photon measurements

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

Neutrinos and the Stars II

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni

(1) 2 amp. (2) 1 amp. (3) 0.5 amp. (4) 1.25 amp.

The quest for axions and other new light particles

Any Light Particle Search II

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan

SENSITIVITY OF THE CHERENKOV TELESCOPE ARRAY TO THE DETECTION OF AXION-LIKE PARTICLES

Tokyo axion helioscope experiment

Experimental searches for axions

P142 University of Rochester NAME S. Manly Fall 2010

Auf der Suche nach ultraleichten Teilchen jenseits des Standardmodells

Transcription:

MAD MAX Javier Redondo Universidad de Zaragoza (Spain) Max Planck Institute für Physik

Axions are necessarily dark matter - is it a dynamical field? (t, x) Energy generated by QCD! time 0 (t) = 0 cos(m a t) ~ One parameter theory (t, x) =a(t, x)/f a axion mass m a =6meV 109 GeV f a n n Coherent oscillations = Dark Matter Axions Measured today < 10 10 (strong CP problem)

Relic density as function of mass - Random IC (after a phase transition) - One Universal IC (inflation smoothens the axion field)

Theta evolution, Averaged SCENARIO I

DM dominated by string radiation

Axion dark matter - Axion DM scenarios Excluded (too much DM) ok sub Initial conditions set by : Phase transition (N=1) strings+unstable DW s

Axion dark matter - Axion DM scenarios tuned (anthropic?) ok tuned Excluded (too much DM) ok sub Excluded Initial conditions set by : Inflation smooth adm h 2 ' 2 I 80 µev m a 1.19 Phase transition (N=1) strings+unstable DW s

Detecting Axions adm =0.3 GeV cm 3 a = 1 2 (ȧ)2 + 1 2 m2 aa 2 = 1 2 m2 af 2 a 2 0 V 0 =3.6 10 19

Cavities Mirrors LC-circuit Spin precession Atomic transitions Optical

Excluded Axion experiments (target areas) SCENARIO I not DM ARIADNE 0 QCD > 10 14? QUAX? IAXO? test bench LC CAPP osc. EDM ADMX ADMX-HF Axion Dark Matter experiment (Seattle, Yale...) only one running

Axion experiments (target areas) SCENARIO I not DM ARIADNE QCD 0 > 10 14? IAXO? QUAX? MADMAX baby born Munich Axion Dark MAtter experience Excluded LC CAPP osc. EDM ADMX ADMX-HF only one running

Axion DM in a B-field L I = C a 2 a f a B E - In a static magnetic field, the oscillating axion field generates EM-fields L I = C a 2 (t) B ext E source B-field - Electric fields E a = C a B ext 2 0 cos(m a t) (amp independent of mass!) - Oscillating at a frequency! ' m a

Resonant cavity experiments - Haloscope (Sikivie 83) Amplify resonantly the EM field in a resonant cavity Output EM power P Q E a 2 (Vm a )Gapple on resonance res = m a 2 30 cm 0.6 cm - Noise P noise = T sys a / m 2 a 10 3 10-1 1 10 10 2 10 2 [GHz] RBF IAXO 10 3 10 2 - Signal (V / m 3 a ) P out / Vm a 1 m 2 a C a c 10 1 KSVZ DFSZ ADMX ADMX ADMX2 UF ADMX-HF CARRACK? 10 1 10-1 10-1 10-7 10-6 10-5 10-4 10-3 m a [ev] m a [µev]

- Do not give up volume -> Area pre MADMAX (dish antenna) D 1 m a spherical reflecting dish P E a 2 A

Radiation from a dielectric interface... E(t) = c 0B 2 cos(m a t) E(t) = c 0B 2 cos(m a t) Boundary conditions! Emitted EM-wave Emitted EM-wave E 1 = E 2

Radiation from a magnetised mirror : Power MIRROR Emitted EM-wave Power Area 2.2 10 27 Watt m 2 Ca 2 B 5T 2

Many dielectrics : MADMAX at MPP Munich Emitted EM-waves from each interface... + internal reflections... - Emission has large spatial coherence; adjusting plate separation -> coherence P boost factor Area 2.2 10 27 W B 2 m 2 C a 2 (!) 10T

One dielectric 0 2 = d - Frequency response Axion emission (boost factor) (n=2,3,4) 1.0 0.8 0.6 0.4 0.2 1.0 0.8 0.6 0.4 0.2 transmission coefficient 0 1 2 3 4 / 0 / 0 0 1 2 3 4

Close to nu0, many layers Emitted EM-waves from each interface... + internal reflections... boost factor (N=10,40,80; n=3,nu0=20 GHz) 140 120 100 80 60 40 N N 1 20 18 19 20 21 22 [GHz] Nice boost, excellent bandwidth!

Close to 2nu0, cavity effects When dielectrics are non-transparent, mild resonances appear that allow higher boosts mirror z zn n =1, n, n z=4.5, 4, 3.5, 3, 2.5 mm Maximum effect for z = 2,z d = 0 4 = 4n 6 5 zn=0.65 mm n=3 4 [...] 3 2 1 0 20 40 60 80 100 [GHz]

tuning JCAP 1701 (2017) Distances between layers allow tuning (transfer matrix formalism) Broadband vs narrowband central frequency

Potential reach A = 1 m^2 B-field = 10 T 80disk n=5

whys - why can it work? Large volume + (relatively) simple tuning long measurements broadband short measurements narrowband - What can go wrong? - 10T dipole-like Magnet, 1 m^2 aperture! - 1 m^2 dielectrics (tiling smaller pieces) - Tolerances (several micron distances) - difraction

Conclusions - Strong CP problem and dark matter motivate Axions - Most predictive model (N=1) mass~ 0.1 mev (fa ~ 10^11 GeV) - Many experimental efforts, solid player missing in that range - MW emission from interfaces is weak, make layered haloscope - Munich Axion Dark MAtter experiment