Structural Insights into Bound Water in. Crystalline Amino Acids: Experimental and Theoretical 17 O NMR

Similar documents
GIPAW: Applications to Organic Materials

Structural Insights into Bound Water in Crystalline Amino Acids: Experimental and Theoretical [superscript 17] O NMR

NMR-CASTEP. Jonathan Yates. Cavendish Laboratory, Cambridge University. J-coupling cons. NMR-CASTEP York 2007 Jonathan Yates.

GIPAW: A solid-state theory for NMR

Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission

Distinguishing weak hydrogen bonding with NMR

Solid-State 17 O NMR of Amino Acids

Proteins: Characteristics and Properties of Amino Acids

Prediction of NMR parameters in the solid-state

Exam I Answer Key: Summer 2006, Semester C

QUESTION 1 Which two functional groups react to form the peptide link found in proteins?

6 NMR Interactions: Zeeman and CSA

Amino Acids and Peptides

Coupling of Functional Hydrogen Bonds in Pyridoxal-5 -phosphate- Enzyme Model Systems Observed by Solid State NMR

Weak Halogen Bonding in Solid Haloanilinium Halides Probed Directly via Chlorine-35, Bromine-81, and Iodine-127 NMR Spectroscopy

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Supporting Information

Properties of amino acids in proteins

Rotamers in the CHARMM19 Force Field

Supporting information

Exam III. Please read through each question carefully, and make sure you provide all of the requested information.

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

Studies Leading to the Development of a Highly Selective. Colorimetric and Fluorescent Chemosensor for Lysine

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination

Direct dipolar interaction - utilization

Chemistry Review: Atoms

Chlorine-35/37 NMR Spectroscopy of Solid Amino Acid Hydrochlorides: Refinement of Hydrogen-Bonded Proton Positions Using Experiment and Theory

BMB/Bi/Ch 173 Winter 2018

7. Nuclear Magnetic Resonance

A Plausible Model Correlates Prebiotic Peptide Synthesis with. Primordial Genetic Code

National Ultrahigh-Field NMR Facility for Solids

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

Probing Hydrogen Bonding by Solid-State NMR. Steven P. Brown

Electronic Supplementary Information for Sulfur, Oxygen, and Nitrogen Mustards: Stability and Reactivity

CHMI 2227 EL. Biochemistry I. Test January Prof : Eric R. Gauthier, Ph.D.

SDBS Integrated Spectral Database for Organic Compounds

Lecture 2 nmr Spectroscopy

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle.

Supporting Information

Proton Acidity. (b) For the following reaction, draw the arrowhead properly to indicate the position of the equilibrium: HA + K + B -

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain.

Supporting information

Lecture 15: Realities of Genome Assembly Protein Sequencing

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

Role of Salts in Phase Transformation of Clathrate Hydrates under Brine Environments

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

Protein Structure Bioinformatics Introduction

Multinuclear Solid-State Nuclear Magnetic Resonance and Density Functional Theory Characterization of Interaction Tensors in Taurine

,

EXAM 1 Fall 2009 BCHS3304, SECTION # 21734, GENERAL BIOCHEMISTRY I Dr. Glen B Legge

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

An introduction to Solid State NMR and its Interactions

Limites et Potentiel de la RMN pour la caractérisation structurale de l environnement des éléments «traces»

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Supporting Information (SI) Revealing the Conformational. Preferences of Proteinogenic Glutamic Acid. Derivatives in Solution by 1 H NMR

CHEMISTRY ATAR COURSE DATA BOOKLET

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

C NMR Spectroscopy

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013

ORGANIC - BROWN 8E CH NUCLEAR MAGNETIC RESONANCE.

Periodic Table. 8/3/2006 MEDC 501 Fall

Solutions In each case, the chirality center has the R configuration

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor

Unit title: Atomic and Nuclear Physics for Spectroscopic Applications

Christopher Pavlik Bioanalytical Chemistry March 2, 2011

Chapter 4: Amino Acids

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Dipole Recoupling at High Spinning Frequencies. and. High Magnetic Fields

Solving Complex Open-Framework Structures from X-ray Powder Diffraction by Direct-Space Methods using Composite Building Units

metal-organic compounds

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

Oxygen Binding in Hemocyanin

ZAHID IQBAL WARRAICH

A. Two of the common amino acids are analyzed. Amino acid X and amino acid Y both have an isoionic point in the range of

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field:

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

Experiment and Modelling in Structural NMR

1. (8 pts) Circle the formula (only one) that best fits each of the following descriptions:

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

Spin-spin coupling I Ravinder Reddy

Chapter 2: Acids and Bases

Technical Note. Introduction

Basic equations: effect of ph. Analyzing the ph dependence of enzymatic reactions may be useful: To understand the enzyme s function in the organism

Halogen halogen interactions in diiodo-xylenes

Solid-state NMR of spin > 1/2

Synthesis, characterization and crystal structure of a new supramolecular system containing triorganotin(iv) and 1,3,5- Benzenetricarboxylic acid

Experiment 2 - NMR Spectroscopy

Supporting Information

CHEM J-9 June 2014

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

William H. Brown & Christopher S. Foote

Spin Relaxation and NOEs BCMB/CHEM 8190

Transcription:

--- Supporting Information --- Structural Insights into Bound Water in Crystalline Amino Acids: Experimental and Theoretical 17 O NMR Vladimir K. Michaelis 1*, Eric G. Keeler 1, Ta-Chung Ong 1, Kimberley N. Craigen 2, Susanne Penzel 1, John E. C. Wren 2, Scott Kroeker 2* and Robert G. Griffin 1* 1-Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA 2-Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada -Current Address: Department of Chemistry, Laboratory of Inorganic Chemistry, ETH- Zürich, CH-8093 Zürich, Switzerland -Current Address: Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH-Zürich, CH-8093 Zürich, Switzerland S1

Figure S1: Asn neutron crystal structure using various treatments to test GIPAW convergence criteria. (1) neutron structure (med), (2) H-optimized structure at medium, (3) H-optimized structure at fine, (4) H-optimized structure at ultrafine and (5) all-atom optimization at fine. Red data points are experimental data. Figure S2: 17 O non-spinning NMR spectra of sodium L-aspartic acid monohydrate with 1 H decoupling at 11.7, 16.4, and 21.1 T. Simulation of the data: C Q = 6.9 MHz, η = 0.92, δ iso = -4 ppm, Ω = 50 ppm, κ = 0.9 S2

Figure S3: 17 O MAS NMR (21.1 T) of L-arginine HCl H 2 O at 21.1 T. Simulation parameters: C Q = 7.0 MHz, η = 0.88, δ iso = 26 ppm. Figure S4: 17 O non-spinning (left) and MAS (right) NMR of L-histidine HCl H 2 O at 9.4, 11.7, 16.4, and 21.1 T. Simulation of the non-spinning data: C Q = 7.1 MHz, η = 0.95, δ iso = 14 ppm, Ω = 45 ppm, κ = 0.5. Simulation of the MAS data: C Q = 7.1 MHz, η = 0.95, δ iso = 14 ppm. S3

Figure S5: 17 O non-spinning NMR spectrum of L-cysteine HCl H 2 O (a) Simulation, C Q = 7.0 MHz, η = 0.90, δ iso = 31 ppm, Ω = 40 ppm and κ = 0.6 and (b) experimental at 21.1 T. Figure S6: 17 O non-spinning (left) and MAS (right) NMR of L-glycylglutamine H 2 O at 9.4, 16.4, and 21.1 T. Simulation of the non-spinning data: C Q = 7.1 MHz, η = 0.95, δ iso = 8.5 ppm, Ω = 40 ppm, κ = -0.4. Simulation of the MAS data: C Q = 7.1 MHz, η = 0.95, δ iso = 8.5 ppm. S4

Figure S7: Extended cluster models used within the hybrid-dft study. Atom designations are as follows: H (white), C (grey), O (red), N (lavender), Cl (green) and S (yellow). S5

Figure S8: Hybrid-DFT crystal structure convergence for single molecular unit without all atom optimization: (1) 6-31, (2)-6-321+G(d), (3) 6-3211++G(d,p) and (4) aug-cc-pvtz. Figure S9: Hybrid-DFT crystal structure convergence for single molecular unit with all atom optimization: (1) 6-31, (2)-6-311+G(d), (3) 6-311++G(d,p) and (4) aug-cc-pvtz. Figure S10: Hybrid-DFT crystal structure convergence for extended structures: (1) 6-31, (2)-6-311+G(d), and (3) 6-311++G(d,p). S6

Figure S11: 17 O experimental and calculated (GIPAW) quadrupolar coupling constants for C=O (blue, triangle), COOH (green, circle) and H 2 O (red, diamond) for various amino acid crystalline structures. 1-4 - Figure S12: 17 O experimental and calculated (GIPAW) quadrupolar asymmetry parameters for C=O (blue, triangle), COOH (green, circle) and H 2 O (red, diamond) for various amino acid crystalline structures. 1-4 S7

Figure S13: 17 O experimental and calculated (GIPAW) isotropic chemical shifts for C=O (blue, triangle), COOH (green, circle) and H 2 O (red, diamond) for various amino acid crystalline structures. 1-4 S8

Figure S14: Relationship between 17 O NMR chemical shift (ppm) and (a) O-H bond distance from x-ray and neutron structures, (b) H-O-H bond angle from x-ray and neutron structures, and (c) H 2 O---NH 3 distance from x-ray and neutron structures. S9

Figure S15: The relationship between: (a) experimental 17 O quadrupolar coupling constant, (b) experimental 17 O quadrupolar asymmetry parameter, (c) GIPAW calculated 17 O quadrupolar coupling constant, (d) GIPAW calculated 17 O quadrupolar asymmetry parameter and the hydrogen bond distance between the amine functional group and water molecule (i.e., H 3 N---OH 2 ) from crystalline data. Figure S16: Simulated 17 O non-spinning NMR of Asn using parameters measured in this work: (a) at 21.1 T (900 MHz 1 H) with (above) and without (below) the CSA included and (b) at 30.5 T (1,300 MHz 1 H) with (above) and without (below) the CSA included. S10

Table S1: 17 O GIPAW calculated parameters for neutron and x-ray structures using H-optimized structures Sample Oxygen site C Q (MHz) η σ iso (ppm) Ω (ppm) κ σ 11 (ppm) σ 22 (ppm) σ 33 (ppm) Asn N H 2 O 8.267 0.8 277.04 59.544-0.333 310.12 270.424 250.576 OH 6.924 0.65 22.75 372.708-0.361 231.55-22.142-141.158 CO 7.537 0.39-20.89 453.228-0.399 235.897-81.235-217.332 CON 8.047 0.41-15.57 524.07-0.499 290.01-102.66-234.06 Asp N H 2 O 8.326 0.82 275.42 53.868-0.333 305.347 269.435 251.479 CO 7.835 0.31-56.13 487.363-0.429 222.363-125.753-265 CO 8.695 0.18-86.32 528.614-0.54 225.547-181.439-303.067 OH 6.426 0.81 36.58 329.505-0.27 216.147 6.952-113.358 OH -8.187 0.13 71.12 255.632 0.922 159.672 149.648-95.96 Arg X H 2 O 8.254 0.82 248.51 55.895-0.324 279.476 242.473 223.581 H 2 O 8.248 0.78 247.14 54.648-0.636 280.26 235.548 225.612 OH 7.44 0.44 5.43 396.109-0.343 226.103-39.808-170.005 OH 6.547 0.73-0.62 367.76-0.371 205.987-46.073-161.773 CO 7.331 0.4-34.39 401.141-0.468 197.483-96.996-203.658 CO 8.178 0.25-18.51 478.409-0.438 255.65-88.421-222.759 Cys X H 2 O 8.252 0.75 237.71 39.784-0.279 259.45 234.014 219.666 OH -7.559 0.26 74.48 258.482 0.785 169.882 142.158-88.6 CO 8.508 0.06-72.79 599.8-0.509 277.97-174.51-321.83 His N H 2 O 8.62 0.73 261.45 49.961 0.306 283.884 266.542 233.923 OH 6.475 0.85 10.81 365.878-0.117 200.877-3.445-165.002 CO 8.033 0.27-41.41 509.807-0.39 246.617-107.656-263.191 His X H 2 O 8.544 0.72 260.89 50.592 0.235 284.209 264.845 233.617 OH 6.468 0.86 11.76 366.088-0.085 199.98 1.408-166.108 CO 7.951 0.24-36.69 509.477-0.39 251.15-102.893-258.327 GlyGly N H 2 O 7.248 0.93 260.25 49.657-0.478 289.037 252.334 239.38 OH -7.582 0.25 97.63 241.001 0.947 180.078 173.736-60.923 CO 8.558 0.05-65.72 588.503-0.55 282.507-173.67-305.996 CCOC 7.954 0.42-8.04 594.111-0.509 339.393-108.796-254.718 GlyGly X H 2 O 7.367 0.87 245.03 53.68-0.604 277.27 234.23 233.59 OH -7.549 0.24 90.36 244.051 0.947 173.851 167.429-70.2 CO 8.553 0.02-66.62 582.602-0.571 280.167-177.592-302.435 CCOC 7.86 0.42-4.45 584.831-0.509 337.557-103.632-247.275 GlyGln X H 2 O 7.748 0.87 268.62 50.321-0.448 297.54 261.101 247.219 CO 8.422 0.23-53.1 454.291-0.343 199.987-104.983-254.304 OH 7.164 0.66 13.56 364.174-0.235 209.88-14.906-154.294 CON 8.183 0.32-2.33 611.044-0.458 349.857-95.659-261.187 CON 8.702 0.34-20.71 568.38-0.488 309.743-113.237-258.636 Ice N H 2 O -6.632 0.91 324.57 34.419-0.529 344.817 318.496 310.397 H 2 O -7.034 0.88 319.25 36.761-0.27 339.283 315.944 302.522 X x-ray determined crystal structure and N neutron determined crystal structure. S11

Table S2: Crystalline and GIPAW-optimized structural data for crystalline amino acid monohydrates Compound H-O * distance (Å) <HOH (angle) N---O distance (Å) H-O * distance (Å) <HOH (angle) N---O distance (Å) Arg 0.895 103.65 2.898 0.989 104.92 2.898 Asp 0.790 107.34 2.853 0.988 107.38 2.853 Asn 0.960 108.11 2.858 0.987 107.22 2.858 Cys 0.830 104.42 2.877 0.992 105.46 2.877 His 0.972 104.86 2.774 0.990 105.51 2.774 Gly-Gly 0.963 109.52 3.025 0.996 108.51 3.020 Gly-Gln 0.840 97.72 3.309 0.990 105.31 3.309 - Crystal structural parameters - GIPAW optimized structural parameters * - Average H-O bond distance for the water molecule Table S3: Summary of x-ray and neutron diffraction data for crystalline amino acid monohydrates. Sample Crystal System Space a b c Source Group (Å) (Å) (Å) Arg Monoclinic P2 1 11.049 8.487 11.226 x-ray 5 Asn Orthorhombic P2 1 2 1 2 1 5.593 5.580 9.827 9.743 11.808 11.706 neutron 6 x-ray 7 Asp Orthorhombic P2 1 2 1 2 1 5.587 9.822 11.83 neutron 8 Cys Orthorhombic P2 1 2 1 2 1 5.458 7.157 19.389 x-ray 9 Gly-Gly Monoclinic P2 1/c 8.813 8.813 9.755 9.755 9.788 9.788 x-ray 10 neutron 11 Gly-Gln Orthorhombic P2 1 2 1 2 1 5.415 11.618 15.558 x-ray 12 His Orthorhombic P2 1 2 1 2 1 15.301 15.36 8.921 8.92 6.846 6.88 x-ray 13 neutron 14 S12

References: 1. Gervais, C.; Dupree, R.; Pike, K. J.; Bonhomme, C.; Profeta, M.; Pickard, C. J.; Mauri, F., Combined First-Principles Computational and Experimental Multinuclear Solid-State NMR Investigation of Amino Acids. The Journal of Physical Chemistry A 2005, 109 (31), 6960-6969. 2. Lemaitre, V.; Smith, M. E.; Watts, A., A Review of Oxygen-17 Solid-State NMR of Organic Materials - Towards Biological Applications. Solid State Nuclear Magnetic Resonance 2004, 26 (3-4), 215-235. 3. Pike, K. J.; Lemaitre, V.; Kukol, A.; Anupold, T.; Samoson, A.; Howes, A. P.; Watts, A.; Smith, M. E.; Dupree, R., Solid-State 17 O NMR of Amino Acids. Journal of Physical Chemistry B 2004, 108 (26), 9256-9263. 4. Wong, A.; Howes, A. P.; Yates, J. R.; Watts, A.; Anupold, T.; Past, J.; Samoson, A.; Dupree, R.; Smith, M. E., Ultra-High Resolution 17 O Solid-State NMR Spectroscopy of Biomolecules: A Comprehensive Spectral Analysis of Monosodium L-Glutamate Monohydrate. Physical Chemistry Chemical Physics 2011, 13, 12213-12224. 5. Xian, L.; Lu, G.-X., L-Arginine Hydrochloride Monohydrate. Chemical Research and Application 2007, 19, 474. 6. Ramanadham, M.; Sikka, S. K.; Chidambaram, R., Structure of L-Asparagine Monohydrate by Neutron Diffraction. Acta Crystallographica 1972, B28, 3000-3005. 7. Flaig, R.; Koritsanszky, T.; Dittrich, B.; Wagner, A.; Luger, P., Intra- and Intermolecular Topological Properties of Amino Acids: A Comparative Study of Experimental and Theoretical Results. Journal of the American Chemical Society 2002, 124, 3407-3417. 8. Umadevi, K.; Anitha, K.; Sridhar, B.; Srinivasan, N.; R.K., R., L-Aspartic Acid Monohydrate. Acta Crystallographica 2003, E59, 01073-01075. 9. Chapman, R. P.; Bryce, D. L., A High-Field Solid-State Cl-35/37 NMR and Quantum Chemical Investigation of the Chlorine Quadrupolar and Chemical Shift Tensors in Amino Acid Hydrochlorides. Physical Chemistry Chemical Physics 2007, 9 (47), 6219-6230. 10. Parthasarathy, R., Crystal Structure of Glycylglycine Hydrochloride. Acta Crystallographica 1969, B25, 509-518. 11. Koetzle, T. F.; Hamilton, W. C.; Parthasarathy, R., Precision Neutron Diffraction Structure Determination of Protein and Nucleic Acid Components. II. The Crystal and Molecular Structure of the Dipeptide Glycylglycine Monohydrochloride Monohydrate. Acta Crystallographica 1972, B28, 2083-2090. 12. Panneerselvam, K.; Soriano-Garcia, M., L-Glycyl-L-Glutamine Monohydrate. Acta Crystallographica 1995, C51 (12), 2718-2720. 13. Oda, K.; Koyama, H., Refinement of Crystal-Structure of Histidine Hydrochloride Monohydrate. Acta Crystallographica 1972, B28, 639-642. 14. Fuess, H.; Hohlwein, D.; Mason, S. A., Neutron Diffraction Study of L-Histidine Hydrochloride Monohydrate. Acta Crystallographica 1977, B33, 654-659. S13