A generic property of families of Lagrangian systems

Similar documents
Generic Aubry sets on surfaces

Mañé s Conjecture from the control viewpoint

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

Chapter 2 Metric Spaces

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

Problem Set 2: Solutions Math 201A: Fall 2016

4 Countability axioms

THEOREMS, ETC., FOR MATH 515

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

The Hopf argument. Yves Coudene. IRMAR, Université Rennes 1, campus beaulieu, bat Rennes cedex, France

On the number of Mather measures of Lagrangian systems

B. Appendix B. Topological vector spaces

Topological properties

Course 212: Academic Year Section 1: Metric Spaces

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

THEOREMS, ETC., FOR MATH 516

7 Complete metric spaces and function spaces

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Part III. 10 Topological Space Basics. Topological Spaces

On the Hausdorff Dimension of the Mather Quotient

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide

CHAPTER 7. Connectedness

Math 5210, Definitions and Theorems on Metric Spaces

Topological vectorspaces

MAS3706 Topology. Revision Lectures, May I do not answer enquiries as to what material will be in the exam.

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

Notes for Functional Analysis

(convex combination!). Use convexity of f and multiply by the common denominator to get. Interchanging the role of x and y, we obtain that f is ( 2M ε

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

MTG 5316/4302 FALL 2018 REVIEW FINAL

Math General Topology Fall 2012 Homework 8 Solutions

MATHS 730 FC Lecture Notes March 5, Introduction

Weak KAM pairs and Monge-Kantorovich duality

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B =

Metric Spaces and Topology

Fragmentability and σ-fragmentability

Banach Spaces II: Elementary Banach Space Theory

Banach Spaces V: A Closer Look at the w- and the w -Topologies

Integral Jensen inequality

Local semiconvexity of Kantorovich potentials on non-compact manifolds

Periodic Orbits of Weakly Exact Magnetic Flows

Introduction to Topology

Notes on Distributions

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis Notes. Thomas Goller

Lyapunov optimizing measures for C 1 expanding maps of the circle

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

Mathematics for Economists

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus

LECTURE 15: COMPLETENESS AND CONVEXITY

CHAPTER V DUAL SPACES

MATH 614 Dynamical Systems and Chaos Lecture 6: Symbolic dynamics.

INVERSE LIMITS AND PROFINITE GROUPS

s P = f(ξ n )(x i x i 1 ). i=1

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

E.7 Alaoglu s Theorem

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6

Introduction to Dynamical Systems

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Notes for Functional Analysis

Dynamical Systems 2, MA 761

PARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGE-AMPÈRE EQUATION

Continuity of convex functions in normed spaces

Ratner fails for ΩM 2

THE SEMICONTINUITY LEMMA

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

16 1 Basic Facts from Functional Analysis and Banach Lattices

MATHER THEORY, WEAK KAM, AND VISCOSITY SOLUTIONS OF HAMILTON-JACOBI PDE S

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

REAL AND COMPLEX ANALYSIS

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski

Lebesgue Measure on R n

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Transverse Euler Classes of Foliations on Non-atomic Foliation Cycles Steven HURDER & Yoshihiko MITSUMATSU. 1 Introduction

Math 209B Homework 2

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

LECTURE NOTES ON MATHER S THEORY FOR LAGRANGIAN SYSTEMS

Notation. General. Notation Description See. Sets, Functions, and Spaces. a b & a b The minimum and the maximum of a and b

P-adic Functions - Part 1

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds

THE UNIQUE MINIMAL DUAL REPRESENTATION OF A CONVEX FUNCTION

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Spectral theory for compact operators on Banach spaces

Convexity in R n. The following lemma will be needed in a while. Lemma 1 Let x E, u R n. If τ I(x, u), τ 0, define. f(x + τu) f(x). τ.

1.1. MEASURES AND INTEGRALS

arxiv: v2 [math.ag] 24 Jun 2015

Invariant measures for iterated function systems

Locally uniformly rotund renormings of the spaces of continuous functions on Fedorchuk compacts

The projectivity of C -algebras and the topology of their spectra

3 Hausdorff and Connected Spaces

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0

MATH & MATH FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING Scientia Imperii Decus et Tutamen 1

Transcription:

Annals of Mathematics, 167 (2008), 1099 1108 A generic property of families of Lagrangian systems By Patrick Bernard and Gonzalo Contreras * Abstract We prove that a generic Lagrangian has finitely many minimizing measures for every cohomology class. 1. Introduction Let M be a compact boundaryless smooth manifold. Let T be either the group (R/Z, +) or the trivial group ({0}, +). A Tonelli Lagrangian is a C 2 function L : T TM R such that The restriction to each fiber of T TM T M is a convex function. It is fiberwise superlinear: lim L(t, θ)/ θ =+, θ + (t, θ) T TM. The Euler-Lagrange equation d dt L v = L x defines a complete flow ϕ : R (T TM) T TM. We say that a Tonelli Lagrangian L is strong Tonelli if L + u is a Tonelli Lagrangian for each u C (T M,R). When T = {0} we say that the lagrangian is autonomous. Let P(L) be the set of Borel probability measures on T TM which are invariant under the Euler-Lagrange flow ϕ. The action functional A L : P(L) R {+ } is defined as A L (μ) := L, μ := Ldμ. T TM *Membre de l IUF. Partially supported by CONACYT-México grant # 46467-F.

1100 PATRICK BERNARD AND GONZALO CONTRERAS The functional A L is lower semi-continuous and the minimizers of A L on P(L) are called minimizing measures. The ergodic components of a minimizing measure are also minimizing, and they are mutually singular, so that the set M(L) of minimizing measures is a simplex whose extremal points are the ergodic minimizing measures. In general, the simplex M(L) may be of infinite dimension. The goal of the present paper is to prove that this is a very exceptional phenomenon. The first results in that direction were obtained by Mañé in [4]. His paper has been very influential to our work. We say that a property is generic in the sense of Mañé if, for each strong Tonelli Lagrangian L, there exists a residual subset O C (T M,R) such that the property holds for all the Lagrangians L u, u O. A set is called residual if it is a countable intersection of open and dense sets. We recall which topology is used on C (T M,R). Denoting by u k the C k -norm of a function u : T M R, define u := arctan( u k ) 2 k. k N Note that. is not a norm. Endow the space C (T M,R) with the translation-invariant metric u v. This metric is complete, hence the Baire property holds: any residual subset of C (T M,R) is dense. Theorem 1. Let A be a finite-dimensional convex family of strong Tonelli Lagrangians. Then there exists a residual subset O of C (T M,R) such that, u O, L A = dim M(L u) dim A. In other words, there exist at most 1 + dim A ergodic minimizing measures of L u. The main result of Mañé in [4] is that having a unique minimizing measure is a generic property. This corresponds to the case where A is a point in our statement. Our generalization of Mañé s result is motivated by the following construction due to John Mather: We can view a 1-form on M as a function on TM which is linear on the fibers. If λ is closed, the Euler-Lagrange equation of the Lagrangian L λ is the same as that of L. However, the minimizing measures of L λ, are not the same as the minimizing measures of L. Mather proves in [5] that the set M(L λ) of minimizing measures of the lagrangian L λ depends only on the cohomology class c of λ. If c H 1 (M,R) we write M(L c) :=M(L λ), where λ is a closed form of cohomology c. It turns out that important applications of Mather theory, such as the existence of orbits wandering in phase space, require understanding not only of the set M(L) of minimizing measures for a fixed or generic cohomology classes

A GENERIC PROPERTY OF FAMILIES OF LAGRANGIAN SYSTEMS 1101 but of the set of all Mather minimizing measures for every c H 1 (M,L). The following corollaries are crucial for these applications. Corollary 2. The following property is generic in the sense of Mañé: For all c H 1 (M,R), there are at most 1 + dim H 1 (M,R) ergodic minimizing measures of L c. We say that a property is of infinite codimension if, for each finite-dimensional convex family A of strong Tonelli Lagrangians, there exists a residual subset O in C (T M,R) such that none of the Lagrangians L u, L A, u Osatisfy the property. Corollary 3. The following property is of infinite codimension: There exists c H 1 (M,R), such that L c has infinitely many ergodic minimizing measures. Another important issue concerning variational methods for Arnold diffusion questions is the total disconnectedness of the quotient Aubry set. John Mather proves in [7, 3] that the quotient Aubry set A of any Tonelli Lagrangian on T TM with T = R/Z and dim M 2 (or with T = {0} and dim M 3) is totally disconnected. See [7] for its definition. The elements of the quotient Aubry set are called static classes. They are disjoint subsets of T TM and each static class supports at least one ergodic minimizing measure. We then get Corollary 4. The following property is generic in the sense of Mañé: For all c H 1 (M,R) the quotient Aubry set A c of L c has at most 1+ dim H 1 (M,R) elements. Assume that we are given 2. Abstract results Three topological vector spaces E, F, G. A continuous linear map π : F G. A bilinear pairing u, ν : E G R. Two metrizable convex compact subsets H F and K G such that π(h) K. Suppose that (i) The map is continuous. E K (u, ν) u, ν

1102 PATRICK BERNARD AND GONZALO CONTRERAS We will also denote u, π(μ) by u, μ when μ H. Observe that each element u E gives rise to a linear functional on F F μ u, μ which is continuous on H. We shall denote by H the set of affine and continuous functions on H and use the same symbol u for an element of E and for the element μ u, μ of H which is associated to it. (ii) The compact K is separated by E. This means that, if η and ν are two different points of K, then there exists a point u in E such that u, η u, ν 0. Note that the topology on K is then the weak topology associated to E. A sequence η n of elements of K converges to η if and only if we have u, η n u, η for each u E. We shall, for notational conveniences, fix once and for all a metric d on K. (iii) E is a Frechet space. It means that E is a topological vector space whose topology is defined by a translation-invariant metric, and that E is complete for this metric. Note then that E has the Baire property. We say that a subset is residual if it is a countable intersection of open and dense sets. The Baire property says that any residual subset of E is dense. Given L H denote by M H (L) := arg min L H the set of points μ H which minimize L H, and by M K (L) the image π(m H (L)). These are compact convex subsets of H and K. Our main abstract result is: Theorem 5. For every finite-dimensional affine subspace A of H, there exists a residual subset O(A) E such that, for all u O(A) and all L A, we have (1) dim M K (L u) dim A. Proof. We define the ε-neighborhood V ε of a subset V of K as the union of all the open balls in K which have radius ε and are centered in V. Given a subset D A, a positive number ε, and a positive integer k, denote by O(D, ε, k) E the set of points u E such that, for each L D, the convex set M K (L u) is contained in the ε-neighborhood of some k-dimensional convex subset of K.

A GENERIC PROPERTY OF FAMILIES OF LAGRANGIAN SYSTEMS 1103 We shall prove that the theorem holds with O(A) = ε>0 O(A, ε, dim A). If u belongs to O(A), then (1) holds for every L A. Otherwise, for some L A, the convex set M K (L u) would contain a ball of dimension dim A +1, and, if ε is small enough, such a ball is not contained in the ε-neighborhood of any convex set of dimension dim A. So we have to prove that O(A) is residual. In view of the Baire property, it is enough to check that, for any compact subset D A and any positive ε, the set O(D, ε, dim A) is open and dense. We shall prove in 2.1 that it is open, and in 2.2 that it is dense. 2.1. Open. We prove that, for any k Z +, ε>0 and any compact D A, the set O(D, ε, k) E is open. We need a Lemma. Lemma 6. The set-valued map (L, u) M H (L u) is upper semicontinuous on A E. This means that for any open subset U of H, the set {(L, u) A E : M H (L u) U} A E is open in A E. Consequently, the set-valued map (L, u) M K (L u) is also upper semi-continuous. Proof. This is a standard consequence of the continuity of the map A E H (L, u, μ) (L u)(μ) =L(μ) u, μ. Now let u 0 be a point of O(D, ε, k). For each L D, there exists a k-dimensional convex set V K such that M K (L u 0 ) V ε. In other words, the open sets of the form {(L, u) D E : M H (L u) V ε } D E, where V is some k-dimensional convex subset of K, cover the compact set D {u 0 }. So there exists a finite subcovering of D {u 0 } by open sets of the form Ω i U i, where Ω i is an open set in A and U i O(Ω i,ε,k)isanopen set in E containing u 0. We conclude that the open set U i is contained in O(D, ε, k), and contains u 0. This ends the proof. 2.2. Dense. We prove the density of O(A, ε, dim A) ine for ε>0. Let w be a point in E. We want to prove that w is in the closure of O(A, ε, dim A). Lemma 7. There exists an integer m and a continuous map T m =(w 1,...,w m ):K R m,

1104 PATRICK BERNARD AND GONZALO CONTRERAS with w i E such that (2) x R m diam Tm 1 (x) <ε, where the diameter is taken for the distance d on K. Proof. In K K, to each element w E we associate the open set U w = {(η, μ) K K : w, η μ 0}. Since E separates K, the open sets U w,w E cover the complement of the diagonal in K K. Since this complement is open in the separable metrizable set K K, we can extract a countable subcovering from this covering. So we have a sequence U wk, with w k E, which covers the complement of the diagonal in K K. This amounts to say that the sequence w k separates K. Defining T m = (w 1,...,w m ), we have to prove that (2) holds for m large enough. Otherwise, we would have two sequences η m and μ m in K such that T m (μ m )=T m (η m ) and d(μ m,η m ) ε. By extracting a subsequence, we can assume that the sequences μ m and η m have different limits μ and η, which satisfy d(η, μ) ε. Take m large enough, so that T m (η) T m (μ). Such a value of m exists because the linear forms w k separate K. We have that T m (μ k )=T m (η k ) for k m. Hence at the limit T m (η) =T m (μ). This is a contradiction. Define the function F m : A R m R {+ } as F m (L, x) := min (L w)(μ), μ H T m π(μ)=x when x T m (π(h)) and F m (L, x) =+ if x R m \ T m (π(h)). For y = (y 1,...,y m ) R m, let [ M m (L, y) := arg min Fm (L, x) y x ] R m x R m be the set of points which minimize the function x F m (L, x) y x. We have that Let M K ( L w y1 w 1 y m w m ) T 1 m (M m (L, y)). O m (A, dim A) :={y R m L A : dim M m (L, y) dim A}. From Lemma 7 it follows that y O m (A, dim A) = w + y 1 w 1 + + y m w m O(A, ε, dim A).

A GENERIC PROPERTY OF FAMILIES OF LAGRANGIAN SYSTEMS 1105 Therefore, in order to prove that w is in the closure of O(A, ε, dim A), it is enough to prove that 0 is in the closure of O m (A, dim A), which follows from the next proposition. Proposition 8. The set O m (A, dim A) is dense in R m. Proof. Consider the Legendre transform of F m with respect to the second variable, G m (L, y) = max y x F m (L, x) x R m = max w + y 1w 1 + + y m w m,μ L(μ). μ H It follows from this second expression that the function G m is convex and finite-valued, hence continuous on A R m. Consider the set Σ A R m of points (L, y) such that dim G m (L, y) dim A + 1, where G m is the subdifferential of G m. It is known, see the appendix, that this set has Hausdorff dimension at most (m + dim A) (dim A +1)=m 1. Consequently, the projection Σ of the set Σ on the second factor R m also has Hausdorff dimension at most m 1. Therefore, the complement of Σ is dense in R m. So it is enough to prove that y/ Σ = L A : dim M m (L, y) dim A. Since we know by definition of Σ that dim G m (L, y) dim A, it is enough to observe that dim M m (L, y) dim G m (L, y). The last inequality follows from the fact that the set M m (L, y) is the subdifferential of the convex function at the point y. R m z G m (L, z) 3. Application to Lagrangian dynamics Let C be the set of continuous functions f : T TM R with linear growth, i.e. f(t, θ) f l := sup < +, (t,θ) T TM 1+ θ endowed with the norm l. We apply Theorem 5 to the following setting:

1106 PATRICK BERNARD AND GONZALO CONTRERAS F = C is the vector space of continuous linear functionals μ : C R provided with the weak- topology. Recall that lim n μ n = μ lim n μ n (f) =μ(f), f C. E = C (T M,R) provided with the C topology. G is the vector space of finite Borel signed measures on T M, or equivalently the set of continuous linear forms on C 0 (T M,R), provided with the weak- topology. The pairing E G R is given by integration: u, ν = udν. T M The continuous linear map π : F G is induced by the projection T TM T M. The compact K G is the set of Borel probability measures on T M, provided with the weak- topology. Observe that K is separated by E. The compact H n F is the set of holonomic probability measures which are supported on B n := {(t, θ) T TM θ n}. Holonomic probabilities are defined as follows: Given a C 1 curve γ : R M of period T N define the element μ γ of F by for each f C. Let f,μ γ = 1 T T 0 f(s, γ(s), γ(s)) ds Γ:={μ γ γ C 1 (R,M) is periodic of integral period} F. The set H of holonomic probabilities is the closure of Γ in F. One can see that H is convex (cf. Mañé [4, Prop. 1.1(a)]). The elements μ of H satisfy 1,μ =1 therefore we have π(h) K. Note that each Tonelli Lagrangian L gives rise to an element of H n. Let M(L) be the set of minimizing measures for L and let supp M(L) be the union of their supports. Recalling that we have defined M Hn (L) as the set of measures μ H n which minimize the action Ldμ on H n,wehave: Lemma 9. If L is a Tonelli lagrangian then there exists n N such that dim π(m Hn (L)) = dim M(L).

A GENERIC PROPERTY OF FAMILIES OF LAGRANGIAN SYSTEMS 1107 Proof. Birkhoff theorem implies that M(L) H(cf. Mañé [4, Prop. 1.1.(b)]). In [5, Prop. 4, p. 185] Mather proves that supp M(L) is compact, therefore M(L) H n for some n N. In [4, 1] Mañé proves that minimizing measures are also all the minimizers of the action functional A L (μ) = Ldμon the set of holonomic measures, therefore M(L) =M Hn (L) for some n N. In [5, Th. 2, p. 186] Mather proves that the restriction supp M(L) M of the projection TM M is injective. Therefore the linear map π : M(L) G is injective, so that dim π(m Hn (L)) = dim π(m(l)) = dim M(L). Proof of Theorem 1. Given n N apply Theorem 5 and obtain a residual subset O n (A) E such that L A, u O n (A) = dim π(m Hn (L u)) dim A. Let O(A) = n O n (A). By the Baire property O(A) is residual. We have that L A, u O(A), n N = dim π(m Hn (L u)) dim A. Then by Lemma 9, dim M(L u) dim A for all L A and all u O(A). Appendix A. Convex functions Given a convex function f : R n R and x R n, define its subdifferential as f(x) :={l : R n R linear f(y) f(x)+l(y x), y R n }. Then the sets f(x) R n are convex. If k N, let Σ k (f) :={x R n dim f(x) k}. The following result is standard. Proposition 10. If f : R n R is a convex function then for all 0 k n the Hausdorff dimension HD(Σ k (f)) n k. We recall here an elegant proof due to Ambrosio and Alberti; see [1]. Note that much more can be said on the structure of Σ k, see [2], [9] for example. By adding x 2 if necessary (which does not change Σ k ) we can assume that f is superlinear and that (3) f(y) f(x)+l(y x)+ 1 2 y x 2 x, y R n, l f(x). Lemma 11. l f(x), l f(x ) = x x l l. Proof. From inequality (3) we have that f(x ) f(x)+l(x x) + 1 2 x x 2, f(x) f(x )+l (x x )+ 1 2 x x 2.

1108 PATRICK BERNARD AND GONZALO CONTRERAS Then (4) 0 (l l)(x x )+ x x 2 (5) l l x x (l l )(x x ) x x 2. Therefore l l x x. Since f is superlinear, the subdifferential f is surjective and we have: Corollary 12. There exists a Lipschitz function F : R n R n such that l f(x) = x = F (l). Proof of Proposition 10. Let A k be a set with HD(A k )=n k such that A k intersects any convex subset of dimension k. For example, A k = {x R n x has at least k rational coordinates}. Observe that x Σ k = f(x) intersects A k = x F (A k ). Therefore Σ k F (A k ). Since F is Lipschitz, we have that HD(Σ k ) HD(A k )=n k. Universit Paris-Dauphine and CNRS, Paris, France E-mail address: patrick.bernard@ceremade.dauphine.fr CIMAT, Guanajuato, GTO, México E-mail address: gonzalo@cimat.mx References [1] G. Alberti and L. Ambrosio, A geometrical approach to monotone functions in R n, Math. Z. 230 (1999), 259 316. [2] G. Alberti, On the structure of singular sets of convex functions, Calc. Var. & Partial Differential Equations 2 (1994), 17 27. [3] R. Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity 5 (1992), 623 638. [4], Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity 9 (1996), 273 310. [5] J. N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), 169 207. [6], Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble) 43 (1993), 1349 1386. [7], A property of compact, connected, laminated subsets of manifolds, Ergodic Theory Dynam. Systems 22 (2002), 1507 1520. [8], Examples of Aubry sets, Ergodic Theory Dynamic. Systems 24 (2004), 1667 1723. [9] L. Zajček, On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolinae 19 (1978), 179 189. (Received February 22, 2006)