The PSP compact MOSFET model An update

Similar documents
Advanced Compact Models for MOSFETs

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

A Multi-Gate CMOS Compact Model BSIMMG

SOI/SOTB Compact Models

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

EE5311- Digital IC Design

Device Models (PN Diode, MOSFET )

EKV MOS Transistor Modelling & RF Application

Lecture 11: MOSFET Modeling

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOSFET: Introduction

The Devices. Jan M. Rabaey

The Devices. Devices

MOS Transistor I-V Characteristics and Parasitics

Device Models (PN Diode, MOSFET )

Flash Memory Cell Compact Modeling Using PSP Model

The Devices: MOS Transistors

Diode_CMC model. Klaus-Willi Pieper, Infineon Technologies AG 2015, Nov 6 th

MOS Transistor Theory

ECE-305: Fall 2017 MOS Capacitors and Transistors

Lecture 12: MOSFET Devices

Lecture 3: CMOS Transistor Theory

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

MOSFET Physics: The Long Channel Approximation

Physical Background of MOS Model 11

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

6.012 Electronic Devices and Circuits Spring 2005

Lecture 5: CMOS Transistor Theory

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

N Channel MOSFET level 3

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

Chapter 4 Field-Effect Transistors

Integrated Circuits & Systems

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Physics-based compact model for ultimate FinFETs

Lecture 4: CMOS Transistor Theory

ECE 342 Electronic Circuits. 3. MOS Transistors

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

EKV Modelling of MOS Varactors and LC Tank Oscillator Design

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

MOSFET Capacitance Model

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ECE 497 JS Lecture - 12 Device Technologies

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type

MOS Transistor Theory

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Microelectronics Part 1: Main CMOS circuits design rules

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE105 - Fall 2005 Microelectronic Devices and Circuits

mobility reduction design rule series resistance lateral electrical field transversal electrical field

Lecture 12: MOS Capacitors, transistors. Context

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Multiple Gate CMOS and Beyond

VLSI Design The MOS Transistor

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Appendix 1: List of symbols

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

Lecture #27. The Short Channel Effect (SCE)

MIXDES 2001 Zakopane, POLAND June 2001

ANALYSIS OF THE BUMP PROBLEM IN BSIM3 USING NOR GATE CIRCUIT AND IMPLEMENTATION OF TECHNIQUES IN ORDER TO OVERCOME THEM

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Chapter 5 MOSFET Theory for Submicron Technology

Nanoscale CMOS Design Issues

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Introduction and Background

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

EE105 - Fall 2006 Microelectronic Devices and Circuits

Philips Research apple PHILIPS

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Digital Electronics Part II - Circuits

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

DATA SHEET. BSD22 MOSFET N-channel depletion switching transistor DISCRETE SEMICONDUCTORS

Simple and accurate modeling of the 3D structural variations in FinFETs

CMOS Inverter (static view)

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Figure 1: MOSFET symbols.

Transcription:

The PSP compact MOSFET model An update Gert-Jan Smit, Andries Scholten, D.B.M. Klaassen NXP Semiconductors Ronald van Langevelde Philips Research Europe Gennady Gildenblat, Weimin Wu, Xin Li, Amit Jha, Hailing Wang* Arizona State University; *now at IBM

Affiliations founded by Philips Semiconductors http://pspmodel.asu.edu http://www.nxp.com/philips_models/mos_models/psp/ 2

Outline History & overview DC verification on 65nm technology Symmetry and distortion Non-quasi static effects Summary & references 3

Outline History & overview DC verification on 65nm technology Symmetry and distortion Non-quasi static effects Summary & references 4

History April 2005: First PSP version (100.0) released. Created from MOS Model 11 (Philips) SP (Penn State) December 2005: CMC elects PSP as next generation compact MOSFET model (i.e. successor of BSIM3/4) June 2006: First CMC-standardized version (PSP 102.0) was released Future: PSP extended to complete family of models Bulk CMOS Varactor PD-SOI FD-SOI FinFETs 5

Model overview PSP is a surface potential based compact MOSFET model, suitable for digital, analog and RF design non-uniform lateral/vertical doping field-dependent mobility velocity saturation conductance effects (CLM, DIBL, etc.) series-resistance short-channel effects (incl. RSCE) narrow-width effects gate poly-depletion quantum-mechanical corrections overlap capacitances (ψ s -based) impact ionization current gate leakage current gate-induced drain/source leakage (GIDL, GISL) junction diode I-V and C-V (forward and reverse) diode reverse breakdown noise (1/f, thermal, induced gate and shot noise) non-quasi-static effects gate and bulk resistances STI stress effect See also MOS-AK 2005 6

Update PSP 102.0 Changes PSP 100.0 102.0 Binning Improved Gummel symmetry (modified CLM-model and V B -clamping) Replaced lateral gradient factor More flexible geometry scaling Improved mobility model (CS, FETA, scaling) Improved forward bulk-bias behavior BSIM-like instance parameters for JUNCAP2 (AS, AD, PS, PD) Several minor improvements, bug fixes, and maintenance October 2006: PSP 102.1 includes first C-implementation of NQS-model Partly based on useful feedback by Jazz, Infineon, Freescale, STm, RFMD, Analog Devices, 7

Outline History & overview DC verification on 65nm technology Symmetry and distortion Non-quasi static effects Summary & references 8

Long channel (65nm technology) I D (ma) 1.0 0.8 0.6 0.4 0.2 Drain current and output conductance W/L = 10/1µm, V GS = 0 1V 0.0 0.0 0.2 0.4 0.6 0.8 1.0 V DS (V) g DS (A/V) 10-2 10-3 10-4 10-5 10-6 10-7 measurement PSP 10-8 10-9 0.0 0.2 0.4 0.6 0.8 1.0 V DS (V) 9

Short channel (65nm technology) 8 Drain current and output conductance W/L = 10/0.04µm (poly length = 40nm), V GS = 0 1V 10-1 measurement PSP I D (ma) 6 4 2 0 0.0 0.2 0.4 0.6 0.8 1.0 V DS (V) g DS (A/V) 10-2 10-3 10-4 10-5 10-6 10-7 0.0 0.2 0.4 0.6 0.8 1.0 V DS (V) 10

Gate current (65nm technology) Gate current W/L = 10/1µm, V DS = 0 1V I G (A) 10-6 10-7 10-8 measurement PSP 10-9 10-10 -1.0-0.5 0.0 0.5 1.0 V GS (V) PSP model has been verified to successfully describe various 90nm, 65nm and 45nm processes 11

R2R-circuit Benchmark test for quality of integral along channel Ideal long channel model 0.15 V DB W I DS = µ q L V SB inv dv rel. error (%) 0.10 0.05 6 3 2 rel. error = 2 n 1 I I n fs I fs 0.00 1 10-1 10 0 10 1 10 2 I fs ( µ A) 12

Outline History & overview DC verification on 65nm technology Symmetry and distortion Non-quasi static effects Summary & references 13

Gummel symmetry (i) CMOS devices are symmetric w.r.t. source/drain Imposed on the model by applying source/drain interchange V DS 0 : I DS (V D,V G,V S,V B ) = I + DS (V D,V G,V S,V B ) V DS < 0 : I DS (V D,V G,V S,V B ) = I + DS (V S,V G,V D,V B ) Guaranteeing a smooth connection at V DS =0 is nontrivial 14

Gummel symmetry (ii) Why is Gummel symmetry nontrivial to achieve? 0.6 0.5 0.4 I D (ma) 0.3 0.2 0.1 0.0 0.0 0.5 1.0 1.5 2.0 V DS (V) velocity saturation V DSAT calculation V DS V DSAT transition channel length modulation (CLM). 15

Gummel symmetry (iii) Symmetry test I D (V X ) smooth at V X =0? V G gate oxide source drain -V X V B V X 16

Gummel symmetry (iv) 3 I D / V 3 X 2 1 0-1 -2-3 improved CLM model (PSP102) -2.50-2.75-4 -0.3-0.2-0.1 0.0 0.1 0.2 0.3 V X (V) 3 I D / V 3 X -3.00-3.25-3.50 old model (PSP < 101) -0.10-0.05 0.00 0.05 0.10 V X (V) 17

Distortion (i) Gummel symmetry is important for RF-CMOS circuit design (distortion) PSP gives excellent description up to at least 3 rd order derivatives 10-1 g DS3 NMOS 10/0.12 g DS i (A/V i ) 10-2 10-3 g DS1 g DS2 0.0 0.3 0.6 0.9 V DS (V) 18

Distortion (ii) Two-tone intermodulation distortion simulation (1.8 and 1.9 GHz) V GS =1V, V DS =V SB =0V, W/L=5/0.3µm NMOS, 90nm technology) P out (dbm) -50-100 theoretical slope PSP simulation 50Ω P out (dbm) -50-100 50Ω theoretical slope BSIM4 simulation -150-150 -60-50 -40-30 -20-10 P in (dbm) -60-50 -40-30 -20-10 P in (dbm) 19

Outline History & overview DC verification on 65nm technology Symmetry and distortion Non-quasi static effects Summary & references 20

PSP NQS model (i) Non-quasi static effects: it takes time for charge to move trough the channel distributed effect memory effect continuity equation: dq/dt di/dx S Gate D Previously: channel segmentation (still good benchmark!) PSP: spline collocation method (adopted from SP model) No parameter fitting! 21

PSP NQS model (ii) Same physics as segmentation model, but much faster: relative simulation time 14 12 10 8 6 4 2 0 0 2 4 6 8 10 no. collocation points segmentation 3x faster! spline collocation method QS reference 22

PSP NQS model (iii) current continuity equation + spline approximation system of (coupled) ordinary differential equations dq dt ( Q, K Q ) k f, k 1 = Q k : charge densities along channel N implemented as sub-circuits, solved by circuit simulator: example: (N = 2) V 1 = Q 1 V 2 = Q 2 C C f ( Q, ) 1 1 Q2 C C f ( Q, ) 2 1 Q2 23

PSP NQS model (iii) Does model preserve basic physics? NQS model sanity check Important for varactor modeling! Basic NQS physics strong inversion V DS =0 f 0 R in = 12 1 g DS R in 1 = 12 g no parameter fitting! PSP-NQS DS SWNQS=9 24

PSP NQS model (v) 10 0 Y-parameter measurements NMOS W/L=120/3µm, V DS = 1.5V, V GS = 0.5, 1.0, 1.5V 10-1 measurement PSP quasi-static PSP NQS 10-1 10-2 Re( Y 11) (S) 10-2 Re( Y 21) (S) 10-3 10-3 10-4 10-4 10 0 10 1 10 2 f (GHz) 10-5 10 0 10 1 10 2 f (GHz) 25

PSP NQS model (vi) 10 4 Y-parameter measurements NMOS W/L=120/3µm, V DS = 1.5V, V GS = 0.5, 1.0, 1.5V 10 4 measurement PSP quasi-static PSP NQS C GG (ff) 10 3 10 2 C DG (ff) 10 3 10 2 10 1 10 0 10 1 10 2 f (GHz) 10 1 10 0 10 1 10 2 f (GHz) 26

Killer NOR circuit (i) 27

Killer NOR circuit (ii) 1.5 V(A) in1 V(B) in2 V(Q) out 1.0 1 V (V) 0.5 V (V) 0 0.0-1 V(X) QS V(X) NQS -0.5 0 50 100 150 200 t (ns) -2 0 50 100 150 200 t (ns) 28

Outline History & overview DC verification on 65nm technology Symmetry and distortion Non-quasi static effects Summary & references 29

Summary Affiliation change: Philips NXP Penn State Arizona State PSP is the new CMC industrial standard MOSFET model PSP has an excellent description of distortion PSP has a unique physics based NQS-extension 30

References website http://pspmodel.asu.edu PSP general TED 53(9), p. 1979 (2006) Chapter 2 of Transistor Level Modeling for Analog/RF IC Design, W. Grabinski, B. Nauwelaers and D. Schreurs (Eds.), Springer-SBM, February 2006 PSP NQS TED 53(9), p. 2035 (2006) JUNCAP2 TED 53(9), p. 2098 (2006) FinFETs IEDM 2006 31