Title. CitationCatalysis Science & Technology, 2(8): Issue Date Doc URL. Rights. Type. Additional There Information

Similar documents
Supporting Information

Supporting Information Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers

A Straightforward Protocol for the Highly Efficient Preparation of. Main-chain Azo Polymers Directly from Bisnitroaromatic Compounds

Supporting Information

ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules

Electronic Supplementary Information

Supporting information

ERT 316: REACTION ENGINEERING CHAPTER 3 RATE LAWS & STOICHIOMETRY

Supplementary Information. High-Performance Mixed-Dimensional Perovskite Solar Cells with Enhanced

Supplementary Information

Electronic Supporting Information for

Supporting Information

Supporting Information. M13 Virus-Incorporated Biotemplates on Electrode Surfaces to Nucleate Metal Nanostructures by Electrodeposition

Colorimetric detection and separation of chiral tyrosine. based on N-acetyl-L-cysteine modified gold. nanoparticles

VISIBLE AND INFRARED ABSORPTION SPECTRA OF COVERING MATERIALS FOR SOLAR COLLECTORS

Appendix A: HVAC Equipment Efficiency Tables

Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for selective oxidation of aromatic alcohols

Enhanced Photocatalytic CO 2 -Reduction Activity of Anatase TiO 2 by Coexposed {001} and {101} Facets

SYNTHESIS OF DME BY CO2 HYDROGEN- ATION OVER La2O3-MODIFIED CuO ZnO ZrO2/HZSM-5 CATALYSTS

Silicon Nanowire Based Single-Molecule SERS Sensor

Supplemental Material

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

Aluminizing of Nickel-Based Superalloys Grade IN 738 by Powder Liquid Coating

4-cyanopentanoic acid dithiobenzoate (CPADB) was synthesized as reported by Y.

Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: An. efficient catalyst for oxygen reduction reaction

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR

Supplementary Figure 1 Supplementary Figure 2

Hydrothermal saline promoted grafting: A new route to sulfonic acid SBA-15 silica with ultra-high acid site loading for biodiesel synthesis

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

I 3 2 = I I 4 = 2A

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR

b a wt ccd8 dad2 Secondary branches 15 e cd normal low b 2

Supporting Information

Chapter 4rth LIQUIDS AND SOLIDS MCQs

Morphology characterization. (a), SEM image of PS template nanospheres showing

Direct indirect character of the band gap in methylammonium lead iodide perovskite

ANALYSIS OF FAST REACTORS SYSTEMS

SUPPLEMENTARY INFORMATION. New multicomponent catalysts for the selective aerobic oxidative. condensation of benzylamines to N-benzylidenbenzylamine

Chemistry Practice Exam

H 4 H 8 N 2. Example 1 A compound is found to have an accurate relative formula mass of It is thought to be either CH 3.

SUPPLEMENTARY INFORMATION

The Stirling Engine: The Heat Engine

Thermodynamics. Question 1. Question 2. Question 3 3/10/2010. Practice Questions PV TR PV T R

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

The Department of Chemistry, Brown University, Providence, RI The Department of Chemistry, Yale University, New Haven, CT 06520

Supplementary figure 1

Electronic Circuits I Revision after midterm

Poly(vinylamine) Microgels: ph-responsive Particles with High Primary Amine Contents

Momentum and Energy Review

Lecture 6: Coding theory

10.7 Assessment criteria for the individual investigation

Coalescence of Ag 2 S and Au Nanocrystals at Room Temperature

Supporting Information

Research Article Hydrothermal Synthesis of Ni/Al Layered Double Hydroxide Nanorods

Enhanced Electrocatalytic Activity of Pt-M (M= Co, Fe) Chitosan Supported Catalysts for Ethanol Electrooxidation in Fuel Cells

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

The development of nanoscale morphology in polymer:fullerene. photovoltaic blends during solvent casting

UV-Induced Self-Repairing Polydimethylsiloxane-Polyurethane (PDMS-PUR) Cu- Catalyzed Networks

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article

Supplementary Figures.

Supplementary Information

ISOTHERMAL REACTOR DESIGN (4) Marcel Lacroix Université de Sherbrooke

Total score: /100 points

INVESTIGATION OF THE OSL SIGNAL FROM VERY DEEP TRAPS IN NATURAL QUARTZ

Supplement of Exploring femtosecond laser ablation in single-particle aerosol mass spectrometry

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

MCH T 111 Handout Triangle Review Page 1 of 3

Electronic Supplementary Information (ESI) for:

supplementary information

Applied. Grade 9 Assessment of Mathematics. Multiple-Choice Items. Winter 2005

SUPPLEMENTARY INFORMATION

SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

3D modelling of heating of thermionic cathodes by high-pressure arc plasmas

Particle Lifetime. Subatomic Physics: Particle Physics Lecture 3. Measuring Decays, Scatterings and Collisions. N(t) = N 0 exp( t/τ) = N 0 exp( Γt/)

Formula for Trapezoid estimate using Left and Right estimates: Trap( n) If the graph of f is decreasing on [a, b], then f ( x ) dx

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Research Article Comparative Studies of Different Switching Patterns for Direct and Indirect Space Vector Modulated Matrix Converter

Polymer Chemistry Accepted Manuscript

The Visible Light Activity of the TiO 2 and TiO 2 :V 4+ Photocatalyst

RSC Advances.

Electronic Supplementary Information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Analytical Techniques Chromatography

Undercut of Unaxis-ICP-Deposited-SiO 2, by Vapor HF Etch

Table of Content. c 1 / 5

SIMPLE NONLINEAR GRAPHS

dsrna GFP 0 Ca 0 Ca 0 Ca TG Iono Time (s)

Compounds and equations SAMPLE

Preparation of Platinum Nanoparticles in Solution of Polyvinyl Pyrrolydone (PVP) by Laser Ablation Method

CONSIDERATIONS ON THE FRONT- END READOUT FOR CRYOGENIC PARTICLE DETECTORS

22.Analytical Techniques Chromatography

Lecture 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. PMOS Transistors in Series/Parallel Connection

Supporting Information. Lignin Extraction and Catalytic Upgrading from Genetically. Modified Poplar

Surface Science 603 (2009) Contents lists available at ScienceDirect. Surface Science. journal homepage:

CS 360 Exam 2 Fall 2014 Name

Chemical Equilibrium

DETAIL CAGE ASSEMBLY MATERIAL: NICKEL SILVER, 0.25 THICK HEAT SINK MATERIAL: HEAT SINK CLIP MATERIAL: STAINLESS STEEL

Chemical Equilibrium. Problem Set: Chapter 16 questions 25, 27, 33, 35, 43, 71

Transcription:

Title Remrkle enhnement of Cu tlyst tivity in hy Wng, Y-nn; Dun, Xinping; Zheng, Jinwei; Lin, H Author(s) Askur, Kiyotk CittionCtlysis Siene & Tehnology, 2(8): 1637-1639 Issue Dte 2012-08 Do URL http://hl.hnle.net/2115/52662 Rights Ctl. Si. Tehnol., 2012,2, 1637-1639 - Reproue Type rtile (uthor version) Aitionl There Informtion re other files relte to this item in HUSCAP File Informtion Supplementry_informtion.pf (Supplementry inform Instrutions for use Hokkio University Colletion of Sholrly n A

Eletroni supplementry informtion for Remrkle enhnement of Cu tlyst tivity in hyrogention of imethyl oxlte to ethylene glyol y using gol Y-nn Wng, Xinping Dun, Jinwei Zheng, Hiqing Lin, Youzhu Yun,* Hiroko Arig, Storu Tkkusgi, Kiyotk Askur* Deprtment of Chemistry, College of Chemistry n Chemil Engineering, Stte Key Lortory of Physil Chemistry for Soli Surfes, Ntionl Engineering Lortory for Green Chemil Proutions of Alohols Ethers Esters, Ximen University, Ximen 361005, Chin. E-mil: yzyun@xmu.eu.n; Fx: +86 592 2183047;Tel: 86 592 2181659 Ctlysis Reserh Center, Hokkio University, Kit-ku N21W10, Spporo, Hokkio 001-0021, Jpn. Experimentl etils Ctlyst preprtion The SBA-15 supporte CuAu nnotlyst ws prepre using moifition of the two-step pproh esrie in literture. 1,2 Typilly, efore the preprtion of tlysts, the surfe of the support SBA-15 ws first funtionlize with APTES (H 2 N(CH 2 ) 3 Si(OEt) 3 ) so s to prepre SBA-15 supporte gol-opper lloy nnoprtiles. Briefly, 1.0 g SBA-15 n 2.5 g APTES were issolve into 50 ml ethnol, followe y reflux for 24 h. After filtrtion, wshing n rying, the funtionlize SBA-15 ws otine n enote s NH 2 -SBA-15. After tht, the NH 2 -SBA-15 support ws issolve in efine mount of tetrhlorourte (HAuCl 4 ) solution followe y reution with NBH 4. After ontinuous stirring t room temperture for 30 min, n then filtrtion n wshing, the otine soli ws e to the 50 ml of opper nitrte (Cu(NO 3 ) 2 ) solution. The mixture ws gin reue y NBH 4, followe y ontinuously stirring, filtrtion n thorough wshing. The isovere soli ws line t 873 K in ir for 6 h to get tlyst preursor, n then reue t 623 K in 5% H 2 95% N 2 tmosphere for 4 h to otin the CuAu x /SBA-15 (where x enotes tomi rio of Au to Cu) tlysts. In the synthesis, the Cu loing ws kept onstnt t 6 wt% n the Au/Cu tomi rtio ws vrie oringly. 1

Ctlyst hrteriztions A Pnlytil X pert Pro Super X-ry iffrtometer equippe with monohrometer n Cu K α rition (λ=0.15418 nm) ws use for X-ry power iffrtion (XRD) ptterns. The tue voltge ws 40 kv n the urrent ws 30 ma. For in situ XRD mesurement, tlyst preursor ws ple in stinless steel holer n then overe with eryllium plte hving thikness of 0.1 mm. After tht 5% H 2-95% N 2 mixture ws introue t flow rte of 40 m 3 min 1. Temperture rmping progrms were performe from room temperture to 323, 373, 423, 473, 523, 573, 623 n 673 K t rte of 2 K min 1. The XRD ptterns were ollete fter smples rehe the preset tempertures for 30 min. The iffrtion pttern ws ientifie y mthing them with referene ptterns inlue in the JCPDS t se. Nitrogen sorption-esorption isotherms were mesure using stti N 2 physisorption on Miromeritis TriStr II 3020 t 77 K. Before the mesurement of the N 2 physisorption, ll smples were outgsse t 473 K for 2 h n then evute t 573 K for 3 h to remove physilly sore impurities. The speifi surfe re (S BET ) ws lulte y the Brunuer Emmett Teller (BET) metho. The totl pore volume (V p ) ws erive from the sore N 2 volume t reltive pressure of pproximtely 0.99, n the Brrett Joyner Hlen (BJH) metho ws use to lulte the pore size istriutions oring to the esorption rnh of the isotherms. UV-Vis iffuse refletion spetrum photogrphs were tken on the UV-VIS-NIR Spetrophotometer CARY 5000 with snning wvelength rnging from 200 nm to 1200 nm. Before the UV-Vis iffuse refletion mesurement, ll tlyst preursor were fresh reue in 5% H 2-95% N 2 tmosphere t 623 K. The s-reue smples were use for the UV-VIS iffuse mesurement iretly. The reuiility of the line smple ws etermine y H 2 temperture-progrmme reution (TPR) performe on Miromeritis Autohem II 2920 instrument onnete with Hien Qi-20 mss spetrometer (MS). Prior to the TPR test, the tlyst ws pretrete in qurtz U-tue retor t 523 K for 1 h uner gs flow of 20% O 2-80% Ar t rte of 50 m 3 min 1 to rive off physilly sore impurities. After the tlyst oole to room temperture uner rgon, 5% H 2-95% Ar ws introue t flow rte of 50 m 3 min 1, n then the temperture ws rmpe linerly from mient temperture to 1073 K t rte of 10 K min 1. Hyrogen onsumption ws simultneously monitore y therml onutivity etetor n MS. Trnsmission eletron mirosopy (TEM) n High-resolution TEM (HRTEM) 2

mirogrphs were otine using Teni F30 pprtus operte t voltge of 300 kv. The tlyst smples were ultrsonilly isperse in ethnol t room temperture for 30 min. The s-otine solution ws roppe onto the opper gri for TEM. The infrre (IR) spetr were reore on Niolet 6700 spetrometer with spetrl resolution of 2 m 1. Self-supporte wfers were prepre from the pure tlyst power. The smples were ple into in situ IR ell, together with high-vuum turo pump with resiul pressure elow 10 5 P. All smples were reue uner n H 2 flow t 623 K for 4 h in the ell. The ell ws then evute for 30 min to remove the hemisore hyrogen speies. Afterwr, the smple ws oole to room temperture n pure CO (10 5 P) ws mitte into the ell for 30 min t 298 K. The spetr were then ollete fter evution for ifferent times t 298 K. X-ry photoeletron spetrosopy (XPS) n Auger eletron spetrosopy (XAES) were rrie out on JEOL JPC-9010MC instrument equippe with n Mg K X-ry rition soure (1253.6eV) uner the pressure of 1.0x10 7 P. To otin the surfe sttes of the tlysts rey for the retion, the smples were ollete y the following proeure. The tlyst preursor power were presse into thin isks, n then trnsferre to n nlysis hmer to etermine the surfe stte of the tlysts efore reution. An then the smples were In-situ reue in flow of 5% H 2-95% Ar t 623 K for 4 h uner 90 kp. After tht, the XPS n XAES for the hyrogention-tive tlysts were rrie out. All spetr were reore t room temperture n the ining energy (BE) ws set s 284.6 ev for C 1s. Pek eonvolution n fitting were performe using the pek-fitting softwre SPECSURF, JEOL with the spin-orit splitting n the reltive intensities of the spin-orit omponents fixe. Ctlyti retion A ontinuous flow moe equippe with stinless steel tuulr retor n omputer-ontrolle uto smpling system ws uil to evlute the tivity of CuAu x /SBA-15 tlysts in DMO hyrogention. Typilly, 200 mg of tlyst preursor (40-60 meshes) ws loe into the enter of the retor with oth sies of the tlyst e pke with qurtz powers (40-60 meshes). The tlyst preursors were pre-reue t 623 K for 4 h in 5% H 2 95% N 2 tmosphere n then oole to the retion temperture to get rey to the evlution of tlyti performne. Pure H 2 ws fe into the retor, keeping the retion pressure t 3.0 MP uner the help of k-pressure regultor. A 10 wt% DMO methnol solution ws pumpe into the retor with vrying the weight liqui hourly spe 3

veloity (WLHSV DMO ) y using Series III igitl HPLC pump (Sientifi Systems, In.). The prouts were nlyze y n Aglient 7890 gs hromtogrph (GC) with flme ioniztion etetor. The therml stility of the tlyst ws mesure using the hnges of the stey spe time yiel (STY) of EG efore n fter het tretment. Typilly, the s-reue tlyst ws evlute uner the onition of 453 K n WLHSV DMO of 0.6 h 1, giving stey STY F of EG. Then the retion temperture ws rise to 623 K n kept t tht temperture for 24 h. After tht the retor ws oole to the previous temperture, mesuring nother stey STY T of EG. The rtio of STY T /STY F ws use to evlute the therml stility of the tlyst. The turnover frequeny (TOF) ws se on the numer of surfe metl toms estimte y metl ispersion oring to the eqution in literture. 3 M w D m = 6 ρn 0 Where, D m is the metl ispersion; M w is the weighte verge moleulr weight of Au n Cu, ρ is the weighte verge ensity of Au n Cu, N o is Avogro onstnt; m is the weighte verge re of Au n Cu toms on the surfe, m =??; v is the verge metl prtile imeter etermine y TEM. The TOF vlue inites the moles of glyerol onverte y per mol metl t the tlyst surfe per hour (mol-dmo mol-metl 1 surf h 1, for short, h 1 ). The DMO onversion for the TOF lultion ws lower thn 30% through justing the DMO WLHSV. m / VA Referenes: [1] X. Liu, A. Wng, T. Zhng, D.S. Su, C. Y. Mou, Ctl. Toy, 2011, 160, 103. [2] X. Liu, A. Wng, X. Wng, C.Y. Mou, T. Zhng, Chem. Commun., 2008, 27, 3187. [3] J. R. Anerson, Struture of metlli tlysts, Aemi Press, New York, 1975. 4

Tle 1s Physiohemil properties of the tlysts Ctlyst Cu loing Nominl Au/Cu Atul Au/Cu S BET / m 2 g -1 / m 3 g -1 / nm V pore D pore Prtile size D m / wt %) / molr / molr / nm rtio rtio SBA-15 783 0.85 4.8 0 NH 2 -SBA-15 423 0.51 4.7 0 Cu/SBA-15 5.8 0 0 357 0.56 6.0 2.59 0.40 CuAu 0.05 /SBA-15 5.6 0.05 0.02 359 0.68 6.1 2.80 0.37 CuAu 0.075 /SBA-15 5.7 0.075 0.05 373 0.67 5.8 3.16 0.33 CuAu 0.1 /SBA-15 5.6 0.1 0.08 386 0.66 6.1 3.35 0.32 CuAu 0.2 /SBA-15 6.1 0.2 0.16 388 0.51 5.1 3.70 0.29 Au/SBA-15 e 545 0.87 6.0 4.89 0.23 Determine y ICP-OES; BET speifi surfe re; Determine y TEM; Metl ispersions; e The loing of Au ws 6 wt%. Tle 2s Spe time yiel (STY) of EG over severl tlysts efore n fter het tretment Ctlyst STY F STY T Rtio of STY T /STY F / mg (g-t. h) 1 / mg (g-t. h) 1 CuAu 0.1 /SBA-15 313 296 0.95 Cu/SBA-15 86 57 0.66 Cu/SBA-15 200 64 0.32 Retion onitions: WLHSV DMO =0.6 h 1, P (H 2 ) =3.0 MP, H 2 /DMO = 80. The loing of Cu ws 10 wt%. 5

Tle 3s Deonvolution results of Cu LMM XAES Ctlyst KE (ev) AP (ev) Cu 2p3/2 Cu + Cu 0 Cu + Cu 0 BE (ev) X Cu+ / % 6wt% Cu/SBA-15 914.0 918.1 1846.4 1850.5 932.4 36.9 CuAu 0.075 /SBA-15 914.0 918.3 1846.4 1850.7 932.4 45.0 CuAu 0.1 /SBA-15 914.0 918.3 1846.4 1850.7 932.4 40.9 CuAu 0.2 /SBA-15 914.0 918.3 1846.4 1850.7 932.4 31.5 Kineti energy; Auger prmeter; Intensity rtio etween Cu + n (Cu + + Cu 0 ) y eonvolution of Cu LMM XAES spetr. 6

f Intensity (.u.) e 1 2 3 4 5 2 Thet (egree) Figure 1s Smll-ngel XRD ptterns of the () SBA-15; ()-(e) for CuAu x /SBA-15 with ifferent x: () x=0; () x=0.05; () x=0.1; (e) x=0.2; (f) Au/ SBA-15, Au loing 6 wt%. Asore Volume / m -3 g -1 h g f e 0.0 0.2 0.4 0.6 0.8 1.0 P/P 0 Figure 2s () SBA-15, () NH 2 -SBA-15, CuAu x /SBA-15 with X= () 0, () 0.05, (e) 0.1, (f) 0.2 n (g) Au/ SBA-15, Au loing 6 wt%. 7

Distriution D=2.59 nm Distriution D=2.8 nm Distriution D=3.16 nm 0 2 4 6 8 Dimeter / nm 0 2 4 6 8 Dimeter / nm 0 2 4 6 8 Dimeter / nm e Distriution D=3.35 nm f Distriution D=3.70 nm g Distriution D=4.89 nm 0 2 4 6 8 Dimeter / nm 0 2 4 6 8 Dimeter / nm 0 2 4 6 8 Dimeter / nm Figure 3s TEM imges of () SBA-15, CuAu X /SBA-15 with X= () 0; () 0.05; () 0.075; (e) 0.1; (f) 0.2 (g) n the size istriutions. 100 80 CuAu 0.1 /SBA-15 100 80 CuAu 0.1 /SBA-15 DMO onv. / % 60 40 6wt% Cu/SBA-15 10wt% Cu/SBA-15 EG sele. / % 60 40 6wt% Cu/SBA-15 20 20 10wt% Cu/SBA-15 0 0 20 40 60 80 100120140160180200220240 Time on strem / h 0 0 30 60 90 120 150 180 210 240 Time on strem / h Figure 4s Ctlyti performne of CuAu 0.1 /SBA-15 n Cu/SBA-15 t 453 K s funtion of time on strem. Retion onitions: T = 453 K, WLHSV DMO = 0.6 h 1, P (H 2 ) = 3.0 MP, H 2 /DMO = 80. 8

Spent-10 wt%cu/sba-15 Intensity /.u. 10 wt%cu/sba-15 6 wt%cu/sba-15 Intensity /.u. Spent-6 wt%cu/sba-15 CuAu 0.1 /SBA-15 Spent-CuAu 0.1 /SBA-15 20 30 40 50 60 70 80 2θ / egree 20 30 40 50 60 70 80 2θ / egree Figure 5s XRD ptterns of tlysts efore (left) n fter (right) retion 100 Conversion or Seletivity / % 80 60 40 20 DMO Conv. EG Sele. EtOH Sele. 1,2-PDO Sele. MG Sele. 0 440 450 460 470 480 490 500 510 520 Temperture / K Figure 6s Hyrogention of DMO over CuAu 0.1 /SBA-15 tlyst s funtion of temperture. Retion onitions: WLHSV DMO =0.6 h 1, P (H 2 ) =3.0 MP, H 2 /DMO=80. 9

100 Conversion or seletivity / % 80 60 40 20 DMO Conv. EG Sele. EtOH Sele. 1,2-PDO Sele. MG Sele. 0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0 WLHSV / h -1 Figure 7s Hyrogention of DMO over CuAu 0.1 /SBA-15 s funtion of WLHSV DMO. Retion onitions: T=473 K, P (H 2 ) =3.0 MP, H 2 /DMO = 80. 298 K 673 K 623 K Intensity /.u. 573 K 523 K 473 K 423 K 373 K 323 K 298 K 20 30 40 50 60 70 80 2θ / egree Figure 8s In situ XRD ptterns of s-line CuAu 0.1 /SBA-15 smple s funtion of reution temperture uner 5%H 2-95%N 2. 10

1.6 Asorption /.u. 1.4 1.2 1.0 0.8 0.6 0.4 0.2 f e 200 400 600 800 1000 Wvelength / nm Figure 9s UV-Vis iffuse refletion spetrosopy of s-reue CuAu x /SBA-15 tlysts. () x=0; () x=0.05; () x=0.075; () x=0.1; (e) x=0.2; (f) x=. 0.223nm 0.198nmm 0.225nmm 0.210nm 55 2 nm 2 nm 2 nm e f 0.195nm 0.227nm 0.234nm 0.236nm 52 0.204nm 2 nm 2 nm 0.226 0.226nm 2 nm Figure 10s HRTEM imges of () Cu/SBA-15; () CuAu 0.05 /SBA-15; () CuAu 0.075 /SBA-15; () CuAu 0.1 /SBA-15; (e) CuAu 0.2 /SBA-15; (f) Au/SBA-15. 11

Cu 2p 952.2 932.4 Au 4f 4f 5/2 4f 7/2 PE Intensity /.u. 2p 1/2 2p 3/2 PE Intensity /.u. e 965 960 955 950 945 940 935 930 90 88 86 84 82 80 Bining Energy / ev Bining Energy / ev Figure 11s Cu 2p n Au 4f XP spetr of CuAu x /SBA-15 tlysts with fter 4 h reution t 623 K uner 5% H 2-95% Ar. () Cu/SBA-15; () CuAu 0.075 /SBA-15; () CuAu 0.1 /SBA-15; () CuAu 0.2 /SBA-15; (e) Au/SBA-15. 918.0-918.3 914.0 Normlize intensity /.u. 925 920 915 910 905 Kineti energy / ev Figure 12s Cu LMM XAES spetr of the CuAu X /SBA-15 tlysts fter 4 h reution on 623 K uner H 2 (5%)/Ar (95%) tmosphere. : Cu/SBA-15, : CuAu 0.075 /SBA-15, : CuAu 0.1 /SBA-15, : CuAu 0.2 /SBA-15. 12