H 14 [NaP 5 W 30 O 110 ] as a Heterogeneous Recyclable Catalyst for the Air Oxidation of Thiols Under Solvent Free Conditions

Similar documents
Catalyzed N-acylation of carbamates and oxazolidinones by Heteropolyacids (HPAs)

Keggin-Type Heteropolyacids-Catalyzed One Pot Oxidation-Trimerization of Alcohols into 2,4,6-Trisubstituted-1,3,5-Trioxanes

Alcohols Oxidation by oxygen O 2 in presence of vanadoheteropolyacid (H 5 PMo 10 V 2 O 40 ) as green catalyst

Acylation of aromatic compounds by acid anhydrides using Preyssler's anion [NaP 5 W 30 O 110 ] 14- and heteropolyacids as green catalysts

Recent Researches in Communications, Electronics, Signal Processing and Automatic Control

LIQUID PHASE ALKYLATION OF BENZENE WITH 1- DECENE OVER SILICA SUPPORTED H 14 [NaP 5 W 30 O 110 ] AS A GREEN AND REUSABLE CATALYST

Mohammad G. Dekamin,* Zahra Mokhtari

Comparison of Catalysts Preyssler and Silica-Supported Nano Preyssler in the Synthesis of Acetyl Salicylic Acid

molecules ISSN

Photocatalytic Synthesis of Gold Nanoparticles Using Preyssler Acid and Their Photocatalytic Activity

IRANIAN JOURNAL OF CATALYSIS

2,6-Dicarboxypyridinum chlorochromate: an efficient oxidizing agent for the very fast oxidation of Hantzsch 1,4- dihydropyridines

Journal of Chemical and Pharmaceutical Research

A Facile Procedure for the Generation of Dichlorocarbene from the Reaction of Carbon Tetrachloride and Magnesium using Ultrasonic Irradiation

molecules ISSN

Available online at

Supporting Information

Review Experiments Formation of Polymers Reduction of Vanillin

Supporting Information

An Eco-friendly Route to Synthesis of Quinolines

media), except those of aluminum and calcium

ESKANDAR KOLVARI CONTACT INFORMATION. POSTION: Assistant Professor. EDUCATION: Title: Application of solid acids and nano tube like reagents

J. Serb. Chem. Soc. 76 (11) (2011) UDC JSCS :544.4 Original scientific paper

Chemistry 283g- Experiment 3

Synthesis and Characterization of Keggin type Phosphotungstic Heteropoly acid and catalytic activity in Conversion of Trihydric alcohol into Acrolein

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications

Bismuth(III) Promoted Aerobic Oxidation of Benzoin

Magnetic halloysite: an envirmental nanocatalyst for the synthesis of. benzoimidazole

Bita Baghernejad * Department of Chemistry, School of Sciences, Payame Noor University (PNU), Iran

CHEM 2240L Final Exam Review Topics

General Papers ARKIVOC 2007 (xvi)

Fanning. Synthesis of Camphor by the Oxidation of Borneol. Christine Fanning

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered.

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Mild and Efficient Oxidation of Primary and Secondary Alcohols Using NiO 2 /Silica Gel System (Solvent Free)

NaHSO 4.H 2 O promoted oxidative deprotection of trimethylsilyl, tetrahydropyranyl and methoxymethyl ethers with HIO 3

Preparation and characterization of silica-supported magnetic nanocatalyst and

Application of Solid Bases MgO and CaO Covered with Al2O3 in Alkylation of Malonates

Supporting Information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Melamine trisulfonic acid catalyzed regioselective nitration of aromatic compounds under solvent-free conditions

CHEMISTRY 263 HOME WORK

N-Phenylphthalimide and its derivatives possess beneficial pharmacological

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

Babak Karimi* and Majid Vafaeezadeh

NICKEL ACETATE AS EFFICIENT ORGANOMETALLIC CATALYST FOR SYNTHESIS OF BIS (INDOLYL) METHANES

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Tetraphenylcyclopentadienone. Becky Ortiz

Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles by reusable

Vibrational Spectra Study of the Interactions Between Keggin Heteropolyanions and Amino Acids

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol.

Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

Chapter 7: Alcohols, Phenols and Thiols

Aromatic Compounds II

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chemistry 254 Lab Experiment 1: Qualitative Organic Analysis Summer 2004

Oxidative transformation of organic compounds using bis(bipyridine)silver(ii) peroxydisulfate

ACETONE. PRODUCT IDENTIFICATION CAS NO EINECS NO MOL WT H.S. CODE Oral rat LD50: 5800 mg/kg

Chapter 15 Reactions of Aromatic Compounds

Ch 20 Carboxylic Acids and Nitriles

Supporting Information

+ X base) CH 2 X. R enolate anion

Organoselenium-Catalyzed Mild Dehydration of Aldoximes: An Unexpected Practical Method for Organonitrile Synthesis

Kinetics and mechanism of oxidation of benzyl alcohol by Oxone catalyzed by Keggin type 12-tungstocobaltate(II)

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Supporting Information

HETEROPOLYACIDS AS AN EFFICIENT AND REUSABLE CATALYTIC SYSTEM FOR THE REGIOSPECIFIC NITRATION OF PHENOLS WITH METAL NITRATES. Iran

Supplementary Material. Ionic liquid iodinating reagent for mild and efficient iodination of. aromatic and heteroaromatic amines and terminal alkynes

Microwave Irradiation Versus Conventional Method: Synthesis of some Novel 2-Substituted benzimidazole derivatives using Mannich Bases.

Efficient MgBr 2.OEt 2 - catalyzed Knoevenagel condensation

Supporting Information: Regioselective esterification of vicinal diols on monosaccharide derivatives via

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Oxidation of Aromatic Monoethers by N-Chloronicotinamide in Aqueous Acetic Acid Medium A Kinetic Approach

Reaction of Sodium Azide with 1,1 Dicyclohexenyl Diepoxides

A Novel Approach of Using NBS as an Effective and Convenient Oxidizing Agent for Various Compounds a Survey

Honors Cup Synthetic Proposal (230 V- Tu PM- W08)

Experiment 1: Preparation of Vanillyl Alcohol

Alcohols. Alcohol any organic compound containing a hydroxyl (R-OH) group. Alcohols are an extremely important organic source

An improved preparation of isatins from indoles

UNIT 11 ALCOHOLS, PHENOLS & ETHERS

CHM 292 Final Exam Answer Key

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components.

Aldehydes and Ketones : Aldol Reactions

ONE POT SYNTHESIS OF NITRILES FROM ALDEHYDES AND HYDROXYLAMINE HYDROCHLORIDE USING SODIUM SULPHATE IN DMF UNDER REFLUX CONDITION

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Class XII: Chemistry Chapter 13: Amines Top concepts

Supporting Information

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

The Fragrance of Rum, Isobutyl Propionate

CHAPTER 6. SOLVENT-FREE SELECTIVE OXIDATION OF -PINENE OVER Co-SBA-15 CATALYST

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol

International Journal of Advancements in Research & Technology, Volume 2, Issue 8, August ISSN

ζ ε δ γ β α α β γ δ ε ζ

Ethers. Synthesis of Ethers. Chemical Properties of Ethers

ALCOHOLS AND PHENOLS

O: A Convenient System for Selective Reduction of Aldehydes VS. Ketones to their Corresponding Alcohols

Transcription:

Molecules 2007, 12, 2223-2228 molecules ISSN 1420-3049 2007 by MDPI www.mdpi.org/molecules Communication H 14 [NaP 5 W 30 O 110 ] as a Heterogeneous Recyclable Catalyst for the Air Oxidation of Thiols Under Solvent Free Conditions Rahim Hekmatshoar 1, *, Sodeh Sajadi 1, Majid M. Heravi 1 and Fatemeh F. Bamoharram 2 1 Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran; E-mails: sodehsadjadi@yahoo.com; mmh1331@yahoo.com 2 Department of Chemistry, School of Sciences, Azad University, Khorasan Branch, Mashad, Iran; E-mail: fbamoharram@mshdiau.ac.ir * Author to whom correspondence should be addressed; E-mail: rhekmatus@yahoo.com; Tel.:(+98)- 21-88044040; Fax: (+98)-21-88035187 Received: 12 June 2007; in revised form: 15 September 2007 / Accepted: 16 September 2007 / Published: 25 September 2007 Abstract: The catalytic oxidation of thiols to the corresponding disulfides using Preyssler s catalyst H 14 [NaP 5 W 30 O 110 ] has been studied. These highly selective oxidations gave good yields of the target disulfides. Keywords: Disulfides; green catalyst; heteropolyacid; Preyssler; reusable catalyst. Introduction The conversion of thiols to disulfides is important from both the biological and synthetic chemistry points of view. In biological systems, thiols are oxidized by flavins, cytochromes and dehydroascorbic acid to control the cellular redox potential and prevent oxidative damage. On the other hand, disulfides are important reagents in organic synthesis and can be used to prepare sulfinyl and sulfenyl compounds [1]. Several methods based on oxidative S-S coupling have already been reported. These include, among others, cerium (IV) salts, transition metal oxides [2], air in combination with transition metal catalysts [3], ferric chloride, sodium chlorite, nitric oxide, hydrogen peroxide, halogens [4] and heterogeneous permanganate [5].

Molecules 2007, 12 2224 Some of these methods suffer from obvious disadvantages such as long reaction times, limited availability of the oxidant, toxicity of reagents and difficult isolation of products. For example, halogens are inexpensive, but they are nonselective, the hydrogen halide by-products complicate the oxidation reaction and they aren t particularly safe [4]. Consequently, the introduction of readily available, safe and stable reagents for the oxidation of thiols to disulfides is still a necessity. The catalytic function of heteropolyacids (HPAs) and related polyoxometalate compounds have attracted much attention, particularly over the last two decades [6]. Polyoxametalates (POMs) are a class of molecularly define organic metal-oxide clusters, possessing intriguing structures and diverse properties [7]. These compounds exhibit high activity in acid-base type catalytic reactions, hence they are used in many catalytic areas as homogeneous and heterogeneous catalysts. The application of the Preyssler catalyst is mostly limited and only a few demonstrations of its catalytic activity have been reported. This heteropolyacid nevertheless has important advantages such as: strong Bronsted acidity with 14 acidic protons, high thermal stability, high hydrolytic stability (ph 0 12), reusability, safety, low quantity of waste, separability, low corrosiveness, high oxidation potential and general greenness, along with an exclusive structure, which have attracted much attention on this catalyst. In the so called Preyssler s anion, [NaP 5 W 30 O 110 ] 14-, Na + is encrypted inside a central cavity formed by five PW 6 O 22 units arranged in a crown [8], as shown schematically in Figure 1. Figure 1. Preyssler structure. Recently we have explored the application of Preyssler catalyst in various organic reactions [8-14]. This paper reports the results of the oxidation of thiols to disulfides utilizing [NaP 5 W 30 O 110 ] 14- as catalyst. The greatest advantages of this procedure (Scheme 1) arise from its greenness, reusable catalyst, high yields, the fact that in most cases the reaction was solvent free and side reaction products resulting from acid catalysis were not found. Scheme 1. 2 RSH H 14 [NaP 5 W 30 O 110 ] heat, air R-S-S-R

Molecules 2007, 12 2225 Results and Discussion Previously it was shown that in the oxidations of anilines with H 2 O 2 catalyzed by Preyssler and Keggin HPA catalysts, in order to compare the stability of the Preyssler catalyst structure in the presence of H 2 O 2, with respect to that of Keggin HPAs, separation of the Preyssler catalyst was perfoemd after the catalytic reaction. Interestingly, in contrast to Keggin HPAs, Preyssler s anion catalyzes oxidations of primary aromatic amines by H 2 O 2 without any degradation of its structure, a very important feature in catalytic processes, specially, in industry. It is well known that Keggin HPAs at 60 70 C in the presence of H 2 O 2 are degraded to peroxopolyoxometalates and the reaction actually takes place via the oxygen atom transfer from the peroxopolyoxometalate to the substrate. Consequently we were interested in developing of applications of the Preyssler catalyst in other oxidation reactions because of its exclusive structure and properties. In our studies it has been found that Preyssler s anion catalyzes the air oxidation of thiols to disulfides in excellent yields in a solvent free system. The results of attempted oxidations of these thiols are presented in Table 1. Separation of the Preyssler catalyst was made after the catalytic reaction. Both alkyl and aryl thiols gave similar results. Sterically hindered thiols took slightly longer to react. We also found that the presence of an electron-donating or an electron-withdrawing group on the aromatic ring did not affect upon the reaction times and yields. Table 2. Oxidation of thiols to disulfides. Entry Thiol Disulfide Yield/% 1 p-tolylthiol Di-p-ditolyldisulfide 98 2 Thiophenol Diphenyldisulfide 97 3 Naphtylthiol Di-naphtyldisulfide 91 4 Cyclohexylthiol Dicyclohexyldisulfide 95 5 p-chlorophenylthiol Bis[p-chlorophenyl]disulfide 97 6 Ethanethiol Diethyldisulfide 92 7 Propylthiol Dipropyldisulfide 95 8 Octylthiol Dioctyldisulfide 98 9 Phenyl-methanethiol Dibenzyldisulfide 94 10 sec-butylthiol Di-sec-butyldisulfide 97 Reusability of the Catalyst In order to know whether the catalyst would succumb to poisoning and lose its catalytic activity during the reaction, we investigated the reusability of the catalyst. For this purpose we first carried out the reaction in the presence of the catalyst. After completion of the reaction, the catalyst was removed and washed with diethyl ether and subjected to a second run of the reaction process with the same substrate. The first experiment and subsequent experiments gave almost identical yields. We have thus found that Preyssler catalyst can be reused several times, without any appreciable loss of activity and after recovery the catalytic activity was decreased only 2 4%, pointing to the stability and retention of

Molecules 2007, 12 2226 catalytic capability of this useful polyanion. IR spectra of the resulting solids indicate that the catalyst can be recovered without structural degradation (Figure 2). Figure 2. IR spectrum of Preyssler s anion before (a) and after (b) use. Conclusions In conclusion, a new and efficient method for oxidation of thiols developed. The significant features of the system are as follows: less toxic and hazardous chemicals can be used; high yields are obtained without side products; using of Preyssler s anion, [NaP 5 W 30 O 110 ] 14-, a heteropolyanion with interesting catalytic properties as a green, reusable and eco- friendly catalyst. Experimental General Melting points were measured by using the capillary tube method with an Electrothermal 9200 apparatus. 1 H-NMR spectra were recorded on a Bruker AC-80 MHZ spectrometer using TMS as an internal standard (CDCl 3 solution). IR spectra were recorded from KBr disk on the FT-IR Bruker Tensor 27. GC spectra were carried out on a Network GC System-Agilent 5973 spectrometer. All products gave satisfactory spectral data in accord with the assigned structures [4]. Catalyst Preparation H 14 -P 5 was prepared by passage of a solution of the potassium salt in water through a column (50 cm 1 cm) of Dowex50W 8 in the H + form and evaporation of the eluate to dryness under vacuum [15].

Molecules 2007, 12 2227 Oxidation of Thiols: General Procedure In a sample run, a dry 25 ml round bottomed flask was charged with thiol (1 mmole) and 0.01 mmole of heteropolyacid. The reaction mixture was heated to 90 C in an oil bath. For solid thiols chloroform was used as solvent. Time of reaction was between 1-2 hours, the progress of reaction was monitored by TLC (chloroform was used as solvent for TLC). After completion of the reaction, the mixture was diluted with chloroform and catalyst was removed by simple filtration. After evaporation of solvent, products were obtained in good yields. Acknowledgements The authors are thankful from Azzahra Research Council for the partial financial support. References 1. Karami, B.; Montazerozohori, M.; Moghadam, M.; Habibi, M. H.; Niknam, Kh. Selective Oxidation of Thiols to Disulfides Catalyzed by Iron (III) {Tetra Phenyl Porphyrin} Using Urea- Hydrogen Peroxide as Oxidizing Reagent. Turk. J. Chem. 2005, 29, 539-546. 2. Akdag, A.; Webb, T.; Worley, S. D. Oxidation of thiols to disulfides with monochloropoly (styrene hydantoin) beads Tetrahedron Lett. 2006, 47, 3509 3510. 3. Chauhan, S. M. S.; Kumar, A.; Srinivas, K. A. Oxidation of thiols with molecular oxygen catalyzed by cobalt (II) phthalocyanines in ionic liquid. Chem. Commun. 2003, 2348 2349. 4. Hashmat Ali, M.; McDermott, M. Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support. Tetrahedron Lett. 2002, 43, 6271 6273 5. Walters, M. A.; Chaparro, J.; Siddiqui, T.; Williams, F.; Ulku, C.; Rheingold, A. L. The formation of disulfides by the [Fe(nta)Cl 2 ] 2_ catalyzed airoxidation of thiols and dithiols. Inorg. Chim. Acta 2006, 359, 3996 4000. 6. Izumi, Y.; Urabe, K.; Onaka, M. Zeolites Clay and Heteropolyacid in Organic Reactions; Kodansha: Tokyo, 1992; Vol. 99 7. Pope, M. T.; Muller, A. Polyoxometalates: From Platonic Solid to Anti-Retroviral Activity; Kluwer Academic Publishing: Dorderecht, The Netherlands, 1994. 8. Bamoharram, F. F.; Heravi, M. M.; Roshani, M.; Jahangir, M.; Gharib, A. Preyssler catalyst, [NaP 5 W 30 O 110 ] 14- : A green, efficient and reusable catalyst for esterification of salicylic acid with aliphatic and benzylic alcohols. J. Appl. Catal. A: Gen. 2006, 302, 42 47. 9. Bamoharram, F. F.; Heravi, M. M.; Roshani, M.; Jahangir, M.; Gharib, Jahangir, M. A catalytic method for synthesis of γ-butyrolactone, ε-caprolactone and 2-cumaranone in the presence of Preyssler s anion, [NaP 5 W 30 O 110 ] 14-, as a green and reusable catalyst. J. Mol. Catal A: Chem. 2006, 252, 90-95. 10. Heravi, M. M.; Motamedi, R.; Seifi, N.; Bamoharram, F. F. Catalytic synthesis of 6-aryl-1Hpyrazolo[3,4-d]pyrimidin-4[5H]-ones by heteropolyacid: H 14 [NaP 5 W 30 O 110 ] and H 3 PW 12 O 40. J. Mol. Catal. A: Chem. 2006, 249, 1 3.

Molecules 2007, 12 2228 11. Heravi, M. M.; Bakhtiari, Kh.; Bamoharram, F. F. 12-Molybdophosphoric acid: A recyclable catalyst for the synthesis of Biginelli-type 3,4-dihydropyrimidine-2(1H)-ones. Catal. Commun. 2006, 7, 373. 12. Bamoharram, F. F.; Heravi, M. M.; Roshani, M.; Tavakoli, N. N-oxidation of pyridine carboxylic acids using hydrogen peroxide catalyzed by a green heteropolyacid catalyst: Preyssler s anion, [NaP 5 W 30 O 110 ] 14-.J. Mol. Catal A: Chem. 2006, 252, 219 225. 13. Heravi, M. M.; Bakhtiari, Kh.; Bamoharram, F. F. An efficient and chemoselective synthesis of acylals from aromatic aldehydes and their regeneration, catalyzed by 12-molybdophosphoric acid. Catal. Commun. 2006, 7, 499-501. 14. Heravi, M. M.; Zadsirjan, V.; Bakhtiari, Kh.; Oskooie, H. A.; Bamoharram, F. F. Green and reusable heteropolyacid catalyzed oxidation of benzylic, allylic and aliphatic alcohols to carbonyl compounds. Catal. Commun. 2007, 8, 315 318. 15. Bamoharram, F. F.; Heravi, M. M.; Roshani, M.; Akbarpour, M. Catalytic performance of Preyssler heteropolyacid as a green and recyclable catalyst in oxidation of primary aromatic amines. J. Mol. Catal A: Chem. 2006, 255, 193 198. Sample Availability: Available from authors. 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.