OS-Atmospheres & Open Cluster MS

Similar documents
ARES+MOOG From EWs to stellar parameters

Chapter 7: From theory to observations

From theory to observations

12. Physical Parameters from Stellar Spectra. Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg"

From theory to observations

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5]

2. Stellar atmospheres: Structure

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

PoS(NIC XI)301. Andreas Korn. IFA, Uppsala University. Heidelberg,

arxiv:astro-ph/ v1 5 May 2004

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

Dark Matter. ASTR 333/433 Spring Today Stars & Gas. essentials about stuff we can see. First Homework on-line Due Feb. 4

FIA0221: Taller de Astronomía II. Lecture 14 Spectral Classification of Stars

Stellar Populations: Resolved vs. unresolved

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

Outline. ESA Gaia mission & science objectives. Astrometric & spectroscopic census of all stars in Galaxy to G=20 mag.

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009

arxiv: v1 [astro-ph.im] 6 Nov 2017

Other stellar types. Open and globular clusters: chemical compositions

Extremely Metal-Poor Stars

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

Classical Methods for Determining Stellar Masses, Temperatures, and Radii

THE GALACTIC BULGE AND ITS GLOBULAR CLUSTERS: MOS. B. Barbuy

Stellar population models with variable abundance ratios

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Energy transport: convection

Fundamental stellar parameters

Model Atmospheres. Model Atmosphere Assumptions

Spectral synthesis codes and methods of analysis : what do we have on the market Tatiana Ryabchikova Institute of Astronomy RAS

The Gaia-ESO Public Spectroscopic Survey a lesson for our community in use of limited telescope access. Gerry Gilmore Sofia Randich Gaia-ESO Co-PIs

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator)

Interferometric Observations of Supergiants: Direct Measures of the Very Largest Stars

Remember from Stefan-Boltzmann that 4 2 4

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies

HII regions and massive stars are very valuable tools to measure present-day oxygen abundances across the Universe.

Tests of MATISSE on large spectral datasets from the ESO Archive

Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population

ECLIPSING BINARIES IN OPEN CLUSTERS

Limb Darkening. Limb Darkening. Limb Darkening. Limb Darkening. Empirical Limb Darkening. Betelgeuse. At centre see hotter gas than at edges

Stars and their properties: (Chapters 11 and 12)

Asterseismology and Gaia

Astr 5465 Feb. 6, 2018 Today s Topics

Supplementary Figure 1 Comparison of the distribution of S indices measured by LAMOST (red) and the distribution measured by Isaacson & Fischer 57

Substellar Interiors. PHY 688, Lecture 13

Model Atmosphere Codes: ATLAS12 and ATLAS9

Hertzprung-Russel and colormagnitude. ASTR320 Wednesday January 31, 2018

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009

HII regions. Massive (hot) stars produce large numbers of ionizing photons (energy above 13.6 ev) which ionize hydrogen in the vicinity.

From the first stars to planets

Stellar atmospheres: an overview

Quantum Mechanics and Stellar Spectroscopy.

Effects of low metallicity on the evolution and spectra of massive stars

Chemical tagging of FGK stars: testing membership to stellar kinematic groups

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen

Astronomy II (ASTR-1020) Homework 2

Stellar Evolution & issues related to the post Turn-Off evolution

Chapter 10: Unresolved Stellar Populations

Organizing the Family of Stars:

ASPCAP Tests with Real Data

Review of stellar evolution and color-magnitude diagrams

Detailed chemical abundances of M-dwarf planet hosts from APOGEE observations

Stars, Galaxies & the Universe Lecture Outline

On the Red Edge of the δ Scuti Instability Strip

ASTR-1020: Astronomy II Course Lecture Notes Section III

What tool do astronomers use to understand the evolution of stars?

ASTRONOMY AND ASTROPHYSICS. Synthetic photometry from ATLAS9 models in the UBV Johnson system. Fiorella Castelli

X-ray Emission from O Stars. David Cohen Swarthmore College

SPADES: A STELLAR PARAMETER DETERMINATION SOFTWARE

Lecture 2: Formation of a Stellar Spectrum

New Dimensions of Stellar Atmosphere Modelling

Stellar Astrophysics: The Classification of Stellar Spectra

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum

WINDS OF HOT MASSIVE STARS III Lecture: Quantitative spectroscopy of winds of hot massive stars

The Classification of Stellar Spectra Chapter 8

SkyMapper and EMP stars

Revision: Sun, Stars (and Planets) See web slides of Dr Clements for Planets revision. Juliet Pickering Office: Huxley 706

Chapter 3C. 3-4C. Ionization

High resolution spectroscopic characterization of the FGK stars in the solar neighbourhood

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

Automated Classification of HETDEX Spectra. Ted von Hippel (U Texas, Siena, ERAU)

Galac%c Unprecedented Precision (0.01 dex)

The atmosphere of Exoplanets AND Their evolutionary properties. I. Baraffe

Stellar Structure and Evolution

Deriving stellar masses from SDSS

Astr 2310 Thurs. March 23, 2017 Today s Topics

Fundamental stellar parameters & the fine structure of the Low Main Sequence

Lecture 6: Continuum Opacity and Stellar Atmospheres

The Sun and the Stars

Characterization of Exoplanet-Host Stars Vardan Adibekyan Instituto de Astrofísica e Ciências do Espaço

Chapter 12: The Lives of Stars. How do we know it s there? Three Kinds of Nebulae 11/7/11. 1) Emission Nebulae 2) Reflection Nebulae 3) Dark Nebulae

Physics and Chemistry of the Interstellar Medium

Binaries from Afar: Impact on Integrated Photometry of Stellar Populations

Problem Score Worth

White Dwarfs. We'll follow our text closely for most parts Prialnik's book is also excellent here

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011

Transcription:

OS-Atmospheres & Open Cluster MS Guangzhou November 24 th 2007 Opacity Sampling Model Atmospheres & the Main Sequence of Open Clusters frank@grupp-astro.de Frank GRUPP Slide 1

Outline Opacity sampling model atmospheres OS versus ODF Solar flux and colors Why open clusters Which open clusters Methods of parameter determination Chemical homogeneity of the clusters Age and distance of Melotte111 & the Pleiades An outlook on LAMOST open cluster survey frank@grupp-astro.de Frank GRUPP Slide 2

Model atmospheres Importance Why are model atmospheres so important? Determination of stellar parameters. Color temperature relations Color gravity relations IRFM method......... Determination of element abundances. Line rations / color ratios in galaxy spectra. Boundary conditions for stellar evolution. Understanding basic physical processes such as convection and radiation transfer. frank@grupp-astro.de Frank GRUPP Slide 3

Model atmospheres In the center frank@grupp-astro.de Frank GRUPP Slide 4

MAFAGS-ODF/OS Basics 1D hydrostatic model Plane parallel geometry Convection according to Cannuto & Mazitelli LTE assumption Line opacity can be treated in ODF and OS Ionization states I, II and III + diatomic molec. B6... A... F... G... K2 15000K...4800K A&A 420, 289-305 frank@grupp-astro.de Frank GRUPP Slide 5

MAFAGS ODF versus OS (1) OS: Each line treated individually (20'000'000) Slow (1min-1hour) ODF: Statistic treatment of line opacities Tabulated Fast (1s) frank@grupp-astro.de Frank GRUPP Slide 6

MAFAGS ODF versus OS (2) ODF s are tabels of 6 dimensions T, Pgas, Pe, ξmicro, [Fe/H], [α/h] Interpolation introduces errors Indvidual element abundances (peculiar stars) can not reliably be modeled O, Mg, Si are important electron sources those e - go into opacity forming species (H -, H 2 -, scatter processes...) OS can be calculated for individual stars Am stars or metal poor stars with α-enhancement frank@grupp-astro.de Frank GRUPP Slide 7

MAFAGS ODF versus OS (3) Solar OS model is 50-60K hotter than ODF model! This affects: IRFM temperatures Colors (B-V,U-B) Balmer line temp. Element abund. Sun is a reference for many methods frank@grupp-astro.de Frank GRUPP Slide 8

MAFAGS-OS Solar flux & colors Flux agrees well. B-Vsun = 0.195 (0.02) B-Vmafags-os = 0.19 B-Vatlas9 = 0.08 U-Bsun = 0.642 (0.02) U-Bmafags-os = 0.64 U-Batlas9 = 0.59 frank@grupp-astro.de Frank GRUPP Slide 9

MAFAGS-OS Summary OS models individual stars instead of using grid interpolation OS model calculation takes 0.5-6 hours (ODF model tables only a few seconds) Solar flux and colors of the OS model agree well frank@grupp-astro.de Frank GRUPP Slide 10

OC main sequence A unique laboratory for stellar evolution & model atmosphere testing Stars with same age Stars with same initial chemical composition We need very good parameters Use high resolution high signal to noise spectra Use OS models Use Non-LTE methods Only few clusters are near enough and show main sequence up to late B types (He desired) frank@grupp-astro.de Frank GRUPP Slide 11

Melotte 111 and the Pleiades frank@grupp-astro.de Frank GRUPP Slide 12

Pleiades - Reddening Reddening measurements available Reddening very non-uniform Any color information to be treated with care frank@grupp-astro.de Frank GRUPP Slide 13

Methods of Teff determination Balmer lines between Teff = 4800 and 7500K Color indices for higher temperatures Keep in mind reddening! frank@grupp-astro.de Frank GRUPP Slide 14

Methods of log(g) determination Wings of broad lines (Mg Ib) for cool stars Balmer lines and consistency between Balmer lines for hotter temperatures frank@grupp-astro.de Frank GRUPP Slide 15

Other parameters ξmicro from consistent element abundances of lines of different line-strength Element abundances from LTE spectrum synthesis and line fitting (no equivalent widths) Stellar rotation from line fitting frank@grupp-astro.de Frank GRUPP Slide 16

The main sequences Error bars 100K / 0.12 150-450K / 0.15 100K / 0.10 70-100K / 0.08 frank@grupp-astro.de Frank GRUPP Slide 17

Chemical homogeneity FeI / FeII [Fe/H]Mel111 = -0.03±0.02 [Fe/H]Ple = +0.04±0.02 frank@grupp-astro.de Frank GRUPP Slide 18

Chemical homogeneity Tr146 Tr146 is an Ap star of Cr-Eu type frank@grupp-astro.de Frank GRUPP Slide 19

Age of Melotte 111 Salasnich 2000 Age 630 MYrs frank@grupp-astro.de Frank GRUPP Slide 20

Age of the Pleiades Salasnich 2000 Age 115 MYrs frank@grupp-astro.de Frank GRUPP Slide 21

Spectroscopic distances Mel 111 Mass, Teff, log(g), BC & V dsp dhip = 86.1± 3.1pc dsp = 84.7± 1.7pc This can not directly be used as a measurement of the cluster distance frank@grupp-astro.de Frank GRUPP Slide 22

Spectroscopic distances Pleiades dhip = 136.3± 9.3pc dsp = 143.9± 4.1pc 5 frank@grupp-astro.de Frank GRUPP Slide 23

Is there any use for LAMOST? frank@grupp-astro.de Frank GRUPP Slide 24

LAMOST Open cluster survey LOCS Low resolving power Automatic parameter determination Important to know reliability of parameters Suggestion: Use parameters from high resolution work as test sample for OC survey frank@grupp-astro.de Frank GRUPP Slide 25

Next steps of our work Compare our model atmosphere to others Use the Sun + a small test sample of stars Refine our methods of parameter determination frank@grupp-astro.de Frank GRUPP Slide 26

The end: Thanks for your dedication! The team: Frank Grupp Thomas Gehren TAN Kefeng This talk is available online: www.grupp-astro.de frank@grupp-astro.de Frank GRUPP Slide 27