Checking Out the Theory *

Similar documents
Astro 21 first lecture. stars are born but also helps us study how. Density increases in the center of the star. The core does change from hydrogen to

Agenda for Ast 309N, Sep. 27. Measuring Masses from Binary Stars

A1101, Lab 8: Distances and Ages of Star Clusters Lab Worksheet

Remember from Stefan-Boltzmann that 4 2 4

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

Background and Theory

Birth & Death of Stars

TAKE A LOOK 2. Identify This star is in the last stage of its life cycle. What is that stage?

Lecture Outlines. Chapter 20. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Stellar Evolution Notes

Chapter 15 Surveying the Stars Properties of Stars

Chapter 15: Surveying the Stars

Chapter 15 Surveying the Stars

Evidence for Stellar Evolution

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

The Cosmic Perspective. Surveying the Properties of Stars. Surveying the Stars. How do we measure stellar luminosities?

Prentice Hall EARTH SCIENCE

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. HW#7 due Friday by 5 pm! (available Tuesday)

Astronomy 201: Cosmology, Fall Professor Edward Olszewski and Charles Kilpatrick

Lecture 21 Formation of Stars November 15, 2017

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

Chapter 11 Surveying the Stars

Comparing a Supergiant to the Sun

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

Announcement: Quiz Friday, Oct 31

TA feedback forms are online!

10/29/2009. The Lives And Deaths of Stars. My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building. Stellar Evolution

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence

Astronomy 1 Fall 2016

The Ecology of Stars

Betelgeuse. The Life of Stars. Stars can be grouped into 4 major categories based on size: supergiants giants main sequence stars dwarfs.

Instructions. Students will underline the portions of the PowerPoint that are underlined.

OPEN CLUSTERS LAB. I. Introduction: II. HR Diagram NAME:

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy 102: Stars and Galaxies Examination 3 Review Problems

SCIENTIFIC CASE: Study of Hertzsprung-Russell Diagram

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams:

Physics Homework Set 2 Sp 2015

The Milky Way Galaxy. Sun you are here. This is what our Galaxy would look like if we were looking at it from another galaxy.

Interpreting the HR diagram of stellar clusters

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Stars and Galaxies 1

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

Beyond Our Solar System Chapter 24

December 18, What do you know about the life of a star?

8.8A describe components of the universe, including stars, nebulae, galaxies and use models such as HR diagrams for classification

Galaxies Galore. Types of Galaxies: Star Clusters. Spiral spinning wit arms Elliptical roundish Irregular no set pattern

The Universe. is space and everything in it.

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution

Chapter 15 Surveying the Stars Pearson Education, Inc.

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Earth in Space. Stars, Galaxies, and the Universe

The Distances and Ages of Star Clusters

Chapter 14 The Milky Way Galaxy

Chapter 21: Stars Notes

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Selected Questions from Minute Papers. Outline - March 2, Stellar Properties. Stellar Properties Recap. Stellar properties recap

Astronomy. Stellar Evolution

Earth Science, 13e Tarbuck & Lutgens

Stars & Galaxies. Chapter 27 Modern Earth Science

StarTalk. Sanjay Yengul May "To know ourselves, we must know the stars."

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

Chapter 20 Stellar Evolution Part 2. Secs. 20.4, 20.5

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium

ASTR Look over Chapter 15. Good things to Know. Triangulation

Today. When does a star leave the main sequence?

The Milky Way Galaxy. sun. Examples of three Milky-Way like Galaxies

The Birth and Death of Stars

Stellar Fossils: Globular clusters as probes of the galaxy

Properties of Stars. Characteristics of Stars

Today. Stars. Properties (Recap) Binaries. Stellar Lifetimes

( ) = 5log pc NAME: OPEN CLUSTER PRELAB

PHYS103 Sec 901 Hour Exam No. 3 Practice Version 1 Page: 1

Life Cycle of a Star - Activities

Stars and Galaxies. Evolution of Stars

SEQUENCING THE STARS

Life Cycle of a Star Worksheet

Hertzsprung-Russell Diagram

Stellar Midlife. A. Main Sequence Lifetimes. (1b) Lifetime of Sun. Stellar Evolution Part II. A. Main Sequence Lifetimes. B. Giants and Supergiants

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

Chapter 12 Stellar Evolution

Review: HR Diagram. Label A, B, C respectively

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

LESSON 1. Solar System

Astronomy 10 Test #2 Practice Version

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya

The Life Cycles of Stars. Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC

Astronomy 104: Second Exam

Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula.

What is the solar system?

Abundance of Elements. Relative abundance of elements in the Solar System

chapter 31 Stars and Galaxies

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

Transcription:

OpenStax-CNX module: m59927 1 Checking Out the Theory * OpenStax Astronomy This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 Learning Objectives By the end of this section, you will be able to: Explain how the HR diagram of a star cluster can be related to the cluster's age and the stages of evolution of its stellar members Describe how the main-sequence turno of a cluster reveals its age In the previous section, we indicated that that open clusters are younger than globular clusters, and associations are typically even younger. In this section, we will show how we determine the ages of these star clusters. The key observation is that the stars in these dierent types of clusters are found in dierent places in the HR diagram, and we can use their locations in the diagram in combination with theoretical calculations to estimate how long they have lived. 2 HR Diagrams of Young Clusters What does theory predict for the HR diagram of a cluster whose stars have recently condensed from an interstellar cloud? Remember that at every stage of evolution, massive stars evolve more quickly than their lower-mass counterparts. After a few million years (recently for astronomers), the most massive stars should have completed their contraction phase and be on the main sequence, while the less massive ones should be o to the right, still on their way to the main sequence. These ideas are illustrated in Figure 1 (Young Cluster HR Diagram.), which shows the HR diagram calculated by R. Kippenhahn and his associates at Munich University for a hypothetical cluster with an age of 3 million years. * Version 1.3: Sep 29, 2016 9:08 pm +0000 http://creativecommons.org/licenses/by/4.0/

OpenStax-CNX module: m59927 2 Young Cluster HR Diagram. Figure 1: We see an HR diagram for a hypothetical young cluster with an age of 3 million years. Note that the high-mass (high-luminosity) stars have already arrived at the main-sequence stage of their lives, while the lower-mass (lower-luminosity) stars are still contracting toward the zero-age main sequence (the red line) and are not yet hot enough to derive all of their energy from the fusion of hydrogen.

OpenStax-CNX module: m59927 3 There are real star clusters that t this description. The rst to be studied (in about 1950) was NGC 2264, which is still associated with the region of gas and dust from which it was born (Figure 2 (Young Cluster NGC 2264.)).

OpenStax-CNX module: m59927 4 Young Cluster NGC 2264. Figure 2: Located about 2600 light-years from us, this region of newly formed stars, known as the Christmas Tree Cluster, is a complex mixture of hydrogen gas (which is ionized by hot embedded stars and shown in red), dark obscuring dust lanes, and brilliant young stars. The image shows a scene about 30 light-years across. (credit: ESO)

OpenStax-CNX module: m59927 5 The NGC 2264 cluster's HR diagram is shown in Figure 3 (NGC 2264 HR Diagram.). The cluster in the middle of the Orion Nebula (shown in here 1 and here 2 ) is in a similar stage of evolution. 1 "Star Formation", Figure 3: Orion Nebula. <http://cnx.org/content/m59923/latest/#osc_astro_21_01_star> 2 "Star Formation", Figure 4: Central Region of the Orion Nebula. <http://cnx.org/content/m59923/latest/#osc_astro_21_01_region>

OpenStax-CNX module: m59927 6 NGC 2264 HR Diagram. Figure 3: Compare this HR diagram to that in Figure 1 (Young Cluster HR Diagram.); although the points scatter a bit more here, the theoretical and observational diagrams are remarkably, and satisfyingly, similar.

OpenStax-CNX module: m59927 7 As clusters get older, their HR diagrams begin to change. After a short time (less than a million years after they reach the main sequence), the most massive stars use up the hydrogen in their cores and evolve o the main sequence to become red giants and supergiants. As more time passes, stars of lower mass begin to leave the main sequence and make their way to the upper right of the HR diagram. note: To see the evolution of a star cluster in a dwarf galaxy, you can watch this brief animation 3 of how its HR diagram changes. Figure 4 (NGC 3293.) is a photograph of NGC 3293, a cluster that is about 10 million years old. The dense clouds of gas and dust are gone. One massive star has evolved to become a red giant and stands out as an especially bright orange member of the cluster. 3 https://openstax.org/l/30starcluster

OpenStax-CNX module: m59927 8 NGC 3293. Figure 4: All the stars in an open star cluster like NGC 3293 form at about the same time. The most massive stars, however, exhaust their nuclear fuel more rapidly and hence evolve more quickly than stars of low mass. As stars evolve, they become redder. The bright orange star in NGC 3293 is the member of the cluster that has evolved most rapidly. (credit: ESO/G. Beccari) Figure 5 (Cluster M41.) shows the HR diagram of the open cluster M41, which is roughly 100 million years old; by this time, a signicant number of stars have moved o to the right and become red giants. Note the gap that appears in this HR diagram between the stars near the main sequence and the red giants. A gap does not necessarily imply that stars avoid a region of certain temperatures and luminosities.

OpenStax-CNX module: m59927 9 In this case, it simply represents a domain of temperature and luminosity through which stars evolve very quickly. We see a gap for M41 because at this particular moment, we have not caught a star in the process of scurrying across this part of the diagram. Cluster M41. Figure 5: (a) Cluster M41 is older than NGC 2264 (see Figure 3 (NGC 2264 HR Diagram.)) and contains several red giants. Some of its more massive stars are no longer close to the zero-age main sequence (red line). (b) This ground-based photograph shows the open cluster M41. Note that it contains several orange-color stars. These are stars that have exhausted hydrogen in their centers, and have swelled up to become red giants. (credit b: modication of work by NOAO/AURA/NSF) 3 HR Diagrams of Older Clusters After 4 billion years have passed, many more stars, including stars that are only a few times more massive than the Sun, have left the main sequence (Figure 6 (HR Diagram for an Older Cluster. )). This means that no stars are left near the top of the main sequence; only the low-mass stars near the bottom remain. The older the cluster, the lower the point on the main sequence (and the lower the mass of the stars) where stars begin to move toward the red giant region. The location in the HR diagram where the stars have begun to leave the main sequence is called the main-sequence turno.

OpenStax-CNX module: m59927 10 HR Diagram for an Older Cluster. Figure 6: We see the HR diagram for a hypothetical older cluster at an age of 4.24 billion years. Note that most of the stars on the upper part of the main sequence have turned o toward the red-giant region. And the most massive stars in the cluster have already died and are no longer on the diagram.

OpenStax-CNX module: m59927 11 The oldest clusters of all are the globular clusters. Figure 7 (Cluster 47 Tucanae.) shows the HR diagram of globular cluster 47 Tucanae. Notice that the luminosity and temperature scales are dierent from those of the other HR diagrams in this chapter. In Figure 6 (HR Diagram for an Older Cluster. ), for example, the luminosity scale on the left side of the diagram goes from 0.1 to 100,000 times the Sun's luminosity. But in Figure 7 (Cluster 47 Tucanae.), the luminosity scale has been signicantly reduced in extent. So many stars in this old cluster have had time to turn o the main sequence that only the very bottom of the main sequence remains.

OpenStax-CNX module: m59927 12 Cluster 47 Tucanae. Figure 7: This HR diagram is for the globular cluster 47. Note that the scale of luminosity diers from that of the other HR diagrams in this chapter. We are only focusing on the lower portion of the main sequence, the only part where stars still remain in this old cluster.

OpenStax-CNX module: m59927 13 note: Check out this brief NASA video with a 3-D visualization 4 of how an HR diagram is created for the globular cluster Omega Centauri. Just how old are the dierent clusters we have been discussing? To get their actual ages (in years), we must compare the appearances of our calculated HR diagrams of dierent ages to observed HR diagrams of real clusters. In practice, astronomers use the position at the top of the main sequence (that is, the luminosity at which stars begin to move o the main sequence to become red giants) as a measure of the age of a cluster (the main-sequence turno we discussed previously). For example, we can compare the luminosities of the brightest stars that are still on the main sequence in Figure 3 (NGC 2264 HR Diagram.) and Figure 6 (HR Diagram for an Older Cluster. ). Using this method, some associations and open clusters turn out to be as young as 1 million years old, while others are several hundred million years old. Once all of the interstellar matter surrounding a cluster has been used to form stars or has dispersed and moved away from the cluster, star formation ceases, and stars of progressively lower mass move o the main sequence, as shown in Figure 3 (NGC 2264 HR Diagram.), Figure 5 (Cluster M41.), and Figure 6 (HR Diagram for an Older Cluster. ). To our surprise, even the youngest of the globular clusters in our Galaxy are found to be older than the oldest open cluster. All of the globular clusters have main sequences that turn o at a luminosity less than that of the Sun. Star formation in these crowded systems ceased billions of years ago, and no new stars are coming on to the main sequence to replace the ones that have turned o (see Figure 8 (HR Diagrams for Clusters of Dierent Ages.)). HR Diagrams for Clusters of Dierent Ages. Figure 8: This sketch shows how the turn-o point from the main sequence gets lower as we make HR diagrams for clusters that are older and older. Indeed, the globular clusters are the oldest structures in our Galaxy (and in other galaxies as well). The youngest have ages of about 11 billion years and some appear to be even older. Since these are the oldest objects we know of, this estimate is one of the best limits we have on the age of the universe itselfit must be at least 11 billion years old. We will return to the fascinating question of determining the age of the entire universe in the chapter on The Big Bang 5. 4 https://openstax.org/l/30hrdiagram 5 "Thinking Ahead" <http://cnx.org/content/m59975/latest/>

OpenStax-CNX module: m59927 14 4 Key Concepts and Summary The HR diagram of stars in a cluster changes systematically as the cluster grows older. The most massive stars evolve most rapidly. In the youngest clusters and associations, highly luminous blue stars are on the main sequence; the stars with the lowest masses lie to the right of the main sequence and are still contracting toward it. With passing time, stars of progressively lower masses evolve away from (or turn o) the main sequence. In globular clusters, which are all at least 11 billion years old, there are no luminous blue stars at all. Astronomers can use the turno point from the main sequence to determine the age of a cluster. Glossary Denition 8: main-sequence turno location in the HR diagram where stars begin to leave the main sequence