Lepton Flavor Violation in Left-Right theory

Similar documents
Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Non-Abelian SU(2) H and Two-Higgs Doublets

Charged Lepton Flavor Violation: an EFT perspective

Neutrino masses respecting string constraints

J. C. Vasquez CCTVal & USM

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

SUSY models of neutrino masses and mixings: the left-right connection

Neutrino Mass in Strings

Debasish Borah. (Based on with A. Dasgupta)

Investigating Beyond Standard Model

Gauge Theories for Baryon Number.

Hint of New Physics in Resonance

University College London. Frank Deppisch. University College London

Neutrinos: status, models, string theory expectations

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Lepton-flavor violation in tau-lepton decay and the related topics

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

LFV Higgs Decay in Extended Mirror Fermion Model

arxiv: v1 [hep-ph] 16 Mar 2017

Lepton flavour violation

12.2 Problem Set 2 Solutions

Models of Neutrino Masses

Automatic CP Invariance and Flavor Symmetry

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Dark matter and IceCube neutrinos

New Physics at the LHC

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Testing Origin of Neutrino Mass at the LHC

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Neutrino Mass Models: a road map

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

SM predicts massless neutrinos

Introduction to the SM (5)

Probing TeV Scale Left-Right Seesaw

Probing B/L Violations in Extended Scalar Models at the CERN LHC A Bottom-up Approach

Pati-Salam GUT-Flavour Models with Three Higgs Generations

University College London. Frank Deppisch. University College London

Neutrino Models with Flavor Symmetry

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

TeV Scale Seesaw with Loop Induced

Neutrino Mass Models

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Minimal Lepton Flavor Violation

(Charged) Lepton Flavor Violation

Lepton Flavor Violating Z l I lj in SO(3) Gauge Extension of SM

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements.

arxiv:hep-ph/ v1 5 Oct 2005

Lepton-flavor violation in tau-lepton decay and the related topics

2 Induced LFV in the SUSY see-saw framework

DARK MATTER STABILITY FROM D ISCRETE FLA VOR SYMMETRIES

Neutrino Mixing from SUSY breaking

Neutrino Mass Seesaw, Baryogenesis and LHC

Antonio Pich. IFIC, CSIC Univ. Valencia.

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Lepton Flavor Violation

Higgs Bosons Phenomenology in the Higgs Triplet Model

Testing supersymmetric neutrino mass models at the LHC

arxiv: v4 [hep-ph] 25 Feb 2015

Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry

Neutrinos and Fundamental Symmetries: L, CP, and CP T

The doubly charged scalar:

Flavour and Higgs in Pati-Salam Models

Baryon and Lepton Number Violation at the TeV Scale

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

The Physics of Neutrinos. Renata Zukanovich Funchal IPhT/Saclay, France Universidade de São Paulo, Brazil

Supersymmetric Seesaws

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

SU(3)-Flavons and Pati-Salam-GUTs

Spontaneous CP violation and Higgs spectra

S 3 Symmetry as the Origin of CKM Matrix

Dark matter and entropy dilution

The lepton flavor violation road to new physics

LHC Phenomenology of SUSY multi-step GUTs

Prospects of experimentally reachable beyond Standard Model physics in inverse see-saw motivated SO(10) GUT

E 6 Spectra at the TeV Scale

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Flavour and CP Violation Phenomenology in SUSY with an SU(3) Flavour Symmetry

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

Lepton flavour violation: a phenomenological overview. Ana M. Teixeira

P, C and Strong CP in Left-Right Supersymmetric Models

Radiative corrections to the Higgs boson couplings in the Higgs triplet model

Electroweak physics and the LHC an introduction to the Standard Model

Duality in left-right symmetric seesaw

Prospects of experimentally reachable beyond Standard Model physics in inverse seesaw motivated non-susy SO(10) GUT

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Split Supersymmetry A Model Building Approach

Parity restored at TeV scale? Fabrizio Nesti

arxiv:hep-ph/ v1 26 Jul 2006

Neutrino mass spectrum from the seesaw extension

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

DETECTING MAJORANA NATURE OF NEUTRINOS IN MUON AND TAU DECAY

The Lepton Flavor Violation road to New Physics

Left-Right Symmetric Models with Peccei-Quinn Symmetry

The Standard Model of particle physics and beyond

Baryonic LHC

Yang-Hwan, Ahn (KIAS)

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

arxiv: v1 [hep-ph] 25 Jun 2012

Transcription:

Lepton Flavor Violation in Left-Right theory Clara Murgui IFIC, Universitat de Valencia-CSIC

References This talk is based on: P. Fileviez Perez, C. Murgui and S. Ohmer, Phys. Rev. D 94 (2016) no.5, 051701 [arxiv:1607.00246 [hep-ph]], P. Fileviez Perez and C. Murgui, Phys. Rev. D 95 (2017) no.7, 075010 [arxiv:1701.06801 [hep-ph]].

Motivation

Left-Right symmetry

Aesthetics Left-Right symmetry

Aesthetics Left-Right symmetry

Aesthetics Left-Right symmetry

Left-Right symmetry Aesthetics

Left-Right symmetry Aesthetics

Left-Right symmetry Aesthetics Origin of P parity violation naturally explained

Left-Right symmetry Aesthetics Origin of P parity violation naturally explained m ν 0 as a natural output

Left-Right symmetry Aesthetics Origin of P parity violation naturally explained m ν 0 as a natural output [J. C. Pati and A. Salam, 1974], [R. N. Mohapatra and J. C. Pati, 1975] [G. Senjanovic and R. N. Mohapatra, 1975]

Aims Build the simplest LR theory with Majorana neutrinos.

Aims Build the simplest LR theory with Majorana neutrinos. Study phenomenological implications of Lepton Flavor Violation in its context.

Introduction

Minimal content in LR models G. Senjanovic, Nucl. Phys. B 153 (1979) 334. Gauge symmetry: SU(2) R SU(2) L U(1) B L

Minimal content in LR models G. Senjanovic, Nucl. Phys. B 153 (1979) 334. Gauge symmetry: SU(2) R SU(2) L U(1) B L Matter content: Q L = l L = ( ul ( νl ) (2, 1, 1/3), d L ) Q R = (2, 1, 1), l R = e L ( νr ( ur e R ) (1, 2, 1/3), d R ) (1, 2, 1).

Minimal content in LR models G. Senjanovic, Nucl. Phys. B 153 (1979) 334. Gauge symmetry: SU(2) R SU(2) L U(1) B L Matter content: Q L = l L = ( ul ( νl ) (2, 1, 1/3), d L ) Q R = (2, 1, 1), l R = e L ( νr ( ur ( φ 0 Scalar content: Φ = 1 φ + ) 2 φ 1 φ 0 (2, 2, 0), 2 e R ) (1, 2, 1/3), d R ) (1, 2, 1). L Y = Q L (Y 1 Φ + Y 2 Φ)QR + l L (Y 3 Φ + Y 4 Φ)lR

Breaking spontaneously the symmetry

Breaking spontaneously the symmetry Φ is not enough :(

Breaking spontaneously the symmetry Φ is not enough :(

Breaking spontaneously the symmetry Φ is not enough :( Doublets H L and H R [G. Senjanovic, 1978] Triplets L and R [R. N. Mohapatra and G. Senjanovic, 1975] Dirac neutrinos Majorana neutrinos

Up for Majorana neutrinos

Simple Left Right model [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246]

Simple Left Right model [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] Extra content: ( ) H + H L = L HL 0 (1, 2, 1), H R = ( ) H + R HR 0 (2, 1, 1) and δ + (1, 1, 2)

Simple Left Right model [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] Extra content: ( ) H + H L = L HL 0 (1, 2, 1), H R = ( ) H + R HR 0 (2, 1, 1) and δ + (1, 1, 2) Minimal (d.o.f) LR with triplets LR doublets + singlet Scalar content L (1, 3, 2) R (3, 1, 2) H L (1, 2, 1) H R (2, 1, 1) δ + (1, 1, 2) d.o.f. 6 5

Simple Left Right model [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] Extra content: ( ) H + H L = L HL 0 (1, 2, 1), H R = ( ) H + R HR 0 (2, 1, 1) and δ + (1, 1, 2) Minimal (d.o.f) BUT extra couplings:

Simple Left Right model [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] Extra content: ( ) H + H L = L HL 0 (1, 2, 1), H R = ( ) H + R HR 0 (2, 1, 1) and δ + (1, 1, 2) Minimal (d.o.f) BUT extra couplings: Assumption: LR symmetry explicity broken λ L λ R

Simple LR: Neutrino masses L Y Q L (Y 1 Φ + Y 2 Φ)QR + l L (Y 3 Φ + Y 4 Φ)lR < Φ >= ( ) v1 0 0 v 2, Fermion masses M U = Y 1 v 1 + Y 2 v 2 M D = Y 1 v 2 + Y 2 v 1 M E = Y 3 v 2 + Y 4 v 1 M D ν = Y 3 v 1 + Y 4 v 2

Simple LR: Neutrino masses L Y Q L (Y 1 Φ + Y 2 Φ)QR + l L (Y 3 Φ + Y 4 Φ)lR < Φ >= ( ) v1 0 0 v 2, Fermion masses M U = Y 1 v 1 + Y 2 v 2 M D = Y 1 v 2 + Y 2 v 1 M E = Y 3 v 2 + Y 4 v 1 M D ν = Y 3 v 1 + Y 4 v 2 In the limit Y 3 Y 4 and v 2 v 1, M D ν is tiny M E Y 4 v 1 ( Mν D v ) 2 = v 1 Y 3 + M E v 1 2

Simple LR: Neutrino masses [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] L λ L l L l L δ + + λ R l R l R δ + + λ 1 H T L iσ 2 ΦH R δ + λ 2 H T L iσ 2 ΦHR δ + h.c. H 0 L H 0 R δ + φ + j ν L/R e e ν L/R φ 0 i

Simple LR: Neutrino masses [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] L λ L l L l L δ + + λ R l R l R δ + + λ 1 H T L iσ 2 ΦH R δ + λ 2 H T L iσ 2 ΦHR δ + h.c. H 0 L H 0 R δ + φ + j ν L/R e e ν L/R φ 0 i

Simple LR: Neutrino masses [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] L λ L l L l L δ + + λ R l R l R δ + + λ 1 H T L iσ 2 ΦH R δ + λ 2 H T L iσ 2 ΦHR δ + h.c. H 0 L H 0 R δ + φ + j ν L/R e e ν L/R φ 0 i

Simple LR: Neutrino masses [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] L λ L l L l L δ + + λ R l R l R δ + + λ 1 H T L iσ 2 ΦH R δ + λ 2 H T L iσ 2 ΦHR δ + h.c. H 0 L H 0 R δ + φ + j ν L/R e e ν L/R (M L ν) αγ = (M R ν) αγ = 1 φ 0 i 4π 2 λαβ L me β 1 4π 2 λαβ R me β ( ) M 2 ] hi Log V 5i [(Y 3 )βγ V2i (Y 4 )βγ V1i + α γ, i m 2 e β ( ) M 2 ] hi Log V 5i [(Y 3) βγ V1i (Y 4) βγ V2i + α γ. i m 2 e β

Simple LR: Low scale see-saw [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] ( ( ) ( ) νl (ν R ) c) Mν L m D ν νl m D ν Mν R (ν R ) c

Simple LR: Low scale see-saw [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] ( ( ) ( ) νl (ν R ) c) Mν L m D ν νl m D ν Mν R (ν R ) c

Simple LR: Low scale see-saw [P. Fileviez Perez, C. Murgui and S. Ohmer, arxiv:1607.00246] ( ( ) ( ) νl (ν R ) c) Mν L m D ν νl m D ν Mν R (ν R ) c M αγ ν [(md ν ) αγ ] 2 (M R ν) αγ M αγ N (M R ν) αγ = 1 4π 2 λαβ R m e β i Log ( M 2 hi m 2 e β ) V 5i [ Y βγ 3 V 1i m e β δ βγ v 1 V 2i ] + α γ

Simple LR: Neutrino hierarchy M αγ N 1 4π 2 λαβ R [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] m e β i Log ( M 2 hi m 2 e β ) V 5i [ Y βγ 3 V 1i m e β δ βγ v 1 V 2i ] + α γ

Simple LR: Neutrino hierarchy M αγ N 1 4π 2 λαβ R [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] m e β i Log ( M 2 hi m 2 e β ) V 5i [ Y βγ 3 V 1i m e β δ βγ v 1 V 2i ] + α γ Limit v 2 v 1 and Y 3 Y 4,

Simple LR: Neutrino hierarchy M αγ N 1 4π 2 λαβ R [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] m e β i Log ( M 2 hi m 2 e β ) V 5i [ Y βγ 3 V 1i m e β δ βγ v 1 V 2i ] + α γ Limit v 2 v 1 and Y 3 Y 4, (M N ) αβ 4π 2 v λ αβ R (m2 e α m 2 e β ) 1

Simple LR: Neutrino hierarchy M αγ N 1 4π 2 λαβ R [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] m e β i Log ( M 2 hi m 2 e β ) V 5i [ Y βγ 3 V 1i m e β δ βγ v 1 V 2i ] + α γ Limit v 2 v 1 and Y 3 Y 4, (M N ) αβ 4π 2 v λ αβ R (m2 e α m 2 e β ) 1

Build new theory, So far...

So far... Build new theory, with usual properties of a LR theory,

So far... Build new theory, with usual properties of a LR theory, with simplest higgs sector to generate Majorana neutrinos,

So far... Build new theory, with usual properties of a LR theory, with simplest higgs sector to generate Majorana neutrinos, which predicts light sterile neutrinos.

So far... Build new theory, with usual properties of a LR theory, with simplest higgs sector to generate Majorana neutrinos, which predicts light sterile neutrinos. Study phenomenological implications of Lepton Flavor Violation in its context.

Lepton Flavor Violation

Current Status CLFV LFV process Current limit Projected limit µ eγ 4,2 10 13 MEG, 2016 6 10 14 MEG-II τ eγ 3,3 10 8 BaBar, 2010 3 10 9 Super KEKB τ µγ 4,4 10 8 BaBar, 2010 10 9 Super KEKB µ eee 1 10 12 SINDRUM, 1988 10 16 Mu3e µal eal 10 16 COMET 6 10 17 Mu2e µti eti 4,3 10 12 SINDRUM II, 1993? µau eau 7 10 13 SINDRUM II, 2006 µpb epb 4,6 10 11 SINDRUM II, 1996

Current Status CLFV

LFV in simple LR: µ eγ [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] l i l j γ: W + R/L γ δ + j γ µ ν i/n i e µ ν i/n i e (a) (b)

LFV in simple LR: µ eγ [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] ( ) L g 2 e m µ m 2 R 64π 2 MW 2 (V N ) ei (VN) µi F Ni R m 2, i W R ( ) R g 2 e m µ m L 64π 2 MW 2 (V ν ) ei (Vν 2 ) µi F νi L m 2, W L A WR A WL i F(x) = 1 6(1 x) 4 ( 10 43 x + 78 x 2 49 x 3 + 18 x 3 Log(x) + 4 x 4),

LFV in simple LR: µ eγ [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] ( ) L g 2 e m µ m 2 R 64π 2 MW 2 (V N ) ei (VN) µi F Ni R m 2, i W R ( ) R g 2 e m µ m L 64π 2 MW 2 (V ν ) ei (Vν 2 ) µi F νi L m 2, W L A WR A WL i F(x) = F(x) x 2 3 1 6(1 x) 4 ( 10 43 x + 78 x 2 49 x 3 + 18 x 3 Log(x) + 4 x 4), Log(x) +3, x

LFV in simple LR: µ eγ [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] ( ) L g 2 e m µ m 2 R 64π 2 MW 2 (V N ) ei (VN) µi F Ni R m 2, i W R ( ) R g 2 e m µ m L 64π 2 MW 2 (V ν ) ei (Vν 2 ) µi F νi L m 2, W L A WR A WL i F(x) = F(x) x 2 3 1 6(1 x) 4 ( 10 43 x + 78 x 2 49 x 3 + 18 x 3 Log(x) + 4 x 4), Log(x) +3, F(x) x 0 5 x 3 1 2 x,

LFV in simple LR: µ eγ [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] ( ) L g 2 e m µ m 2 R 64π 2 MW 2 (V N ) ei (VN) µi F Ni R m 2, i W R ( ) R g 2 e m µ m L 64π 2 MW 2 (V ν ) ei (Vν 2 ) µi F νi L m 2, W L A WR A WL i F(x) = F(x) x 2 3 1 6(1 x) 4 ( 10 43 x + 78 x 2 49 x 3 + 18 x 3 Log(x) + 4 x 4), Log(x) +3, F(x) x 0 5 x 3 1 2 x, F(x) x 1 17 12 + 3 20 (1 x).

LFV in simple LR: µ eγ [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] Limit m Ni M WR g 2 e m µ R 128π 2 m Ni M WR g 2 Rm µ 3e 64π 2 m Ni M WR g 2 3 m µ R 1280π 2 MW 2 R A W R L M i W 4 (VN)ei(V N) µim 2 N i R ( i Log m 2 N i M 2 W R ) (V N) ie(v N) iµ 1 m 2 N i i (VN)ei(V N) µi M 2 W R m 2 N i M 2 W R

LFV in simple LR: µ eγ [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] l i l j γ:

LFV in simple LR: µ eγ [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] l i l j γ: A δ+ L = e 4π 2 m µ m 2 δ + i c,d (λ R) ce λ dµ R Vci N (V N) di G G(x) = 1 6x + 3x2 + 2x 3 6x 2 Log(x) 12(1 x) 4 ( m 2 Ni m 2 δ + )

LFV in simple LR: µ eγ [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] l i l j γ: A δ+ L = e 4π 2 m µ m 2 δ + i c,d (λ R) ce λ dµ R Vci N (V N) di G ( m 2 Ni m 2 δ + ) (1)

Simple LR: LFV predictions [P. Fileviez Perez and C. Murgui, arxiv:1701.06801] µ e conversion: 10-10 10-14 10-17 10-20 BR(μ e) BR(μ e) 10-8 10-11 DeeMe Mu2e, COMET Ti 10-14 10-18 10-22 10-26 0.2 0.5 1 Au 2 0.2 Mδ+ (TeV) BR(μ e) BR(μ e) 1 2 10-8 10-11 10-15 -19 10 10-23 0.5 Mδ+ (TeV) 10-11 10-14 10-17 -20 10 Pb 0.2 0.5 1 Mδ+ (TeV) 2 DeeMe Mu2e, COMET Al 0.2 0.5 1 Mδ+ (TeV) 2

Conclusions New left-right model with the simplest scalar sector to generate Majorana neutrinos.

Conclusions New left-right model with the simplest scalar sector to generate Majorana neutrinos. The model predics light right-handed neutrinos with a peculiar hierarchy.

Conclusions New left-right model with the simplest scalar sector to generate Majorana neutrinos. The model predics light right-handed neutrinos with a peculiar hierarchy. Predictions for lepton flavor violating processes testable in the current and new generation of experiments.

Thanks for your attention!