ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 4 MOMENT OF INERTIA. On completion of this tutorial you should be able to

Similar documents
ENGINEERING COUNCIL CERTIFICATE LEVEL MECHANICAL AND STRUCTURAL ENGINEERING C105 TUTORIAL 13 - MOMENT OF INERTIA

DYNAMICS MOMENT OF INERTIA

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK

Dynamics of Rotation

Advanced Higher Physics. Rotational motion

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A.

Name: Date: Period: AP Physics C Rotational Motion HO19

Rotation. Rotational Variables

Rotational Motion and Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2

TOPIC D: ROTATION EXAMPLES SPRING 2018

We define angular displacement, θ, and angular velocity, ω. What's a radian?

Uniform Circular Motion AP

Name:. Set:. Don: Physics: Pre-U Revision Toytime Rotational and Circular Motion

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000

AP Physics QUIZ Chapters 10

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8

Webreview Torque and Rotation Practice Test

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Suggested Problems. Chapter 1

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

OUTCOME 1 MECHANICAL POWER TRANSMISSION SYSTEMS TUTORIAL 3 FLYWHEELS. On completion of this short tutorial you should be able to do the following.

Angular Displacement. θ i. 1rev = 360 = 2π rads. = "angular displacement" Δθ = θ f. π = circumference. diameter

Mechanics Topic D (Rotation) - 1 David Apsley

Physics Exam 2 October 11, 2007

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Kinematics

= o + t = ot + ½ t 2 = o + 2

A uniform rod of length L and Mass M is attached at one end to a frictionless pivot. If the rod is released from rest from the horizontal position,

1 MR SAMPLE EXAM 3 FALL 2013

3. ROTATIONAL MOTION

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Two-Dimensional Rotational Kinematics

AP practice ch 7-8 Multiple Choice

Test 7 wersja angielska

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion

Exercise Torque Magnitude Ranking Task. Part A

OUTCOME 2 KINEMATICS AND DYNAMICS

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Relating Linear and Angular Kinematics. a rad = v 2 /r = rω 2

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Chapter 10.A. Rotation of Rigid Bodies

Rotational Kinetic Energy

Chapter 10. Rotation

Topic 1: Newtonian Mechanics Energy & Momentum

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

dt 2 For an object travelling in a circular path: State that angular velocity (ω) is the rate of change of angular displacement (θ).

1 Problems 1-3 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t

Slide 1 / 30. Slide 2 / 30. Slide 3 / m/s -1 m/s

Chapter 8 Lecture Notes

Moment of Inertia Race

PHYSICS 221 SPRING 2014

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la

Rotational Dynamics Smart Pulley

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with:

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

Chapter 8. Rotational Motion

31 ROTATIONAL KINEMATICS

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Angular Motion, General Notes

PSI AP Physics I Rotational Motion

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 10 NATURAL VIBRATIONS ONE DEGREE OF FREEDOM

Physics 4A Solutions to Chapter 10 Homework

A-level Physics (7407/7408)

Physics 5A Final Review Solutions

Chapter Rotational Motion

PHYSICS 149: Lecture 21

AP Physics. Harmonic Motion. Multiple Choice. Test E

= y(x, t) =A cos (!t + kx)

3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

Physics 23 Exam 3 April 2, 2009

PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I

PSI AP Physics I Rotational Motion

1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 4) 6

P211 Spring 2004 Form A

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2

Study Questions/Problems Week 7

Concept Question: Normal Force

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 6 - GYROSCOPES. On completion of this tutorial you should be able to

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)

The acceleration due to gravity g, which varies with latitude and height, will be approximated to 101m1s 2, unless otherwise specified.

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?

MECHANICAL PRINCIPLES OUTCOME 3 CENTRIPETAL ACCELERATION AND CENTRIPETAL FORCE TUTORIAL 1 CENTRIFUGAL FORCE

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133

Name: Date: 5. A 5.0-kg ball and a 10.0-kg ball approach each other with equal speeds of 20 m/s. If

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Physics 131: Lecture 21. Today s Agenda

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C

Transcription:

ENGINEEING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTOIAL 4 MOMENT OF INETIA On completion of this tutorial you should be able to evise angular motion. Define and derive the moment of inertia of a body. Define radius of gyration. Examine Newton s second law in relation to rotating bodies. Define and use inertia torque. Define and use angular kinetic energy. Solve problems involving conversion of potential energy into kinetic energy. It is assumed that the student is already familiar with the following concepts. Newton s Laws of Motion. The laws relating angular displacement, velocity and acceleration. The laws relating angular and linear motion. The forms of mechanical energy. All the above may be found in the pre-requisite tutorials. 1

1. EVISION OF ANGULA QUANTITIES Angular motion is covered in the pre-requisite tutorial. The following is a summary needed for this tutorial. 1.1 ANGLE Angle may be measured in revolutions, degrees, grads (used in France) or radians. In engineering we normally use radians. The links between them are 1 revolution = 6 o = 4 grads = radian 1. ANGULA VELOCITY Angular velocity is the rate of change of angle with time and may be expressed in dθ calculus terms as the differential coefficient ω dt 1. ANGULA ACCELEATION Angular acceleration is the rate of change of angular velocity with time and in calculus d terms may be expressed by the differential coefficient or the second differential dt d θ coefficient dt 1.4 LINK BETWEEN LINEA AND ANGULA QUANTITIES. Any angular quantity multiplied by the radius of the rotation is converted into the equivalent linear quantity as measured long the circular path. Hence angle is converted into the length of an arc by Angular velocity is converted into tangential velocity by Angular acceleration is converted into tangential acceleration by x = v = a = 1.5 TOQUE When we rotate a wheel, we must apply torque to overcome the inertia and speed it up or slow it down. You should know that torque is a moment of force. A force applied to the axle of a wheel will not make it rotate (figure 1A). A force applied at a radius will (figure 1B). The torque is F r (N m). Figure 1 A Figure 1 B

. MOMENT OF INETIA I The moment of inertia is that property of a body which makes it reluctant to speed up or slow down in a rotational manner. Clearly it is linked with mass (inertia) and in fact moment of inertia means second moment of mass. It is not only the mass that governs this reluctance but also the location of the mass. You should appreciate that a wheel with all the mass near the axle (fig. A) is easier to speed up than one with an equal mass spread over a larger diameter (fig.b). Figure A Figure B.1 DEIVATION Consider the case where all the mass is rotating at one radius. This might be a small ball or a rim (like a bicycle wheel) as shown with mass m at radius r. The angular velocity is rad/s. Figure If we multiply the mass by the radius we get the first moment of mass r m If we multiply by the radius again we get the second moment of mass r m This second moment is commonly called the moment of inertia and has a symbol I. Unfortunately most rotating bodies do not have the mass concentrated at one radius and the moment of inertia is not calculated as easily as this..1.1 ADIUS OF GYATION k All rotating machinery such as pumps, engines and turbines have a moment of inertia. The radius of gyration is the radius at which we consider the mass to rotate such that the moment of inertia is given by I = M k M is the total mass and k is the radius of gyration. The only problem with this approach is that the radius of gyration must be known and often this is deduced from tests on the machine.

.1. PLAIN DISC Consider a plain disc and suppose it to be made up from many concentric rings or cylinders. Each cylinder is so thin that it may be considered as being at one radius r and the radial thickness is a tiny part of the radius r. These are called elementary rings or cylinders. If the mass of one ring is a small part of the total we denote it m. The moment of inertia is a small part of the total and we denote it I and this is given by I = r m. The total moment of inertia is the sum of all the separate small parts so we can write I = I = r m The disc is b metres deep. Establish the formula for the mass of one ring. Figure 4 The elementary thin cylinder if cut and unrolled would form a flat sheet as shown. Length = circumference = r depth depth = b thickness = r Volume = length x depth x thickness = r b r Change this to mass m by multiplying by the density of the material. Mass = m= b r r If the mass is multiplied by the radius twice we get the moment of inertia I. I = b r r r = b r r As the radial thickness r gets thinner and tends to zero, the equation becomes precise and we may replace the finite dimensions with the differential d. d I = b r dr The total moment of inertia is found by integration which is a way of summing all the rings that make up the disc. I o π b r dr and taking the constantsoutside the integral sign we have I b r o dr 4

Completing the integration and substituting the limits of r = (the middle) and r = (the outer radius) we get the following. I π b ρ r dr π b I πρb 4 4 4 4 r 4 π ρb Now consider the volume and mass of the disc. The volume of the plain disc is the area of a circle radius times the depth b. Volume = b Mass = volume x density = b Examine the formula for I again. 4 I πρb πρb Massx M I For a plain disc the moment of inertia is M / If we compare this to I = Mk we deduce that the radius of gyration for a plan disc is k.77 The effective radius at which the mass rotates is clearly not at the mid point between the middle and the outside but nearer the edge. 4 5

WOKED EXAMPLE No.1 Show that the radius of gyration for a uniform rod of length L rotating about its end is.577l from that end. SOLUTION The rod has a uniform cross section A. Consider a small length x. The mass of this element is m = Ax. Figure 5 The moment of inertia is I = m x = Ax x. In the limit as x gets smaller and smaller we may use the differential dx and integrate to find I. I L ρax dx A x I ρa L L The mass of the rod is M ρal so I M Using the radius of gyration I Mk It follows that k x L ρa L dx L and k L.577L 6

. ANGULA KINETIC ENEGY mv You should already know that linear kinetic energy is given by the formula K.E. It requires energy to accelerate a wheel up to speed so rotating bodies also possess kinetic m energy and the formula is K.E...1 DEIVATION Consider again a disc and an elementary ring. Figure 6 m v Kinetic energy of ring m r Kinetic energy of ring The total K.E. may be found by K.E. of disc By definition, the term Iω K.E. δm ω r If a point rotates about a centre with angular velocity rad/s, at radius r, the velocity of the point along the circle is v m/s and it is related to by v = r. The mass of the ring is m. The kinetic energy of the ring is m v /. If we convert v into the kinetic energy becomes m r /. The total kinetic energy for the disc is found by integration so Convert linear velocity toangular velocity by substituting v ω δmr integrating between the limits and. δmr r is the moment of inertia I so we may write WOKED EXAMPLE No. Find the kinetic energy of a wheel rotating at 4 rad/s given the mass is kg and the radius of gyration is. m. SOLUTION I = M k = x. =.1 kg m K.E. = I / =.1 x 4 / =.96 Joules 7

WOKED EXAMPLE No. The wheel shown has a mass of.5 kg and a radius of gyration of. m. The radius of the drum is.1 m. Calculate the linear and angular velocity of the wheel after falls.6 m. it Figure No.7 SOLUTION As the wheel falls it will lose potential energy and gain two forms of kinetic energy because it has a velocity down and the string makes it spin. First calculate the change in potential Energy when it falls.6 m. P.E. = mg z =.5 x 9.81 x.6 =.94 J Next formulate the kinetic energy gained. Linear K.E. mv / Angular kinetic energy = I / Calculate the moment of inertia I = Mk =.5 x. = x 1-6 kg m Equate the P.E. to the K.E. mv Iω.94 Substitute v r.5 ω r.94.94 5 x 1 ω -6.5 v -6 x 1 ω.5 x ω x.1-6 ω 1ω 15 x 1 ω 544 ω 15.44 rad/s x 1 Now calculate v r 15.44 x.1 1.5 m/s -6 ω x 1-6 ω 8

SELF ASSESSMENT EXECISE No.1 1. A cylinder has a mass of 1 kg, outer radius of.5 m and radius of gyration. m. It is allowed to roll down an inclined plane until it has changed its height by.6 m. Assuming it rolls with no energy loss, calculate its linear and angular velocity at this point.. A cylinder has a mass of kg, outer radius of. m and radius of gyration.15 m. It is allowed to roll down an inclined plane until it has changed its height by m. Assuming it rolls with no energy loss, calculate its linear and angular velocity at this point. (Answers 5.6 rad/s and 5.1 m/s) 9

. INETIA TOQUE Consider a plain disc again and an elementary ring with a mass m at radius r. Let a force F be applied tangential to accelerate the ring. The acceleration of the ring along a tangent is a Newton's nd Law for linear motion states that Force = mass x acceleration. In this case F = m a Figure 8 Change to angular acceleration using the relationship a = r F = m r = r m Multiply both sides by r. rf = r m The expression r F is the torque on the ring and we will denote it as T. The term r m is the moment of inertia for the elementary ring and this is a small part of the total moment of inertia for the disc so denote it I The expression becomes T = I The plain disc is made up of many such rings so the torque needed to accelerate the whole disc at rad/s is found by summing them. T T δt α T Iα Hence in order to accelerate a disc with angular acceleration, a torque T is required and the relationship is T = I This is Newton's nd law written in angular terms and it applies to any shape, not just plain discs. emember that the formula for the moment of nertia is as follows. For any rotating body in general I = Mk k is the radius of gyration. For a plain disc radius, I = M / For an annular ring of inside radius i and outside radius o I = m ( o + i )/ I δi 1

WOKED EXAMPLE No.4 A solid wheel has a mass of 5 kg and outer radius of mm. Calculate the torque required to accelerate it from rest to 15 rev/min in 1 seconds. SOLUTION The initial angular velocity is zero 1 = The final angular velocity is found by converting 15 rev/min 15 ω x π 157.1 rad/s 6 ω - ω1 15.71 α 15.71 rad/s t 1 M 5 x. I.1kg m T I.1 x 15.711.571 Nm WOKED EXAMPLE No.5 A simple impact tester consists of a hammer of mass.6 kg on a pivoted light rod.5 m long as shown. The hammer is raised to the horizontal position and allowed to swing down hitting the test sample in a vice as shown. The hammer continues in its swing to a height of. m on the other side. Determine i. The velocity of the hammer when it strikes the sample. ii. The energy absorbed in the impact. iii. The angular velocity at the bottom of the swing. Figure 9 11

SOLUTION The initial potential energy of the hammer = mg z 1 =.6 x 9.81 x.5 =.94 J The Kinetic energy at the lowest point will be the same if none is lost so equate them. KE = mv/ =.94 J.6 v/ =.94 v =.1 m/s The potential energy at the end of the swing = mg z P.E. =.6 x 9.81 x. = 1.177 J Energy lost in the impact =.94-1.177 = 1.766 J The angular velocity of the hammer at the bottom of the swing = v/r WOKED EXAMPLE No.6 A drum has a mass of kg and radius of gyration of.8 m. It is rotated by a chain drive. The sprocket on the drum has an effective diameter of. m. The force in the chain is a constant value 1 N. Calculate the time required to accelerate it up to rev/min. SOLUTION Figure 1 I = Mk = x.8 = 18 kg m. T = F = 1 x.15 = 18 N m T = I 1 = rad/s = (/6) x ( - 1 )/t =.94/t =.146 rad/s t =.94/.146 = 14.9 seconds 1

WOKED EXAMPLE No.7 A rod of mass kg has a uniform cross section and is.8 m long. It is pivoted at one end. The rod is turned in the vertical plane until it makes an angle of 45 o with the vertical as shown. Figure 11 The rod is released and allowed to swing freely. Determine the velocity of the tip as it passes through the vertical SOLUTION The rod is uniform so the centre of gravity is at the centre. Calculate the change in height of the centre of gravity z. The geometry is shown below. Figure 1 x =.4 sin 45 o =.88 m. z =.4.88 =.117 m The potential energy that will be changed into kinetic energy is mgz. P.E.= x 9.81 x.117 =.99 Joules. Kinetic Energy gained = I / For a plain rod I = Mk and k =.577 L (worked example No.1) k =.577 x.8 =.4616 m I = x.4616 =.46 kg m Equate KE and PE.99 = I / =.46 x / =.99 x /.46 = 1.79 = 1.79 =.8 rad/s The velocity at the tip of the rod will be v = r =.8 x.8 =.6 m/s 1

SELF ASSESSMENT EXECISE No. 1. A pendulum similar to that shown on figure 9 has a mass of kg. It is fixed on the end of a rod of mass 1 kg and 1.8 m long. The pendulum is raised through 45o and allowed to swing down and strike the specimen. After impact it swings up o on the other side. Determine the following. i. The velocity just before impact. (. m/s) ii. The energy absorbed by the impact. (1.7 J) Hints for solution. Calculate the P.E. of the hammer and rod separately assuming the centre of gravity of the rod is at the middle. Calculate the moment of inertia of the hammer with a k = 1.8 and for the rod with k =.577L. Equate PE to angular KE and then convert angular velocity to linear velocity.. A lift has a mass of 1 kg. It is raised by a rope passing around a winding drum and a counterbalance mass of 1 kg hangs down on the other end. The drum has a radius of 1 m and a moment of inertia of 5 kg m. During operation, the lift is accelerated upwards from rest at a rate of m/s for seconds. The lift then rises at constant velocity for another 1 seconds and then the drive torque is removed from the drum shaft and the lift coasts to a halt. Determine the following. i. The maximum and minimum force in rope during this period. (14.17 kn and 9.81 kn) ii. The torque applied to the drum during the acceleration period. iii. The rate of deceleration. iv. The distance moved by the lift during the journey. (7.6 knm) (.77 m/s) (55 m) 14

. An experiment is performed to find the moment of inertia of a flywheel as follows. A mass is attached by a string to the axle which has a radius of 7.5 mm. The mass is adjusted until its weight is just sufficient to overcome frictional resistance and rotate the flywheel without acceleration. This mass is kg. Another.5 kg is added and the mass is allowed to fall under the action of gravity and measurements show that it takes 5 s to fall 1.5 m. Determine the following. i. The angular acceleration. (. rad/s) ii. The moment of inertia of the flywheel. (.81 kg m) 4. Figure 1 shows a schematic of a space module orbiting in a gravity free zone. ockets are attached at points and exert forces F1, F and F as shown all acting in the same plane as the centre of mass G. The forces produce a linear acceleration a and angular acceleration at G. The module has a mass of 1 kg and moment of inertia 8 kg m about G. Determine the three forces F1, F and F. (157 N, 55 N and 1 N) Figure 1 5. A drum which is mm in diameter, has a moment of inertia of kg m. It revolves at rev/s. A braking torque of 85.8 N m is applied to it producing uniform deceleration. Determine the following. i. The initial kinetic energy stored in the drum (15791 J) ii. The angular deceleration of the drum. (1.4 rad/s ). iii. The time taken to for the drum to stop. (8.8 s) 15