Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure

Similar documents
Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications

Polarization-maintaining optical microfiber

Efficient surface second-harmonic generation in slot micro/nano-fibers

A refractive index sensor based on the leaky radiation of a microfiber

Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe

Efficient surface second-harmonic generation in slot micro/nano-fibers

SUPER-LATTICE STRUCTURE PHOTONIC CRYSTAL FIBER

Optical sensor based on two in-series birefringent optical fibers

Multiplexing of polarization-maintaining. photonic crystal fiber based Sagnac interferometric sensors.

Ultrasensitive magnetic field sensor based on an in-fiber Mach Zehnder interferometer with a magnetic fluid component

Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

High sensitivity of taper-based Mach Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing

Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement

An Optical Fiber Tip Micrograting Thermometer

Reconfigurable optical-force-drive chirp and delay-line in. micro/nano-fiber Bragg grating

CO 2 laser induced long period gratings in optical microfibers

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss

High birefringence in elliptical hollow optical fiber

Mechanical Modulation of Hybrid Graphene Microfiber. Structure

Optical sensor based on hybrid LPG/FBG in D-fiber for simultaneous refractive index and temperature measurement

Spectral-domain measurement of phase modal birefringence in polarization-maintaining fiber

Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Negative curvature fibers

Polarization Properties of Photonic Crystal Fibers Considering Thermal and External Stress Effects

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

Progress In Electromagnetics Research B, Vol. 22, 39 52, 2010

High performance micro-fiber coupler-based polarizer and band-rejection filter

1 N star coupler as a distributed fiber-optic strain sensor in a white-light interferometer

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Magnetic Field Sensor Based on a Combination of a Microfiber Coupler Covered with magnetic Fluid and a Sagnac Loop

ANSYS-Based Birefringence Property Analysis of Side-Hole Fiber Induced by Pressure and Temperature

Polarization control of defect modes in threedimensional woodpile photonic crystals

Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors

High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials

Spectra Power and Bandwidth of Fiber Bragg Grating Under Influence of Gradient Strain

Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber

Negative curvature fibers

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION

SCIFED. Publishers. Keywords Temperature; Refractive Index; Michelson Interferometer; Up-Taper; Optical Fiber Sensor; All-Fiber Sensor

Miniature optical fiber current sensor based on a graphene membrane

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing

Surface plasmon resonance refractive sensor based on photonic crystal fiber with oval hollow core

Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays. Hatice Altug * and Jelena Vučković

Mode add/drop multiplexers of LP 02 and LP 03 modes with two parallel combinative long-period fiber gratings

arxiv: v1 [physics.optics] 27 Jul 2012

Finite Element Method

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute,

Angular and polarization properties of a photonic crystal slab mirror

Gratings in Electrooptic Polymer Devices

Polarimetric multi-mode tilted fiber grating sensors

Salinity sensor based on polyimide-coated photonic crystal fiber

Gradient-index metamaterials and spoof surface plasmonic waveguide

A Macrobending Singlemode Fiber Based Refractometer

All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation

SENSITIVITY ENHANCEMENT OF A D-SHAPE SPR-POF LOW-COST SENSOR USING GRAPHENE

Waveplate analyzer using binary magneto-optic rotators

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes

CHARACTERISTICS ANALYSIS OF DUAL CORE PHOTONIC CRYSTAL FIBER (PCF)

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

A Reflective Photonic Crystal Fiber Temperature Sensor Probe Based on Infiltration with Liquid Mixtures

A microring multimode laser using hollow polymer optical fibre

MEASUREMENT of gain from amplified spontaneous

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

by applying two pairs of confocal cylindrical lenses

Photonic crystal fiber with a hybrid honeycomb cladding

Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor

Experiment and Simulation Study on A New Structure of Full Optical Fiber Current Sensor

Highly Nonlinear Fibers and Their Applications

Empirical formulae for hollow-core antiresonant fibers: dispersion and effective mode area

Micro-air-gap based intrinsic Fabry Perot interferometric fiber-optic sensor

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Principle of photonic crystal fibers

Dispersion Properties of Photonic Crystal Fiber with Four cusped Hypocycloidal Air Holes in Cladding

Strain sensor based on gourd-shaped singlemode-multimode-single-mode hybrid optical

Self-started unidirectional operation of a fiber ring soliton. laser without an isolator

SUPPLEMENTARY INFORMATION

Models for guidance in kagome-structured hollow-core photonic crystal fibres

An all-optical modulator based on a stereo graphene microfiber structure

Interferometric model for phase analysis in fiber couplers

Ultra-narrow-band tunable laserline notch filter

The observation of super-long range surface plasmon polaritons modes and its application as sensory devices

Department of Electronic Engineering, Ching Yun University, Jung-Li 320, Taiwan 2

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser

Optical time-domain differentiation based on intensive differential group delay

EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS

Polarization independent broadband reflectors based on cross-stacked gratings

OPTICAL BISTABILITY AND UPCONVERSION PROCESSES IN ERBIUM DOPED MICROSPHERES

Electromagnetic Wave Guidance Mechanisms in Photonic Crystal Fibers

Experimental Study on Electromechanical Performances of Two Kinds of the Integral Arrayed Cymbal Harvesters

Unbalanced lensless ghost imaging with thermal light

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity

Long Path Industrial OCT High-precision Measurement and Refractive Index Estimation

Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser

Transcription:

Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure Jun-long Kou, 1,2 Ye Chen, 1 Fei Xu, 1,2,4,* and Yan-qing Lu 1,3,4 1 National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China 2 Nanjing University High-Tech Institute at Suzhou, Suzhou 215123, China 3 yqlu@nju.edu.cn 4 Both authors contributed equally to this paper. * feixu@nju.edu.cn Abstract: A wrapping-on-a-rod technique is presented and demonstrated successfully to realize broadband microfiber-based highly birefringent (Hi- Bi) devices with 3D geometry. By wrapping a circular microfiber (MF) on a Teflon-coated rod (2 mm in diameter), a large and broadband birefringence can be obtained utilizing a rod-microfiber-air (RMA) structure. Wavelength scanning method is used to measure the birefringence of the device. Results show that group birefringence as high as 10 3 can be achieved over 400 nm wavelength range. This compact element presents great potential in sensing and communication applications, as well as lab-on-a-rod devices. 2012 Optical Society of America OCIS codes: (060.2310) Fiber optics; (060.2420) Fibers, polarization-maintaining; (230.3990) Micro-optical devices. References and links 1. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, Low-loss single polarization fibres with asymmetrical strain birefringence, Electron. Lett. 17(15), 530 531 (1981). 2. M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, Single-polarization operation of highly birefringent bow-tie optical fibres, Electron. Lett. 19(7), 246 247 (1983). 3. V. Ramaswamy, R. H. Stolen, M. D. Divino, and W. Pleibel, Birefringence in elliptically clad borosilicate single-mode fibers, Appl. Opt. 18(24), 4080 4084 (1979). 4. A. Kumar, V. Gupta, and K. Thyagarajan, Geometrical birefringence of polished and D-shape fibers, Opt. Commun. 61(3), 195 198 (1987). 5. R. B. Dyott, J. R. Cozens, and D. G. Morris, Preservation of polarisation in optical-fibre waveguides with elliptical cores, Electron. Lett. 15(13), 380 382 (1979). 6. X. Chen, M. J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, Highly birefringent hollow-core photonic bandgap fiber, Opt. Express 12(16), 3888 3893 (2004). 7. J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, Microfiber-based Bragg gratings for sensing applications: a review, Sensors (Basel) 12(7), 8861 8876 (2012). 8. M. Ding, P. Wang, and G. Brambilla, Fast-response high-temperature microfiber coupler tip thermometer, IEEE Photon. Technol. Lett. 24(14), 1209 1211 (2012). 9. G. Brambilla, Optical fibre nanowires and microwires: a review, J. Opt. 12(4), 043001 (2010). 10. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, Miniaturized fiber taper reflective interferometer for high temperature measurement, Opt. Express 18(13), 14245 14250 (2010). 11. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe, Opt. Express 19(19), 18452 18457 (2011). 12. Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, Highly birefringent silica microfiber, Opt. Lett. 35(3), 378 380 (2010). 13. L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, and B. O. Guan, Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity, Opt. Express 20(9), 10180 10185 (2012). 14. H. Xuan, J. Ju, and W. Jin, Highly birefringent optical microfibers, Opt. Express 18(4), 3828 3839 (2010). 15. Y. Jung, G. Brambilla, and D. J. Richardson, Polarization-maintaining optical microfiber, Opt. Lett. 35(12), 2034 2036 (2010). 16. G. Wang, P. P. Shum, L. Tong, C. M. Li, and C. Lin, Polarization effects in microfiber loop and knot resonators, IEEE Photon. Technol. Lett. 22(8), 586 588 (2010). 17. J. L. Kou, F. Xu, and Y. Q. Lu, Highly birefringent slot-microfiber, IEEE Photon. Technol. Lett. 23(15), 1034 1036 (2011). (C) 2012 OSA 17 December 2012 / Vol. 20, No. 27 / OPTICS EXPRESS 28431

18. S. C. Rashleigh and R. Ulrich, High birefringence in tension-coiled single-mode fibers, Opt. Lett. 5(8), 354 356 (1980). 19. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, Broadband graphene polarizer, Nat. Photonics 5(7), 411 415 (2011). 20. J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices, Appl. Phys. B 102(3), 615 619 (2011). 21. O. Frazão, J. M. Baptista, and J. L. Santos, Recent advances in high-birefringence fiber loop mirror sensors, Sensors (Basel Switzerland) 7(11), 2970 2983 (2007). 22. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Bending-induced birefringence in single-mode fibers, Opt. Lett. 5(6), 273 275 (1980). 1. Introduction Maintaining the polarization state of transmission is of great importance in some systems where random mode coupling of the propagating signal can lead to serious deterioration in system reliability and performance. To overcome this problem, researchers have developed highly birefringent (Hi-Bi) fibers. Conventionally, the internal birefringence of Hi-Bi fibers can be produced by introducing stress applying parts around the fiber core (e.g., commercial PANDA [1], Bow-Tie fibers [2] and internal elliptical cladding fiber [3]) or by geometrical effect of the core (e.g., D-shaped fiber [4] and elliptical core fiber [5]). All these optical fibers support two orthogonally polarized modes and the birefringence is on the order of 10 4-10 5. Recently, Hi-Bi photonic crystal fibers (PCFs) have also been fabricated [6]. However, all these bulky 125-um-diameter fibers are not suitable for integrating in future micro/nanophotonics. Moreover, the fabrication cost for Hi-Bi PCFs remains a serious problem. On the other hand, following the ever-growing development of micro/nano-photonics, microfibers (MFs) are of great interest for researchers because of their low loss, large evanescent fields, strong confinement, configurability, and robustness. They have found potential applications in a wide range of fields from telecommunications to sensors, and lasers [7 17]. Among them, Hi-Bi MFs have been proposed or demonstrated exploiting different structures, such as flat fiber with rectangle cross section [12, 13], MF with elliptical cross section [14], MF drawn from commercial PANDA fiber [15] and MF with a slot inside [17]. In this paper, we present a simple and effective wrapping-on-a rod technique for the fabrication of miniaturized compact broadband MF Hi-Bi devices. Without complex and expensive micromachining facility, MF is drawn from standard single-mode fiber and then wrapped on a low-index rod. We both theoretically predict and experimentally demonstrate a MF-based Hi-Bi device by such a technique utilizing a rod-microfiber-air (RMA) structure. The device with compact 3D geometry shows a large birefringence (> 10 3 ) over 400 nm bandwidth. This compact device presents great potential in sensing and communication applications, as well as lab-on-a-rod devices. 2. Schematic model and theoretical analysis We first numerically investigate the structure by employing finite element method (FEM). A schematic model in the black dashed box of Fig. 1 is used to study the properties of the stereo RMA structure, which can be obtained by wrapping a circular MF on a rod pre-coated with low-index polymer, such as Teflon used here. The rod only acts as a supporting element which can be any kind of material (polymethyl methacrylate, i.e. PMMA in our experiment) as long as the surface is smooth. Because the thickness of the Teflon film is tens of micrometers, little field will penetrate into the PMMA rod which will be neglected in our calculation. The blue, pink and yellow part in Fig. 1 is the MF, Teflon and supporting rod, respectively. Different coils of the MF are kept away from each other in order to prevent mutual field coupling. If adjacent coils are close enough, a microfiber coil/loop/knot resonator can be realized where the polarization-related coupling effect in the coupling region has to be considered [16]. The rod is 2 mm in diameter which is much larger than the diameter of the MF (~1-3 μm). And, as a result, the bending-induced birefringence is not taken into consideration in our cases [18]. (C) 2012 OSA 17 December 2012 / Vol. 20, No. 27 / OPTICS EXPRESS 28432

Fig. 1. Experimental setup and schematic of the proposed structure (the black dashed box). In side the box, the blue, pink and yellow part is the MF, Teflon coating and supporting rod, respectively. The rod is 2 mm in diameter and the coating is tens of micrometers in thickness. Fig. 2. Cross section and electric field distribution of the RMA structure. Refractive index of different material is labeled in the figure. The green arrow and white dashed line indicates the polarization direction and the boundary between Teflon and air. Inset: electric field distribution of the y-polarized mode. The field is calculated at a wavelength of 1550 nm and rmf = 1 μm. We numerically investigate the wave guiding properties of the RMA structure. The crosssection of the scheme is shown in Fig. 2. Attributed to the asymmetric refractive index distribution in the two orthogonal directions (x and y in Fig. 2), light with different polarization experiences different effective refractive index, which is similar to that of a Dshaped fiber [19, 20]. And this lays the foundation of the principle employed in this paper. The difference between the effective refractive index is defined as phase birefringence (Bphase), result of which is presented in Fig. 3. In our calculation range, it is easily found that a smaller rmf and a longer operation wavelength (λ) results in a larger Bphase. As λ decreases, the MF has greater ability to confine the light in the silica region and less evanescent field will penetrate into air or Teflon. It is the same case for increasing rmf, because of which Bphase falls. Moreover, in a wide operation wavelength range (1200-1650 nm) and MF diameter #176852 - $15.00 USD (C) 2012 OSA Received 25 Sep 2012; revised 31 Oct 2012; accepted 14 Nov 2012; published 7 Dec 2012 17 December 2012 / Vol. 20, No. 27 / OPTICS EXPRESS 28433

range (1.2-3 μm), B phase remains larger than 4 10 4 which is the typical value for conventional polarization maintaining fibers [21]. x 10-3 4 3.5 3 4 3 x 10-3 2.5 2 1.5 B phase 2 1 1 0.5 0 0.6 0.8 1 1.2 1.4 r (μm) MF 1200 1300 1400 1500 λ (nm) 1600 Fig. 3. Calculated B phase of the proposed structure as a function of the radius of the MF and operation wavelength. 3. Experimental fabrication and measurement First, we use flame-brushing technique to draw the MF from conventional single mode fiber (SMF) which is cost-effective. Prior to the main experiment, we test the polarization properties of the MFs and they show no birefringence. Then, MFs with diameters ranging from 1 μm to 3 μm are wrapped around the PMMA rod (2 mm in diameter) that is pretreated with a coating of Teflon (Teflon AF 601S1-100-6, a production of DuPont), tens of micrometers in thickness. Due to the high refractive index of PMMA, a thin film of low-index (1.36 @ 1550 nm) Teflon is indispensable in order to prevent the light field from suffering high loss. Because the thickness of the Teflon film is tens of micrometers, little field will penetrate into the PMMA rod which will be neglected in our calculation. To eliminate the field coupling between coils of the MF, distance is kept from coil to coil as shown in the inset of Fig. 4. The total insertion loss of the device is about - 5 db (blue line in Fig. 4), including loss from the MF with a large evanescent field and bending-induce loss. It can be further minimized by optimizing the tapering process and working environment. The birefringence of the Hi-Bi RMA samples is measured by wavelength scanning technique as shown in Fig. 1 [12, 14]. Light from a broadband source (NKT, SuperK Versa) is linearly polarized by the first polarizer, exciting two orthogonal polarization modes that propagate through the device and then recombine at the second polarizer, forming interference pattern. The associated transmission spectrum of various samples is recorded by an optical spectrum analyzer (Yokogawa, AQ6370C). The transmission spectrum of our RMA structure can be predicted by π B (, ) 2 phase θ λ Rdθ T ( λ) cos (1) λ where B phase is a function of the azimuth angle because the radius of the MF taper wrapped around the rod is not uniform and R is the radius of the rod. Experimental results are shown in Fig. 4. As can be seen, large extinction ratio (16 db - 32 db) covering 400 nm bandwidth is obtained which indicates excellent polarization maintaining properties. However, noise in the spectrum increases when the wavelength is below ~1300 nm attributed to the fact that at these (C) 2012 OSA 17 December 2012 / Vol. 20, No. 27 / OPTICS EXPRESS 28434

wavelengths, the fiber becomes multi-mode. Moreover, according to previous literature, bending-induced birefringence of our scheme is on the order of 10 6 which is negligible [22]. In order to confirm this, we also examine the spectrum by immersing the RMA structure in Teflon solution. Results show that birefringence disappears after the asymmetry is broken. Fig. 4. Measured transmission spectra of the proposed RMA structure. The blue line is the insertion loss of Sample 1. The green and red line is the transmission of two devices with MF of different diameter (green for Sample 1, dmf = 1.5 μm and red for Sample 2, dmf = 1.7 μm). Inset: optical microscopic picture of one sample. The pink boxes indicate two coils of MF. The distance between the coil is ~100 μm. Fig. 5. Bgroup calculated from FEM method (3D mesh) and that from experimental transmission spectrum (solid asterisks with different colors). Inset: 2D illustration of the experimental (solid asterisks with different colors) and theoretical (blue lines) results of two samples with different radius (left for rmf = 0.9 μm and right for rmf = 1.2 μm). The data is extracted form the 3D mesh. #176852 - $15.00 USD (C) 2012 OSA Received 25 Sep 2012; revised 31 Oct 2012; accepted 14 Nov 2012; published 7 Dec 2012 17 December 2012 / Vol. 20, No. 27 / OPTICS EXPRESS 28435

Limited by the length of the MF, our samples contain one or two coils of MF and this results in large free spectrum range (FSR). In addition, the radius of the MF is not uniform in the region that wrapped on the rod. Thus, we can only obtain an average group birefringence (B group ) of our RMA samples. The results are calculated by Eq. (2) with experimental data from the spectrum. λ Bgroup ( λ, rmf ) (2) FSR L L is the length of the MF wrapped around the rod. Solid asterisks in Fig. 5 show B group of our samples with different r MF (measured at the thinnest waist of the MF) calculated from the spectrum. It is clear that a large B group ~10 3 which is more than one order of magnitude than in conventional Hi-Bi fibers is achieved over the measured range and reaches ~4 10 4 at ~1415 nm for one particular sample (red asterisks in Fig. 5). In our measured range, a longer wavelength sees a larger B group when r MF > 0.9 μm. The high birefringence of the RMA structure can also be confirmed by theoretically calculating B group, which is related to B phase by db phase Bgroup = B phase λ (3) d λ B group exhibits a behavior notably different from B phase. For MF with diameter less than the operation wavelength, B group is small. However, it rises steeply to reach its peak value that is significantly larger than B phase. The reason for this difference is the derivative of B phase with respect to the wavelength, which is large at small MF diameter. After crossing over the peak value, B group decreases at a tendency similar to that of B phase. Comparing the results from the experimental data and that from FEM method, we find that they agree well with each other when r MF > 1.1 μm. Although r MF is not uniform and λ is just an average value, in this region, B group changes slowly with respect to λ and r MF. However, it is not the case around the region where B group reaches its peak value. In fact, B group turns out to be a fast-varying function of λ and r MF around this region, especially in the longer wavelength and bigger radius side. Considering that r MF is not uniform along the coil on the rod and that the radius labeled in Fig. 5 is the thinnest measured, the difference between the results from the experiment and that from theory is reasonable. The radius of the MF is directly related to the spread of the evanescent field into the Teflon coating and air which determines the birefringence. Thus, controlling the radius of the MF is a key point in obtaining a large birefringence. 4. Conclusions In this paper, we both theoretically exploit and experimentally realize a new kind MF-based Hi-Bi device which incorporates wrapping a MF around a rod that is pretreated with Teflon coating. This compact and cost-effective device could operate over a broad bandwidth with birefringence higher than 10 3. The fabrication technique of wrapping-on-a-rod is effective and low-cost. More novel and compact lab-on-a-rod devices can be explored by flexible design of rod material or coil profile. Our investigation of it would put insight into the application of MF in future fiber communication, sensing and micro/nano-photonics. Acknowledgments This work is supported by National 973 program under contract No. 2012CB921803 and 2011CBA00205, NSFC program No. 11074117 and 60977039, Natural Science Foundation of Jiangsu Province of China under contract No. BK2010247. The authors also acknowledge the support from PAPD and the Fundamental Research Funds for the Central Universities. 2 (C) 2012 OSA 17 December 2012 / Vol. 20, No. 27 / OPTICS EXPRESS 28436