Similar documents
FACTORISING ALL TYPES. Junior Cert Revision

Möbius transformations and its applications

Direct Proof Rational Numbers

y y i LB k+1 f(x, y k+1 ) Ax + By k+1 b,

CHAPTER 1 POLYNOMIALS

IDEAL CLASSES AND SL 2

JUST THE MATHS UNIT NUMBER 1.5. ALGEBRA 5 (Manipulation of algebraic expressions) A.J.Hobson

UNC Charlotte 2005 Comprehensive March 7, 2005

Contents Acknowledgements iii Introduction Preliminaries on Maass forms for

Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2

THE RING OF POLYNOMIALS. Special Products and Factoring

Mathematics Diagnostic Examination Guidance

CM2104: Computational Mathematics General Maths: 2. Algebra - Factorisation

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc.

CHAPTER 2. CONFORMAL MAPPINGS 58

Basic Trigonometry. Trigonometry deals with the relations between the sides and angles of triangles.

Edexcel GCE Further Pure Mathematics (FP1) Required Knowledge Information Sheet. Daniel Hammocks

Spring Nikos Apostolakis

Chapter. Algebra techniques. Syllabus Content A Basic Mathematics 10% Basic algebraic techniques and the solution of equations.

Algebra I Lesson 6 Monomials and Polynomials (Grades 9-12) Instruction 6-1 Multiplying Polynomials

ALGEBRAIC GEOMETRY HOMEWORK 3

Objective Mathematics

CZ-GROUPS. Kristijan Tabak and Mario Osvin Pavčević Rochester Institute of Technology and University of Zagreb, Croatia

The Maximum and Minimum Principle

eneralized Inverse of a Matrix And Its Applications.

Part (1) Second : Trigonometry. Tan

12 16 = (12)(16) = 0.

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c =

Algebraic Expressions

Chapter 1: Precalculus Review

Knowledge Discovery and Data Mining 1 (VO) ( )

Theory of Computation Turing Machine and Pushdown Automata

( ) Chapter 6 ( ) ( ) ( ) ( ) Exercise Set The greatest common factor is x + 3.

1. The unit vector perpendicular to both the lines. Ans:, (2)

The Geometry. Mathematics 15: Lecture 20. Dan Sloughter. Furman University. November 6, 2006

SECTION A(1) k k 1= = or (rejected) k 1. Suggested Solutions Marks Remarks. 1. x + 1 is the longest side of the triangle. 1M + 1A

Section 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i.

A-2. Polynomials and Factoring. Section A-2 1

Unit 3 Factors & Products

Conformal Mapping, Möbius Transformations. Slides-13

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

Math Theory of Number Homework 1

Hecke-Operators. Alex Maier. 20th January 2007

26.2. Cauchy-Riemann Equations and Conformal Mapping. Introduction. Prerequisites. Learning Outcomes

Solutions to Chapter Review Questions, Chapter 0

Course 2316 Sample Paper 1

Elementary ODE Review

10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations

Intermediate Algebra Study Guide

IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1

7 Asymptotics for Meromorphic Functions

DISCUSSION CLASS OF DAX IS ON 22ND MARCH, TIME : 9-12 BRING ALL YOUR DOUBTS [STRAIGHT OBJECTIVE TYPE]

Chapter 2 Linear Equations and Inequalities in One Variable

Appendix A. Touchpoint Counting Patterns

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7

Mathematics Review Exercises. (answers at end)

MTH MTH Lecture 6. Yevgeniy Kovchegov Oregon State University

I can use properties of similar triangles to find segment lengths. I can apply proportionality and triangle angle bisector theorems.

All work must be shown or no credit will be awarded. Box all answers!! Order of Operations

ON DIVISION ALGEBRAS*

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f

Linear algebra I Homework #1 due Thursday, Oct. 5

AS PURE MATHS REVISION NOTES

Math Placement Test Review Sheet Louisburg College _ Summer = c = d. 5

Chapter Six. Polynomials. Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring

Maths Higher Prelim Content

CS 259C/Math 250: Elliptic Curves in Cryptography Homework 1 Solutions. 3. (a)

26. FOIL AND MORE. 1 2t + 3xy 5x 2 = 1 + ( 2t) + 3xy + ( 5x 2 )

CONSISTENCY OF EQUATIONS

Math Lecture 18 Notes

Mathematics, Algebra, and Geometry

Class Notes; Week 7, 2/26/2016

Homework 1/Solutions. Graded Exercises

Hanoi Open Mathematical Competition 2017

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

1.1 Basic Algebra. 1.2 Equations and Inequalities. 1.3 Systems of Equations

Digital Workbook for GRA 6035 Mathematics

EUCLID S ALGORITHM AND THE FUNDAMENTAL THEOREM OF ARITHMETIC after N. Vasiliev and V. Gutenmacher (Kvant, 1972)

DIFFERENTIAL GEOMETRY HW 5

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

CP Algebra 2 Unit 2-1: Factoring and Solving Quadratics WORKSHEET PACKET

P3.C8.COMPLEX NUMBERS

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1

Section 5.1 Practice Exercises. Vocabulary and Key Concepts

Kevin James. MTHSC 412 Section 3.1 Definition and Examples of Rings

Bertie3 Exercises. 1 Problem Set #3, PD Exercises

Solutions to Homework # 1 Math 381, Rice University, Fall (x y) y 2 = 0. Part (b). We make a convenient change of variables:

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India

Linear DifferentiaL Equation

MS 3011 Exercises. December 11, 2013

Lecture 3. January 9, 2018

Absolute Value Equations and Inequalities. Use the distance definition of absolute value.

Matrix Algebra. Learning Objectives. Size of Matrix

Elementary Number Theory

3.1 Definition of a Group

y mx 25m 25 4 circle. Then the perpendicular distance of tangent from the centre (0, 0) is the radius. Since tangent

STA 114: Statistics. Notes 21. Linear Regression

Algebra I Polynomials

Fractals and Linear Algebra. MAA Indiana Spring Meeting 2004

When factoring, we ALWAYS start with the (unless it s 1).

Transcription:

E E I M (E, I) E I 2 E M I I X I Y X Y I X, Y I X > Y x X \ Y Y {x} I B E B M

E C E C C M r E X E r (X) X X r (X) = X E B M X E Y E X Y X B E F E F F E E E M M M M M M E B M E \ B M M 0 M M M 0 0 M x M B M x B

M E r E r 1 3 4 3

E C 2 E E M E C C / C C 1, C 2 C C 1 C 2 C 1 = C 2 C 1 C 2 C e C 1 C 2 C 3 C C 3 (C 1 C 2 ) \ {e} E B 2 E E M E C B B = B 1, B 2 B x B 1 \ B 2 y B 2 \ B 1 (B 1 \ {x}) {y} B

E E E E I 2 E E I I X I X I X, Y I I I E C 2 E E C C C 1 C C 2 C C 1 C 2 C 1 C 2 C 1, C 2 C e C 1 C 2 C 3 C C 3 (C 1 C 2 ) \ {e} C E B 2 E E B

B B 1, B 2 B x B 1 \ B 2 y B 2 \ B 1 (B 1 \ {x}) {y} B B, {0, 1, 2}, {0, 3, 4}, {0, 1, 2, 3, 4, 5} M Z (M) M X Y M X Y X Y M X Y Z 0 Z Z E (Z) r : Z Z 0

Z E r : Z Z 0 M E Z r (Z0) Z (Z1) r (0 Z ) = 0 (Z2) 0 < r (Y ) r (X) < Y X X, Y Z X Y (Z3) X, Y Z r (X) + r (Y ) r (X Y ) + r (X Y ) + (X Y ) (X Y ). r X Y X Y = X Y = X X Y = Y r (X)+r (Y ) r (X)+r (Y ) Z = {, {1}} r r ( ) = 0 (Z2) 0 < r ({1}) < 1 r

Z = {, {1, 2}, {1, 2, 3, 4}, {5, 6} {1, 2, 3, 4, 5, 6}}. r r ({1, 2}) = 1 r ({1, 2, 3, 4}) = 2 r ({5, 6}) = 1 r ({1, 2, 3, 4, 5, 6}) = 3 r ({1, 2}) + r ({5, 6}) = 2 < 3 = r ( ) + r ({1, 2, 3, 4, 5, 6}). (E, Z, r) P = (P, ) P P X, Y P P X,Y = {A P : A X, A Y } Z P X,Y W P X,Y W Z Z X Y P X, Y P P E Z 2 E r : Z Z 0 Z M E Z r M Z Z Z 1, Z 2 Z Z 1 Z 2 0 < r (Z 2 ) r (Z 1 ) < Z 2 Z 1

Z 1, Z 2 Z Z 1 Z 2 Z 1 Z 2 Z 1 Z 2 Z 1 Z 2 r (Z 1 ) + r (Z 2 ) r (Z 1 Z 2 ) + r (Z 1 Z 2 ) + Z 1 Z 2 Z 1 Z 2. Z E Z 2 E E Z Z

r : Z Z 0 Z (Z1) (Z2) (Z3) Ax b R Z r Z r r (0 Z ) 0 r (0 Z ) 0 r (Y ) r (X) Y X 1 r (X) r (Y ) 1 r (W Z) + r (W Z) r (W ) r (Z) W Z W Z X, Y Z X Y W, Z Z Ax b x 1 1 V A r (V ) b P (Z) A Z C (Z) P (Z) P (Z) Ax b

Z 1 P (Z) Z A Ax b ±1 m n m m ±1 C (Z) P (Z) Z C (Z) Z 1

Z 2 C (Z 1 ) = 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 Z C (Z) T Z 2

C (Z 2 ) = 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 C (Z 2 ) T Z P (Z) P (Z) Z 3 Z P (Z) Z 4 P (Z 4 ) 11 8 Z P (Z)

{1, 2, 3, 4, 5, 6, 7, 8} {1, 2} {3, 4} {5, 6} {7, 8} Z 3 {0,1,2,3,4,5,6,7,8,9,10} {0,7,8,9,10} {2,5,6,8,9} {3,4,5,7} {1,2,6,7,10} Z 4

Z Z 2 C (Z 2 ) 1 1 0 1 0 1 0 1 1 2 C (Z 2 ) Z 2 Z 3 6 6 1 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 2 C (Z 3 ) Z 3 P (Z) Z 4 8 3

P (Z) Z P (Z) P (Z) { z 2 : z Z} Z Z Z

M E D E M \ D E \ D D M J M \ D J E \ D M M E D E M/D E \ D M E \ D (M \ D) M M M \ D 1 /D 2 D 1 D 2 E (M) R x x x R x y y z x z x, y, z R

x y y x x = y x, y R R x < y x y x y x, y R x y y x R (R, ) y x x < y z R x < z < y Z x, y Z x y x y x y x y x y x y Z z Z z x z y w x w y w Z w z p Z x p y p x q y q q Z p q Z 0 Z 1 Z x Z 0 Z x 1 Z (Z, ) K Z K K R S R S R S x R S y x R y x S y x R y S R S R S {(x, y) : x R, y S} (x, y) R S (z, w) x R z y S w

E P R n P = {x : Ax b} m n A b P M N z P z M P F P F = { } x : Ax b, A x = b A l n A b b A n n R P c P = {x : Ax b} cx x P x x Z n Ax = b A x x i = (A i) (A) A i i A b Ax b

A m n z Az mn b Az b 3 X n x 1,..., x n m (m + 2n) n A 1 i m i A j 1 x j i X 1 x j i X 0 1 k n (m + 2k 1) 1 k (m + 2k) 1 k b i b 1 l l i X 1 i m (m + 2k 1) 1 (m + 2k) 0 1 k n X = (x 1 x 2 x 3 ) (x 2 x 3 x 4 ) ( x 1 x 4 x 5 )

1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 x 1 x 2 x 3 x 4 x 5 1 0 0 1 0 1 0. 1 0 1 0 1 1 0 x 1 x 2 x 3 x 1 + x 2 + x 3 1 x 1 x 2 x 3 x 1 + x 2 + (1 x 3 ) 1 x 1 x 2 x 3 x 1 + (1 x 2 ) + x 3 1 x 1 x 2 x 3 x 1 + (1 x 2 ) + (1 x 3 ) 1 x 1 x 2 x 3 (1 x 1 ) + x 2 + x 3 1 x 1 x 2 x 3 (1 x 1 ) + x 2 + (1 x 3 ) 1 x 1 x 2 x 3 (1 x 1 ) + (1 x 2 ) + x 3 1 x 1 x 2 x 3 (1 x 1 ) + (1 x 2 ) + (1 x 3 ) 1. z Az b Az b 0 1 X m + 1 m + 2n 0 1 0

3 A A ±1 A {Y 1, Y 2,..., Y t } A (ϵ j ) j t ϵ j = ±1 1 j t t i=1 ϵ iy i { 1, 0, 1} m n A m < n m m A ±1 A m A m A A B A B C BC = A Z (Z1), (Z2), (Z3) Ax b A b n

1 0 Z 0 b 0 1 0 Z 0 b 0 X, Y Z X Y 1 Y 1 X 0 b Y X 1 1 Y 1 X 0 b 1 X, Y Z X Y 1 X Y 1 X Y X Y 0 b (X Y ) (X Y ) P (Z) R Z 0 Z 0 1 Z 1 Z 1 P (Z) P (Z) R Z Ax b P (Z) (Z1) (Z2) (Z3) P (Z) Z Z A X Y Z

{1, 2, 3, 4, 5, 6, 7, 8, 9} = 1 Z1 a Z1 = {1, 2, 3, 4, 5} {4, 5, 6, 7} = b Z1 {4} = 0 Z1 Z 1 r (Y ) r (X) 1 r (Z) r (Y ) 1 r (Z) r (X) 1 r (Y ) r (X) < Y X r (Z) r (Y ) < Z Y r (Z) r (X) < Z X = Z Y + Y X p R Z Y X C (Z) C (Z) x b Ax b Z 1

0 Z1 a Z1 b Z1 1 Z1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 r 1 r 2 r 3 r 4 b 0 0 3 1 2 1 3 1 4 1 1 C (Z) 2 1 0 2 Z 4 Z C (Z) x b P = {x R n : C (Z) x b} C P x C x = b n n C C x x i = ( ) C i (C ). C ±1 C x

P n n ±1 C T M \ e M e X M \ e X M C M \ e C M e / C F M \ e F F {e} M F M \ e F M F M (F ) x x M (F ) F C x C F {x} x e x M (F ) r (F ) = r (F {x}) F M \ e x = e M (F ) = F {e} F M F {e} F M \ e F M F M F {e} M C e C F {e} F F {e} M Z C (Z) C (Z) 1 = {X 1, X 2,..., X n } C (Z) [ ] a 1 X 1 + a 2 X 2 + + a n X n = 1 0 0 1

1 X i 0 C (Z)

Z E (Z) x E (Z) Z = {X {x} : X Z} M E (Z) Z Z M U 0,1 M r M U0,1 (X {x}) = r M (X) X Z Z E (Z) x 0 Z Z = {X \ {x} : X Z} M E (Z) Z 0 Z x r M ({x}) = 0 x M Z M \ x r M\x (X \ {x}) = r M (X) X Z

Z E (Z) Z E (Z) {x} x / E (Z) Z Z Z M E (Z) Z M U 1,1 M r M U1,1 (X) = r M (X) X Z Z E (Z) x E (Z) \ 1 Z Z E (Z) \ {x} (Z, E (Z) \ {x}) (Z, E (Z)) M E (Z) Z x M Z M \ x r M\x (X) = r M (X) X Z Z E (Z) x x 0 Z x E (Z) \ 1 Z 0 Z 1 Z E (Z) Z Z

Z 3 P (Z) Z 0 Z 1 Z X Y Z Y E (Z) r r (X) + r (Y ) r (X Y ) + r (X Y ) + (X Y ) \ (X Y ) = r (E (Z)) + r ( ) + X Y = r (E (Z)) + X Y, r (X) X Y + r (E) r (Y ) X Y + 1. X 0 Z 1 Z X 1 Z X Z \ 1 Z r (1 Z ) { X Y : X, Y Z, X Y, 0 < X, Y < 1 Z } + 2. r Z r (0 Z ) = 0 r (1 Z ) = { X Y : X, Y Z, X Y, 0 < X, Y < 1 Z } + 2. p 1 Z U Z \ {0 Z, 1 Z } p 1, U p U Y = p 2 Y Z r (U) = U 1, Z r (0 Z ) = 0

p 2 r (U) 1 U Z \ {0 Z } U = 1 r (U) 0 U > 0 Z r (U) r (0 Z ) + 1 = 1 P (Z) r (1 Z ) > r (U) U Z X, Y Z Y X r (Y ) r (X) Y X. Z Y = 1 Z X = 0 Z Y = 1 Z r (X) = p 1 Y X = 1 r (Y ) r (X) 0 r (Y ) r (X) 1 P (Z) Y = 1 Z r (X) = X 1 1 Z X P (Z) X = 0 Z r (Y ) < Y r P (Z) X, Y Z r (X)+r (Y ) < r (X Y )+r (X Y )+ (X Y ) \ (X Y ) = r (E)+ X Y. X Y r (X) = p 1 p 1 + r (Y ) < r (E) + X Y = p + X Y, r (Y ) < X Y + 1, r (Y )

r (X) = p 1 P (Z) r (X), r (Y ) < p 1 r (X) = X 1 r (Y ) = Y 1 X Y P (Z) E P (Z) r P (Z) p U U Z r r C (Z) x b P (Z) Z Z Z C (Z) C (Z) Z +1 1 0 1 1 C (Z) Z X, Y Z X Y Y = X + 1 P (Z) r P (Z) r (Y ) r (X) 1 r (Y ) r (X) Y X 1 = 0

Z 2 X Y X Y X Y = 1 Z Z r : Z Z 0 0, X = 0 Z X 1, X 0 Z r (X) = r (Y ) + 1, X Y 0 Z X 1 Z {r (Y ) : Y X} + 1, X = 1 Z r P (Z) P (Z) X Y r (X) r (Y ) = 1 r (X) r (Y ) = X Y 1 r r n 1 0 Z r P (Z) r r / P (Z) (Z1) r (0 Z ) = 0 (Z2) r (X) < r (Y ) X Y X Y r (Y ) r (X) Y X Y X r (Y ) r (X) = 1 Y X = 1 P (Z) X = 0 Z r (Y ) = Y 1 < Y 0 Z = Y 0 = Y.

(Z2) Y = 1 Z r (X) < r (Y ) 1 Z X Y Z Y X Z Y r (Y ) r (X) Y X Z r (Y ) Z +r (X) r (Y ) > Z Y r (Y ) = r (Z) + 1 r (Z) Z 1 r (Y ) Z (Z2) (Z3) X, Y Z r (X) + r (Y ) < r (X Y ) + r (X Y ) + X Y X Y. Z X r (Z) + r (Y ) r (Z Y ) + r (Z Y ) + Z Y Z Y Z Y X Y (Z2) X Y X Y = 0 Z r (0 Z ) = 0 X Y = r (X) + r (Y ) < r (1 Z ) Z Z 0 Z Z Z X Z Y Z Y = 1 Z Z Y = 0 Z r (Z) < r (X) r (Z) + r (Y ) < 1 Z X, Y Z X Y 0 Z (Z3) X Y 1 Z X Y 1 Z X Y P (Z) P (Z) Z

M 1 M 2 M 1 M 2 E (M 1 ) E (M 2 ) X M 1 M 2 X = I 1 I 2 I 1 I (M 1 ) I 2 I (M 2 ) M 1, M 2 Z (M 1 ), Z (M 2 ) {X 1 X 2 : X 1 Z (M 1 ), X 2 Z (M 2 )} M 1 M 2 M 1 M 2 F E (M 1 M 2 ) M 1 M 2 F E (M 1 ) M 1 F E (M 2 ) M 2 F (M 1 M 2 ) = {F 1 F 2 : F 1 F (M 1 ), F 2 F (M 2 )} C E (M 1 M 2 ) M 1 M 2 M 1 M 2 F M 1 M 2 F E (M 1 ) F E (M 2 ) F Z (M 1 M 2 ) F E (M 1 ) Z (M 1 ) F E (M 2 ) Z (M 2 )

p 2 = {0, 1, 2, 3, 4, 5} r (p 2 ) = 3 p 1 = {0, 1, 2} r (p 1 ) = 2 p 0 = r (p 0 ) = 0 P 6 Z 1 Z 2 Z 1 Z 2 Z 1 Z 2 = {Z 1 Z 2 : Z 1 Z 1, Z 2 Z 2 }. Z 1 Z 2 Z 1 Z 2 Y Z Y Z M 1 M 1 Z (M 1 M 2 ) = Z (M 1 ) Z (M 2 )

s 3 = {6, 7, 8, 9, 10, 11} r (s 3 ) = 3 s 1 = {6, 7, 8} s 2 = {9, 10, 11} r (s 1 ) = 2 r (s 2 ) = 2 s 0 = r (s 0 ) = 0 R 6 P 6 6 P 6 R 6 6 R 6 Z P6 Z R6 = (0, 2, 72, 2, 72, 5, 2, 72 ), 5, 4, 5, 6

r (x 1 ) r (x 0 ) 2 = 2 0 r (x 3 ) r (x 0 ) 2 = 2 0 r (x 6 ) r (x 0 ) 2 = 6 0 r (x 10 ) r (x 9 ) 1 = 5 4 r (x 11 ) r (x 5 ) 1 = 6 5 r (x 11 ) r (x 8 ) 1 = 6 5 r (x 11 ) r (x 10 ) 1 = 6 5 r (x 2 ) + r (x 4 ) r (x 1 ) r (x 5 ) 0 = 7 2 + 7 2 2 5 r (x 2 ) + r (x 7 ) r (x 1 ) r (x 8 ) 0 = 7 2 + 7 2 2 5 r (x 3 ) + r (x 6 ) r (x 0 ) r (x 9 ) 0 = 2 + 2 0 4 r (x 4 ) + r (x 7 ) r (x 1 ) r (x 10 ) 0 = 7 2 + 7 2 2 5 r (x 0 ) 0 = 0 Z P6 Z R6 M 1 M 2 M 1 M 2 M 1 M 2 E (M 1 ) E (M 2 )

x 11 =p 2 s 3 x 10 =p 1 s 3 x 8 =p 2 s 1 x 5 =p 2 s 2 x 9 =p 0 s 3 x 4 =p 1 s 2 x 7 =p 1 s 1 x 2 =p 2 s 0 x 6 =p 0 s 1 x 3 =p 0 s 2 x 1 =p 1 s 0 x 0 =p 0 s 0 R 6 P 6 Z (M 1 M 2 ) = (Z (M 1 ) \ {E (M 1 )}) Z (M 2 ) Q Z (M 2 ) = {Z E (M 1 ) : Z Z (M 2 )} {E (M 1 )}, M 1 M 2 Q =, r M1 M 2 (X) = r M1 (X) X E (M 1 ) r M1 M 2 (E (M 1 ) Y ) = r M1 (E (M 1 )) + r M2 (Y ) Z 1 Z 2 Z 1 Z 2 Z 1 Z 2 = {X : X Z 1, X E (Z 1 )} {E (Z 1 ) Y : Y Z 2, Y } Q

{E (Z 1 )}, 1 Z(M1 ) = E (M 1 ) 0 Z(M2 ) = Q =, Z 1 Z 2 Z 1 Z 2 Y Z Y Z Z (M 1 M 2 ) = Z (M 1 ) Z (M 2 ) Y, Z Y Z Y Z C (Y) = [P 1 Z ] 1 0 C (Z) 1 0 0 Z Q 1 Y C (Y) 0 Z C (Z) 0 Z Y Z Y Z

C (Y Z) = P 1 Y 0 0 0 1 1 0 0 1 1 0 0 0 0 Z Q X C (Y Z) C (Y Z) C (Y) C (Z) C (Y Z) C (Y) C (Z) X = Y Z Y C (Y Z) Y C (Y) Z C (Y Z) Z C (Z) C (Y Z) Y Z Y Z (ϵ j ) j Y, (ζ k ) k Z ϵ j = ±1 ζ k = ±1 ϵ i Y i ζ i Z i ζ i Z i ζ i Z i ( ζ k ) C (Y Z) X m n Y Z (ζ k ) ϵ m = ζ n C (Y Z) ϵ i Y i + ζ i Z i (η l ) l X η l = ±1 η i X i C (Y Z) Y Z C (Y Z) = ( P 1 Y 0 0 0 Z Q 1 Y 0 Z C (Y Z) X C (Y Z) Y Z X = Y Z )

Y Z C (Y Z) C (Y) C (Z) 1 Y 0 Z C (Y Z) Y Z 1 Y = 0 Z X Y Z = {1 Y } (ϵ j ) j Y, (ζ k ) k Z 1 Y = 0 Z X m Y Z ϵ m = ζ m (η l ) l X η j = ϵ j 1 j Y η k+ Y = ζ k 1 k Z k m X X j = Y j j X Y +k = Z k k m C (Y Z) η i X i Y Z Y, Z Y Z C (Y Z) T B C (Y Z) T D BD = C (Y Z) T A P 1 Y 0 0 C (Y Z) = 0 1 1 0 0 1 1 0 0 0 0 Z Q C (Y) C (Z) B Y, B Z D Y, D Z B Y D Y = C (Y) T B Z D Z = C (Z) T Z C (Y Z) C (Z) T B Z B Z

B Y B Z C (Y Z) C (Y Z) T 0 Z B Z a B = B Y B Z {a} C (Y Z)T B B B = ±1 B B Y I Y B Y Y + 1 ( I Y 0 0 B Z B Z B ) D T = ( [D Y ] T 0 0 [D Z ] T ) C (Y Z) BD = C (Y Z) B C (Y Z) T D BD = C (Y Z) C (Y Z) C (Y Z)

C (Y Z) = ( P 1 Y 0 0 0 Z Q ) B = B Y B Z C (Y Z) T ( I Y 0 0 B Z Y ±1 ( I Y 1 0 0 B Z B D Z D Z D T = ( ) ) ) [D Y ] T 0 0 [ ] D T Z BD = C (Z) D Z D Z C (Y Z) Y Z Y Z Y Z v u P (Y ) P (Z) v u + x x

Y Z P (Y Z) P (Y Z)

P = (P, ) P = (P, ) a b P b a P M E F M F M F M E M e F e F e (E F ) {e} e F F E F Z E M E \ Z M Z E Z = {E \ Z : Z Z} E X Z X Z X X E X Y X, Y Z Y X Z

Z Z Z Z Z Y X Z X Y Z ( 0 Z X Y 1 Z 0 1 1 0 0 1 1 0 ( 0 Z X Y 1 Z 0 1 1 0 0 1 1 0 X, Y Z X Y ( 0 Z X Y X Y X Y 1 Z 0 1 1 1 1 0 ( 0 Z X Y X Y X Y 1 Z 0 1 1 1 1 0 C (Z) C (Z ) ( 0 Z 1 Z 1 0 1 0 ) ) ) ) )

( 0 Z 1 Z 0 1 0 1 1 1 C (Z ) C (Z) C (Z) ) Z E P (Z) r P (Z) r P (Z ) r r (X) = X r (M) + r ( X ) X Z r (M) = r (1 Z ) + E \ 1 Z. r (0 Z ) = 0 0 Z 0 Z = E \ 1 Z 1 Z r (0 Z ) = E \ 1 Z (r (1 Z ) + E \ 1 Z ) + r (1 Z ) = 0. X Y X, Y Z Y X r ( X ) r ( Y ) X Y 1, r ( X ) ( ) X + 1 r Y Y E r (M) E ( ) ( ) X r (M) + r X + 1 E Y r (M) + r Y,

X r (M) + r ( X ) + 1 Y r (M) + r ( Y ) r (X) + 1 r (Y ). r ( Y ) + 1 r ( X ) Y r (M) + r ( Y ) Y + 1 X r (M) + r ( X ) X r (Y ) Y + 1 r (X) X r (Y ) r (X) Y X 1. r (Z2) X, Y Z X, Y Z Z r ( X ) + r ( Y ) r ( X Y ) + r ( X Y ) + X Y X Y, X Y = X Y X Y = X Y r ( X ) + r ( Y ) r ( X Y ) + r ( X Y ) + X Y X Y. X Y = X + Y X Y r ( X ) + r ( Y ) + X + Y r ( X Y ) + r ( X Y ) + X Y + X Y, r ( X ) + r ( Y ) + X + Y r ( X Y ) + r ( X Y ) + X Y + X Y, X + r ( X ) + Y + r ( Y ) X Y + r ( X Y ) + X Y + r ( X Y ) + X Y X Y

r (X) + r (Y ) r (X Y ) + r (X Y ) + X Y X Y. r (Z3) r P (Z ) r r P (Z) P (Z ) r P (Z) r X Z X Z r (1 Z ) r (1 Z ) = 1 Z r (M) + r (E \ 1 Z ) r (1 Z ) = E \ 0 Z r (1 Z ) E \ 1 Z + r (0 Z ) r (1 Z ) = 1 Z 0 Z r (1 Z ). r (X) = X r (M) + r ( X ) r (M) = r (1 Z ) + E \ 1 Z r (X) = X r (1 Z ) E \ 1 Z + r ( X ). r ( X ) r ( X ) = X r (M ) + r (X), r (M ) r (1 Z ) + E \ 1 Z r ( X ) = X r (1 Z ) E \ 1 Z + r (X), r (1 Z ) r ( X ) = X 1Z + 0 Z + r (1 Z ) 0 Z + X r (1 Z ) E \ 1 Z + r ( X )

r ( X ) = E 1 Z E \ 1 Z + r ( X ) r ( X ) = r ( X ). r r r r P (Z ) P (Z) r P (Z) P (Z) n C (Z) x b (Z) r X 1, X 2 Z X 2 X 1 r (X 2 ) r (X 1 ) = 1 X 1, X 2 Z X 1 X 2 r (X 1 ) + 1 = r (X 2 ) r (M) X1 X1 X2 X2 X1 r (M) + r (X1 ) X1 + 1 = X2 r (M) + r (X2 ) X2 r ( X 1 ) X1 + 1 = r ( X 2 ) X2 r ( X 1 ) r ( X 2 ) = X 1 X 2 1. C (Z ) x b (Z ) Y 1, Y 2 Z Y 2 Y 1 r (Y 2 ) r (Y 1 ) = Y 2 Y 1 1

Y 1, Y 2 Z Y 1 Y 2 r (Y 2 ) r (Y 1 ) = Y 2 Y 1 1 r (Y 2 ) Y 2 + 1 = r (Y 1 ) Y 1, E r (M) E Y 2 r (M) + r (Y 2 ) + 1 = E Y 1 r (M) + r (Y 1 ) Y 2 r (M) + r (Y2 ) + 1 = Y 1 r (M) + r (Y1 ), r ( Y 2 ) r ( Y 1 ) r ( Y 2 ) + 1 = r ( Y 1 ). C (Z ) x b (Z ) Z 1, Z 2 Z r (Z 1 ) + r (Z 2 ) = r (Z 1 Z 2 ) + r (Z 1 Z 2 ) + Z 1 Z 2 Z 1 Z 2 Z 1, Z 2 Z r (Z 1 ) + r (Z 2 ) = r (Z 1 Z 2 ) + r (Z 1 Z 2 ) + Z 1 Z 2 Z 1 Z 2 r (Z 1 ) + r (Z 2 ) = r (Z 1 Z 2 ) + r (Z 1 Z 2 ) + Z1 Z 2 Z1 Z 2, Z1 + Z1 r (Z 1 )+r (Z 2 )+ Z1 + Z2 = r (Z1 Z 2 )+r (Z 1 Z 2 )+ Z1 Z 2 + Z1 Z 2. r (Z 1 )+r (Z 2 )+ Z1 + Z2 = r ( Z 1 Z 2 )+r (Z 1 Z 2 ) + Z1 Z 2 + Z1 Z 2

Z1 + r (Z1 ) + Z2 + r (Z2 = ( ) Z1 Z 2 + r Z 1 Z 2 + ( ) Z1 Z 2 + r Z 1 Z 2 + Z1 Z 2 Z1 Z 2 r ( Z 1 ) + r ( Z 2 ) = r ( Z 1 Z 2 ) + r ( Z 1 Z 2 ) + Z1 Z 2 Z1 Z 2. C (Z ) x b (Z ) 0 Z C (Z) x b (Z) 0 Z C (Z ) x b (Z ) C (Z) x b (Z) r C (Z ) x b (Z ) r C (Z ) C (Z) r P (Z ) r P (Z ) Z

Z Z e M e E (M) Z M \ e Z Z {e} M Z (M \ e) Z (M)

b a c a b c d e e d M 1 M 2 {a, b, c, d, e} {a, b, c, d} {a, b} {a, b} {a, b} M 1 M 2 M 1 \ e M 2 \ e

F 6 F 6 \ D F 5 F 2 F 3 F 4 F 2 \ D F 3 \ D F 4 \ D F 1 Z E X Z X W Z D E X = {W \ D : W W} W X Z E X Z W Z X D E X = {W \ D : W W} W W X = W \ D X X W X Z Z X X W X W X S Z S X = {X X : Z X S} S X M \ e M/e M

{a, b, c, d, e, f, g, h, i} d c a b e g h i f {a, b, c, d} {a, b, e, f} {a, b} {g, h, i} N N Z E S, T Z Z S Z T X Z X S X X T X Z X S T X S X > X T X s S X t T X s t t T X S X X S X > X T X t T X X S X t t X S X S X X S X S X X Z ϕ : X Z ϕ (X) Z ϕ (Y ) = ϕ (X X Y ) ϕ (X) Z ϕ (Y ) = ϕ (X X Y ) X, Y X

1 Y β n α 0 Y β 2 β 1 Y n Z X X Z Z N N \ a X = Z (N \ a) {a, b} {a, b, c, d} {a, b, e, f} {b, c, d} {b, e, f} Z (N \ a) Z(N) X = Z (N) \ {{a, b}} Z (N) {a, b, c, d} {a, b, e, f} Z (N) {a, b} Z(N) X

{Y 1, Y 2,..., Y t } (ϵ j ) j t ϵ j = ±1 1 j t t i=1 ϵ iy i L C Y = {Y 1, Y 2,..., Y t } C (ϵ j ) j t ϵ j = ±1 1 j t Y p Y q ϵ p = ϵ q Y s = 0 Y Y Y r = 1 Y Y Y Y s Y r ϵ s = ϵ r 0 Y, 1 Y, α Y ϵ j = ϵl 1 j, l t 0 Y 1 Y Y ϵ j = ϵl 1 j, l t Y m = α Y 0 Y, 1 Y / Y ϵ j ϵ m j m t i=1 ϵ iy i 1 0 1 C (Y n ) 0 0 1 1 p q Y Y ϵ p = ϵ q 0 4 α β k 1 k n 0 Y 1 Y

Y Y Y s = 0 Y Y r = 1 Y α / Y β k / Y 1 k n 0 Y 1 Y ϵ s = ϵ r 1 β k 1 k n 0 Y 0 Y 1 Y Y ϵ j = ϵ l j, l β k 0 Y β k 0 Y Y β k 1 Y α 0 Y α 1 Y Y m = α β k 0 Y, 1 Y / Y ϵ j ϵ m j m α β k Y 0 Y, α, β k α, β k, 1 Y ϵ j ±1 0 Y, α, 1 Y ϵ j ±1 0 Y, β k, 1 Y Y 0 Y 1 Y ϵ j ±1 β k = Y u ϵ u ϵ s ϵ r ±1 Y ϵ j 0 Z Z

b 6 c 6 a 5 b 4 b 5 c 4 c 5 a 2 a 3 a 4 b 2 b 3 c 2 c 3 a 1 b 1 c 1 Z Z 3 Z 1 Z 2 Z 3 Z C (Z) 2 Z 1 Z 2 Z 3 1 1 0 1 0 1 0 1 1 Z W Z W = {Z 1, Z 2, Z 3, Z 4, Z 5, Z 6 } Z i b i Z 2 Z 3 Z 1 Z 1 Z 6 Z 2 Z 3 Z 4 Z 5 C (Z) Z 1 Z 2 Z 3 Z 6 1 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0

2 Z W Z W = {Z 1, Z 2, Z 3, Z 4, Z 5, Z 6 } Z i c i Z 4 Z 2 Z 3 Z 5 Z 3 C (Z) 2 Z 2 Z 3 Z 4 Z 5 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 Z 2 Z 1 C (Z) Z Z 2 S T Z s 1 s 2 S T s 1 < s 2 s 3 S T s 1 < s 3 < s 2 x S x T x s 1 s 2 x Z W Z Z Z Z W Z Z

Z Z 1 d 1 = {1, 3, 5, 6, 11, 12} d 2 = {0, 1, 5, 6, 9, 10, 13} d 3 = {0, 6, 7, 8, 10, 12, 13} d 4 = {1, 4, 6, 7, 8, 10, 13} d 5 = {0, 2, 3, 5, 7, 8, 9, 11, 13} d 6 = {1, 2, 3, 5, 6, 11, 12, 13} E = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. P (Z 1 ) Z 1 r 1 = (0, 5, 6, 6, 6, 6, 6, 7) r 2 = (0, 5, 5, 6, 6, 6, 6, 7) M 1 r 2 2 Z 1 Z 1 P ( Z 1) r 1 = (0, 5, 5, 6, 6, 6, 7) r 1 2 = (0, 5, 6, 6, 6, 6, 7) r 3 = (0, 4, 6, 6, 6, 6, 7) r 4 = (0, 5, 6, 6, 6, 5, 7) ( r 5 = 0, 9 2, 11 2, 6, 6, 11 ) 2, 7

E d 1 d 2 d 3 d 4 d 5 d 6 Z 1

E \ {2} d 1 d 2 d 3 d 4 d 5 \ {2} Z 1 Z 1

Z 1

M E C E M C E Z M C Z C = r (Z) + 1