Distribution of Mass and Energy in Five General Cosmic Models

Similar documents
Cosmological Distances in Closed Model of the Universe

Distribution of Mass and Energy in Closed Model of the Universe

A Closed Model of the Universe

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

MAT 1275: Introduction to Mathematical Analysis

S Radio transmission and network access Exercise 1-2

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

e t dt e t dt = lim e t dt T (1 e T ) = 1

K The slowest step in a mechanism has this

T-Match: Matching Techniques For Driving Yagi-Uda Antennas: T-Match. 2a s. Z in. (Sections 9.5 & 9.7 of Balanis)

Exponents and Powers

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR

Chapter Direct Method of Interpolation

Development of a New Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

Econ 401A Three extra questions John Riley. Homework 3 Due Tuesday, Nov 28

0 for t < 0 1 for t > 0

Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P

10.7 Temperature-dependent Viscoelastic Materials

Approximating the Powers with Large Exponents and Bases Close to Unit, and the Associated Sequence of Nested Limits

Contraction Mapping Principle Approach to Differential Equations

12 Basic Integration in R

A L A BA M A L A W R E V IE W

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

ARC 202L. Not e s : I n s t r u c t o r s : D e J a r n e t t, L i n, O r t e n b e r g, P a n g, P r i t c h a r d - S c h m i t z b e r g e r

Outline cont. 5. History of dark matter 6. Summary of galaxy properties 7. Numerical simulations 8. Semi-analytic modeling of galaxy formation

Solutions to Problems from Chapter 2

ragsdale (zdr82) HW2 ditmire (58335) 1

A new model for limit order book dynamics

A Time Truncated Improved Group Sampling Plans for Rayleigh and Log - Logistic Distributions

Average & instantaneous velocity and acceleration Motion with constant acceleration

PRINCE SULTAN UNIVERSITY Department of Mathematical Sciences Final Examination Second Semester (072) STAT 271.

Analytical solution of adhesion contact for a rigid sinusoidal surface on a semi-infinite elastic body

Minimum Squared Error

Minimum Squared Error

Design of Diaphragm Micro-Devices. (Due date: Nov 2, 2017)

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

Math Week 5 concepts and homework, due Friday February 10

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose

Math 554 Integration

CHAPTER 7 CHRONOPOTENTIOMETRY. In this technique the current flowing in the cell is instantaneously stepped from

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

New Inequalities in Fractional Integrals

Kiel Probes. General Information

Chapter 4 The debroglie hypothesis

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

Logarithms and Exponential Functions. Gerda de Vries & John S. Macnab. match as necessary, or to work these results into other lessons.

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π

CONSIDERATIONS REGARDING THE OPTIMUM DESIGN OF PRESTRESSED ELEMENTS

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

Chapter 2. Numerical Integration also called quadrature. 2.2 Trapezoidal Rule. 2.1 A basic principle Extending the Trapezoidal Rule DRAWINGS

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.

Section 4.7 Inverse Trigonometric Functions

Lecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University

Thermal neutron self-shielding factor in foils: a universal curve

1. Introduction. 1 b b

Additional Exercises for Chapter What is the slope-intercept form of the equation of the line given by 3x + 5y + 2 = 0?

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0

4 The dynamical FRW universe

FM Applications of Integration 1.Centroid of Area

Vyacheslav Telnin. Search for New Numbers.

A Kalman filtering simulation

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

September 20 Homework Solutions

Problems on transformer main dimensions and windings

PKK Energy chains. PKK 320 / 200 x 2340 / 200; 5Pz, 1PT55

Convex Sets and Functions

TMA4329 Intro til vitensk. beregn. V2017

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Today in Astronomy 142: general relativity and the Universe

MATHEMATICS PAPER & SOLUTION

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

û s L u t 0 s a ; i.e., û s 0

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

5.1 Properties of Inverse Trigonometric Functions.

How to prove the Riemann Hypothesis

Chapter 2 Differentiation

Lecture 3: Resistive forces, and Energy

IMPULSE-BASED SIMULATION OF INEXTENSIBLE CLOTH

A new model for solving fuzzy linear fractional programming problem with ranking function

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Fuzzy Laplace Transforms for Derivatives of Higher Orders

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section.

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components

Physics 2A HW #3 Solutions

ANALYSIS OF LINEAR AND NONLINEAR EQUATION FOR OSCILLATING MOVEMENT

5.7 Improper Integrals

Form 5 HKCEE 1990 Mathematics II (a 2n ) 3 = A. f(1) B. f(n) A. a 6n B. a 8n C. D. E. 2 D. 1 E. n. 1 in. If 2 = 10 p, 3 = 10 q, express log 6

Thabet Abdeljawad 1. Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Say : 9 / May s 2008

Special Vector Calculus Session For Engineering Electromagnetics I. by Professor Robert A. Schill Jr.

Key words. Numerical quadrature, piecewise polynomial, convergence rate, trapezoidal rule, midpoint rule, Simpson s rule, spectral accuracy.

A Deterministic Inventory Model For Weibull Deteriorating Items with Selling Price Dependent Demand And Parabolic Time Varying Holding Cost

TEXAS LOTTERY COMMISSION Scratch Ticket Game Closing Analysis SUMMARY REPORT Scratch Ticket Information Date Completed 9/20/2017

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel

Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources

Brace-Gatarek-Musiela model

Transcription:

Inerninl Jurnl f Asrnmy nd Asrpysics 05 5 0-7 Publised Online Mrc 05 in SciRes p://wwwscirprg/jurnl/ij p://dxdirg/0436/ij055004 Disribuin f Mss nd Energy in Five Generl Csmic Mdels Fdel A Bukri Deprmen f Asrnmy Fculy f Science King Abdulziz Universiy Jedd KSA Emil: fdbukri@gmilcm Received 3 Mrc 05; cceped 7 Mrc 05; publised 0 Mrc 05 Cpyrig 05 by ur nd Scienific Reserc Publising Inc Tis wrk is licensed under e Creive Cmmns Aribuin Inerninl License (CC BY) p://creivecmmnsrg/licenses/by/40/ Absrc Disribuins f e universe rizn disnce nd universe rizn vlume were invesiged in e lig f five generl csmic mdels wic were cnsruced in previus sudy B disribuins increse s slwly up 5444 Myr en ey sr rising very fs up 60 Gyr Aferwrds ey increse gin very slwly unil 4 Gyr Disribuins f mss f rdiin mer nd drk energy wiin e rizn vlume f e universe were ls sudied in e five generl csmic mdels Te msses f b rdiin nd mer decrese grdully wi ime wile e mss f drk energy increses Te mss f rdiin previled in e erly universe up 34675-5596 yr were i becmes equl e mss f mer Ten e mss f mer dmined unil 9455-0063 Gyr were i becmes equl e mss f drk energy Tencefrwrd e mss f drk energy previls e universe Te csmic spce becmes pprximely mer empy in e s fr fuure f e universe Keywrds Generl Csmic Mdels Disribuin f Mss nd Energy Inrducin In previus sudy [] e disribuin f densiy prmeers f rdiin mer nd drk energy were invesiged in deils in five generl csmic mdels Hence i wuld be ineresing sudy e disribuins f equivlen mss f rdiin mss f mer nd equivlen mss f drk energy wiin e rizn vlume f e universe in e generl mdels Terefre i is necessry sr is sudy by invesiging e disribuins f e rizn disnce nd rizn vlume f e universe in e generl mdels differen ime inervls depending n e bses discussed in [] Descripin f medlgy is given in Secin wile lgrim wuld be illusred in Secin 3 Resuls Hw cie is pper: Bukri FA (05) Disribuin f Mss nd Energy in Five Generl Csmic Mdels Inerninl Jurnl f Asrnmy nd Asrpysics 5 0-7 p://dxdirg/0436/ij055004

nd discussin re presened in Secin 4 Cnclusin is swn in Secin 5 Medlgy We ve seen in [] e rizn disnce nd rizn vlume f e universe e presen ime re respecively were r m Λ is c d( ) = Λ ( ) 0 m r d H + + () π 3 V( ) = d ( ) () 3 ch re ll defined s in [] Tus e rizn disnce f e universe ny given ime c d( ) = Λ ( ) 0 m r d H + + (3) Cnsequenly e cnge in e rizn disnce f e universe in e ime inervl beween w insns f scle fcrs is wrien s c Δd( ) = Λ ( ) m r d H + + (3b) Te rizn vlume f e universe ny given ime is I is ls bvius frm [] e l densiy f e universe is given by were π 3 V( ) = d ( ) (4) 3 ρ ( ) ρ ( ) = c (5) ( ) ρ c ( m r Λ ) = + + (6) 3H ρ c = (7) πg ρm H 0 m m = = 3 ρ c H () ρr H 0 r r = = 4 ρ c H ρλ H0 Λ = = Λ ρ c H (9) (0) H = Λ m r + + ( ) H Hence e l mss wiin e rizn vlume f e universe ny given ime is expressed s ρ () M = V () Te mss f mer M m e equivlen mss f rdiin M r nd e equivlen mss f drk energy

M Λ wiin e rizn vlume f e universe ny given ime re given by ρm Mm = M( ) ρ Te csmic ime is given by Equin (6) in [] s m Mm = M (3) ( ) r Mr = M (4) ( ) Λ MΛ = M (5) ( ) Λ ( ) 0 m r d (6) = + + H Tus e ime inervl beween w insns wi scle fcrs during e universe expnsin is expressed s 3 Algrim Λ m r Δ = d H + + (6b) d V M M M nd M we use e fllwing seps: i) Se = 0 d = 0 K = K = 000 en inser e vlue f mx = 009 fr 05 Gyr mx = 0 fr 05 < 50 Gyr nd mx = 000 fr 50 < 4 Gyr mx ii) Cmpue DA = DBLE K In deerminin f e disribuins f m r Λ iii) Sr generl DO lp I = K K wic includes e fllwing sub seps: iv) = DA( I ) = DAI v) Clcule new vlue f csmic ime numericlly using(6-b) were = + Δ vi) Deermine new vlue f e universe rizn disnce d numericlly using (3-b) were d = d + Δd vii) Obin e crrespnding vlues f V H ρc m r Λ ( ) ρ ( ) M( ) Mm Mr MΛ using (4) () (7) () (9) (0) (6) (5) () (3) (4) nd (5) respecively viii) Cninue e generl DO lp 4 Resuls nd Discussin Te disribuin f e universe rizn disnce in e generl mdels up = 05 Gyr is swn in Figure () Te disribuins f ll mdels cincide n ec er unil 5444 Myr Ten e disribuins f mdels A B nd C cincide n ec er nd ge upper n e cincided disribuins f mdels D nd E Te universe rizn disnce increses quie slwly wi ime in ll generl mdels up 5444 Myr ence i ss rising very fs Te disribuin f e universe rizn disnce in e generl mdels in e rnge = 05-50 Gyr is illusred in Figure (b) Te disribuins f ll mdels cincide n ec er up Gyr Aferwrds e disribuins f mdels A B nd C cincide n ec er nd becme iger n e cincided disribuins f mdels D nd E In ll generl mdels e universe rizn disnce disribuins increse very fs wi ime Te disribuin f e universe rizn disnce in e generl mdels in e rnge = 50-4 Gyr is presened in Figure (c) Te disribuins f mdels A B nd C re clse ec er nd lie upper n e disribuins f mdels E nd D Te increse in e universe rizn disnce ges very smll wi incresing ime in ll generl mdels

Figure Te disribuin f e universe rizn disnce in e generl csmic mdels () up = 05 Gyr; (b) in e rnge = 05-50 Gyr; (c) in e rnge = 50-4 Gyr Tble sws e universe rizn disnces in e generl mdels specil imes Tese imes re e ime f rdiin-mer mss equivlence rm e ime f mer-drk energy mss equivlence mλ e presen ime = 37 ± 0 Gyr nd e ime n = 4 Gyr Te resuls illusred in Figures ()-(c) re suppred by se displyed in Figures ()-(c) wic sw e disribuins f e universe rizn vlume in e generl mdels in e rnges up = 05 Gyr = 05 50 Gyr nd = 50-4 Gyr respecively Tble presens e universe rizn vlumes in e generl mdels e specil imes rm mλ nd n Te disribuin f mss nd energy wiin e universe rizn vlume f e universe in ny generl mdel up = 05 Gyr is exibied in Figure 3() Te disribuins f b rdiin nd mer decrese grdully wi ime nd inersec e ime rm = 34675-5596 yr s swn in Tble 3 On e er nd e disribuin f drk energy increses grdully unil i inersecs wi e rdiin disribuin e ime rλ = 0566-0539 Gyr s seen in Tble 4 Te disribuin f l mss cincides wi f rdiin up 54344 yr Aferwrds e w disribuins diverge frm ec er Hwever e disribuin f e l mss cincides n e disribuin f mer frm e ime 576959 yr nwrds Te disribuin f mss nd energy wiin e universe rizn vlume f e universe in ny generl mdel in e rnge = 05-50 Gyr is displyed in Figure 3(b) I is bvius e disribuins f mer nd rdiin decrese grdully wi ime nd e frmer lies bve e ler Te disribuin f drk energy increses wi ime nd inersecs wi e disribuin f mer = 9455-0063 Gyr s illusred in Tble 5 Te disribuin f e l mss cincides n e disribuin f e mer up = 4574 Gyr en ey diverge frm ec er Furermre e disribuin f e l mss cincides n e disribuin f e drk energy frm = 57 Gyr nwrds Msses f rdiin mer nd drk energy wiin e universe rizn vlume in e generl mdels e presen ime re illusred in Tble 6 Te disribuin f mss nd energy wiin e universe rizn vlume in ny generl mdel in e rnge 3

Tble Hrizn disnces f e universe in e generl csmic mdels specil imes Mdel d ( ) / Mpc d ( ) d ( ) / Gpc d ( ) / Gpc rm mλ / Gpc A 50 7667 4969 9003 B 40 756 45 949 C 0740 7 470 9074 D 9030 3367 3666 306 E 94370 469 3070 450 n Figure Te disribuin f e universe rizn vlume in e generl csmic mdels () up = 05 Gyr; (b) in e rnge = 05-50 Gyr; (c) in e rnge = 50-4 Gyr Tble Hrizn vlumes f e universe in e generl csmic mdels specil imes 3 Mdel V ( ) / Mpc V ( ) / ( 0 Gpc) 3 V ( ) / ( 0 Gpc) 3 V ( ) / ( 0 Gpc) 3 rm mλ A 300 743 449 575555 B 00 73990 3779 5734 C 37900 7496 4349 577 D 7900 5795 337 53939 E 70300 6077 0504 5634 n 4

Figure 3 Te disribuin f mss nd energy wiin e universe rizn vlume in ny generl csmic mdel () up = 05 Gyr; (b) in e rnge = 05-50 Gyr; (c) in e rnge = 50-4 Gyr Tble 3 Csmic imes wic M r ( ) = M m ( ) wiin e universe rizn vlume in e generl csmic mdels Mdel rm / 03 yr Lg ( M rm M ) Lg ( M Λ M ) A 5596 56 49 B 496665 76 07 C 554 59 56 D 3473 333 79566 E 34675 3753 755 Tble 4 Csmic imes wic M r ( ) = M Λ ( ) wiin e universe rizn vlume in e generl csmic mdels Mdel rλ / Gyr Lg ( M rλ M ) Lg ( M m M ) A 0539 3053 5540 B 05736 934 55375 C 050 300 55445 D 0566 9407 55350 E 0559 906 556 5

= 50-4 Gyr is exibied in Figure 3(c) Agin e disribuin f b mer mss nd rdiin mss decrese wi ime nd e frmer is iger n e ler Te disribuins f drk energy mss nd l mss cincide n ec er Msses f rdiin mer nd drk energy wiin e universe rizn vlume in e generl mdels n re given in Tble 7 Tble sws e equivlen number f e Cm-like clusers e mss f mer wiin e universe rizn vlume NCOMA ( ) in e generl mdels e specil imes rm m Λ nd n I is bvius is cnen f mer srngly decreses wi ime suc e csmic spce becmes lms mer empy in e fr fuure f e universe 5 Cnclusin In is ricle disribuins f e universe rizn disnce nd universe rizn vlume were deermined in e five generl csmic mdels wic were esblised previusly Te w disribuins were fund incresing slwly up 5444 Myr ence ey rise pprecibly fs up = 60 Gyr en ey increse gin s slwly unil = 4 Gyr Disribuins f mss f rdiin mer nd drk energy wiin e universe rizn vlume were ls invesiged in e five generl mdels Te msses f rdiin nd mer re decresing wi ime lug e mss f drk energy is incresing Te mss f rdiin ws dminn in e erly Tble 5 Csmic imes wic M ( ) M ( ) m = wiin e universe rizn vlume in e generl csmic mdels Λ Mdel Lg ( M M mλ ) Lg ( M M r ) / Gyr mλ A 94650 4507 03 B 96930 4393 0339 C 9455 4594 0937 D 969 4564 07974 E 0063 409 07030 Tble 6 Msses f rdiin mer nd drk energy wiin e universe rizn vlume in e generl csmic mdels = Mdel Lg ( M M r ) Lg ( M M m ) Lg ( M M Λ ) A 0453 3965 43973 B 0434 3963 4375 C 04570 39663 4406 D 04035 39954 439 E 0364 399 433 Tble 7 Msses f rdiin mer nd drk energy wiin e universe rizn vlume in e generl csmic mdels = n Mdel Lg ( M M r ) Lg ( M M m ) Lg ( M M Λ ) A 400 5340 47694 B 9797 547 4757 C 7546 547 47779 D 36 463 47706 E 65 5455 475 6

Tble Equivlen number f e Cm-like clusers e mss f mer wiin e universe rizn vlume in e generl csmic mdels specil imes Mdel rm mλ n A 944 0 B 96955 0 C 950 0 D 073 0 E 65 0 9057 0 6750 0 9059 0 9034 0 59 0 4564 0 4 4640 0 5034 4667 0 0963 49473 0 034 49099 0 4370 universe up = 34675-5596 yr were i becmes equivlen e mss f mer Aferwrds e mss f mer previled unil = 9455-0063 Gyr were i becmes equl e mss f drk energy Frm is ime nwrds e mss f drk energy dmines e universe Te csmic spce ges pprximely mer empy in e very reme fuure f e universe References [] Bukri FA (03) Five Generl Csmic Mdels Jurnl f King Abdulziz Universiy: Science 5 [] Bukri FA (03) Csmlgicl Disnces in Five Generl Csmic Mdels Inerninl Jurnl f Asrnmy nd Asrpysics 3 3-7