Journal of Inequalities in Pure and Applied Mathematics

Similar documents
Journal of Inequalities in Pure and Applied Mathematics

Published by European Centre for Research Training and Development UK ( GRONWALL BELLMAN OU-IANG TYPE INEQUALITIES

ON NONLINEAR INTEGRAL INEQUALITIES AND APPLICATIONS

Research Article Bounds of Solutions of Integrodifferential Equations

ASYMPTOTIC BEHAVIOUR OF SECOND-ORDER DIFFERENCE EQUATIONS

ABSTRACT AND CONCRETE GRONWALL LEMMAS

GENERALIZATION OF GRONWALL S INEQUALITY AND ITS APPLICATIONS IN FUNCTIONAL DIFFERENTIAL EQUATIONS

Extensions of Gronwall s inequality with logarithmic terms by Je R. L. Webb

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics

Some Integral Inequalities with Maximum of the Unknown Functions

Archivum Mathematicum

Existence And Uniqueness Of Mild Solutions Of Second Order Volterra Integrodifferential Equations With Nonlocal Conditions

Periodic Solutions in Shifts δ ± for a Dynamic Equation on Time Scales

LYAPUNOV-RAZUMIKHIN METHOD FOR DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT. Marat Akhmet. Duygu Aruğaslan

Giaccardi s Inequality for Convex-Concave Antisymmetric Functions and Applications

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS

A generalized Gronwall inequality and its application to a fractional differential equation

Existence of Almost Periodic Solutions of Discrete Ricker Delay Models

Copyright MMIX ARACNE editrice S.r.l. via Raffaele Garofalo, 133 A/B Roma (06)

Oscillation Criteria for Certain nth Order Differential Equations with Deviating Arguments

Existence Results for Multivalued Semilinear Functional Differential Equations

A Note on Retarded Ouyang Integral Inequalities

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE

Boundary value problem with integral condition for a Blasius type equation

EXISTENCE THEOREMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES. 1. Introduction

BOUNDARY VALUE PROBLEMS OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION

JENSEN S OPERATOR AND APPLICATIONS TO MEAN INEQUALITIES FOR OPERATORS IN HILBERT SPACE

GLOBAL ATTRACTIVITY IN A NONLINEAR DIFFERENCE EQUATION

EXISTENCE OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH ABSTRACT VOLTERRA OPERATORS

LOGARITHMIC CONVEXITY OF EXTENDED MEAN VALUES

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions

EXISTENCE RESULTS FOR NONLINEAR FUNCTIONAL INTEGRAL EQUATIONS VIA NONLINEAR ALTERNATIVE OF LERAY-SCHAUDER TYPE

MULTIPLICITY OF CONCAVE AND MONOTONE POSITIVE SOLUTIONS FOR NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

Leighton Coles Wintner Type Oscillation Criteria for Half-Linear Impulsive Differential Equations

ALMOST PERIODIC SOLUTIONS OF NONLINEAR DISCRETE VOLTERRA EQUATIONS WITH UNBOUNDED DELAY. 1. Almost periodic sequences and difference equations

ON SECOND ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

AW -Convergence and Well-Posedness of Non Convex Functions

Journal of Inequalities in Pure and Applied Mathematics

IMPROVEMENTS OF COMPOSITION RULE FOR THE CANAVATI FRACTIONAL DERIVATIVES AND APPLICATIONS TO OPIAL-TYPE INEQUALITIES

Journal of Inequalities in Pure and Applied Mathematics

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

ON LANDAU S THEOREMS. 1. Introduction E. Landau has proved the following theorems [11]:

SHRINKING PROJECTION METHOD FOR A SEQUENCE OF RELATIVELY QUASI-NONEXPANSIVE MULTIVALUED MAPPINGS AND EQUILIBRIUM PROBLEM IN BANACH SPACES

POSITIVE SOLUTIONS TO SINGULAR HIGHER ORDER BOUNDARY VALUE PROBLEMS ON PURELY DISCRETE TIME SCALES

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

Oscillation Criteria for Delay and Advanced Difference Equations with General Arguments

WHEN LAGRANGEAN AND QUASI-ARITHMETIC MEANS COINCIDE

Journal of Inequalities in Pure and Applied Mathematics

Jensen s Operator and Applications to Mean Inequalities for Operators in Hilbert Space

THE PERRON PROBLEM FOR C-SEMIGROUPS

Journal of Inequalities in Pure and Applied Mathematics

PERIODIC PROBLEMS WITH φ-laplacian INVOLVING NON-ORDERED LOWER AND UPPER FUNCTIONS

Journal of Inequalities in Pure and Applied Mathematics

On periodic solutions of superquadratic Hamiltonian systems

On the Sign of Green s Function for Second Order Impulsive Difference Equations

MULTIPLE POSITIVE SOLUTIONS FOR FOURTH-ORDER THREE-POINT p-laplacian BOUNDARY-VALUE PROBLEMS

Lifting Smooth Homotopies of Orbit Spaces of Proper Lie Group Actions

Dynamic Systems and Applications xx (200x) xx-xx ON TWO POINT BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENTIAL INCLUSIONS

ON THE OSCILLATION OF THE SOLUTIONS TO LINEAR DIFFERENCE EQUATIONS WITH VARIABLE DELAY

Growth of Solutions of Second Order Complex Linear Differential Equations with Entire Coefficients

On Existence of Positive Solutions for Linear Difference Equations with Several Delays

Mathematical Journal of Okayama University

This is a submission to one of journals of TMRG: BJMA/AFA EXTENSION OF THE REFINED JENSEN S OPERATOR INEQUALITY WITH CONDITION ON SPECTRA

A Concise Course on Stochastic Partial Differential Equations

Discrete Population Models with Asymptotically Constant or Periodic Solutions

On the Iyengar Madhava Rao Nanjundiah inequality and its hyperbolic version

Boundary Value Problems For Delay Differential Equations. (Ravi P Agarwal, Texas A&M Kingsville)

Inequalities among quasi-arithmetic means for continuous field of operators

Nonlocal problems for the generalized Bagley-Torvik fractional differential equation

GEOMETRICAL PROOF OF NEW STEFFENSEN S INEQUALITY AND APPLICATIONS

Second order Volterra-Fredholm functional integrodifferential equations

Oscillation of second-order nonlinear difference equations with sublinear neutral term

Improvements of the Giaccardi and the Petrović inequality and related Stolarsky type means

ON QUADRATIC INTEGRAL EQUATIONS OF URYSOHN TYPE IN FRÉCHET SPACES. 1. Introduction

On non negative solutions of some quasilinear elliptic inequalities

HARNACK S INEQUALITY FOR GENERAL SOLUTIONS WITH NONSTANDARD GROWTH

Various proofs of the Cauchy-Schwarz inequality

Sufficient conditions for the exponential stability of delay difference equations with linear parts defined by permutable matrices

Abdulmalik Al Twaty and Paul W. Eloe

Some Arithmetic Functions Involving Exponential Divisors

Trigonometric Recurrence Relations and Tridiagonal Trigonometric Matrices

SCALARIZATION APPROACHES FOR GENERALIZED VECTOR VARIATIONAL INEQUALITIES

Global attractivity and positive almost periodic solution of a discrete multispecies Gilpin-Ayala competition system with feedback control

Submitted Version to CAMWA, September 30, 2009 THE LAPLACE TRANSFORM ON ISOLATED TIME SCALES

DELAY INTEGRO DIFFERENTIAL EQUATIONS OF MIXED TYPE IN BANACH SPACES. Tadeusz Jankowski Technical University of Gdańsk, Poland

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

Positive solutions for discrete fractional intiail value problem

Discrete uniform limit law for additive functions on shifted primes

Maximum Process Problems in Optimal Control Theory

Existence of Solutions to Split Variational Inequality Problems and Split Minimization Problems in Banach Spaces

Positive solutions for a class of fractional boundary value problems

FENCHEL DUALITY, FITZPATRICK FUNCTIONS AND MAXIMAL MONOTONICITY S. SIMONS AND C. ZĂLINESCU

On the Existence of Almost Periodic Solutions of a Nonlinear Volterra Difference Equation

On the fixed point theorem of Krasnoselskii and Sobolev

Convergence theorems for a finite family. of nonspreading and nonexpansive. multivalued mappings and equilibrium. problems with application

ON PERIODIC SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS WITH SINGULARITIES

Convergence of generalized entropy minimizers in sequences of convex problems

On the elliptic curve analogue of the sum-product problem

Transcription:

Journal of Inequalities in Pure and Applied Mathematics SOME NEW DISCRETE NONLINEAR DELAY INEQUALITIES AND APPLICATION TO DISCRETE DELAY EQUATIONS WING-SUM CHEUNG AND SHIOJENN TSENG Department of Mathematics University of Hong Kong Hong Kong EMail: wscheung@hku.hk Department of Mathematics Tamkang University Tamsui, Taiwan 25137 EMail: tseng@math.tku.edu.tw volume 7, issue 4, article 122, 2006. Received 07 September, 2005; accepted 27 January, 2006. Communicated by: S.S. Dragomir Abstract Home Page c 2000 Victoria University ISSN electronic): 1443-5756 267-05

Abstract In this paper, some new discrete Gronwall-Bellman-Ou-Iang-type inequalities are established. These on the one hand generalize some existing results and on the other hand provide a handy tool for the study of qualitative as well as quantitative properties of solutions of difference equations. 2000 Mathematics Subject Classification: 26D10, 26D15, 39A10, 39A70. Key words: Gronwall-Bellman-Ou-Iang-type Inequalities, Discrete inequalities, Difference equations. 1 Introduction......................................... 3 2 Discrete Inequalities with Delay........................ 5 3 Immediate Consequences.............................. 23 4 Application......................................... 32 References Page 2 of 36

1. Introduction It is widely recognized that integral inequalities in general provide an effective tool for the study of qualitative as well as quantitative properties of solutions of integral and differential equations. While most integral inequalities only give the global behavior of the unknown functions in the sense that bounds are only obtained for integrals of certain functions of the unknown functions), the Gronwall-Bellman type see, e.g. [3] [8], [10] [12], [15] [18]) is particularly useful as they provide explicit pointwise bounds of the unknown functions. A specific branch of this type of inequalities is originated by Ou-Iang. In his paper [13], in order to study the boundedness behavior of the solutions of some 2nd order differential equations, Ou-Iang established the following beautiful inequality. Theorem 1.1 Ou-Iang [13]). If u and f are non-negative functions on [0, ) satisfying u 2 x) c 2 + 2 for some constant c 0, then ux) c + x 0 x 0 fs)us)ds, fs)ds, x [0, ), x [0, ). While Ou-Iang s inequality is interesting in its own right, it also has numerous important applications in the study of differential equations see, e.g., [2, 3, 9, 11, 12]). Over the years, various extensions of Ou-Iang s inequality have been established. These include, among others, works of Agarwal [1], Page 3 of 36

Ma-Yang [10], Pachpatte [14] [18], Tsamatos-Ntouyas [19], and Yang [20]. Among such extensions, the discretization is of particular interest because analogous to the continuous case, discrete versions of integral inequalities should, in our opinion, play an important role in the study of qualitative as well as quantitative properties of solutions of difference equations. It is the purpose of this paper to establish some new discrete Gronwall- Bellman-Ou-Iang-type inequalities giving explicit bounds to unknown discrete functions. These on the one hand generalize some existing results in the literature and on the other hand give a handy tool to the study of difference equations. An application to a discrete delay equation is given at the end of the paper. Page 4 of 36

2. Discrete Inequalities with Delay Throughout this paper, R + = 0, ) R, Z + = R + Z, and for any a, b R, R a = [a, ), Z a = R a Z, Z [a,b] = Z [a, b]. If X and Y are sets, the collection of functions of X into Y, the collection of continuous functions of X into Y, and that of continuously differentiable functions of X into Y are denoted by FX, Y ), CX, Y ), and C 1 X, Y ), respectively. As usual, if u is a real-valued function on Z [a,b], the difference operator on u is defined as un) = un + 1) un), n Z [a,b 1]. In the sequel, summations over empty sets are, as usual, defined to be zero. The basic assumptions and initial conditions used in this paper are the following: Assumptions A1) f, g, h, k, p FZ 0, R 0 ) with p non-decreasing; A2) w CR 0, R 0 ) is non-decreasing with wr) > 0 for r > 0; A3) σ FZ 0, Z) with σs) s for all s Z 0 and < a := inf{σs) : s Z 0 0; A4) ψ FZ [a,0], R 0 ); and A5) φ C 1 R 0, R 0 ) with φ non-decreasing and φ r) > 0 for r > 0. Initial Conditions I1) xs) = ψs) for all s Z [a,0] ; I2) ψ σs)) φ 1 ps)) for all s Z 0 with σs) 0. Page 5 of 36

Theorem 2.1. Under Assumptions A1) A5), if x FZ a, R 0 ) is a function satisfying the nonlinear delay inequality 2.1) φ xn)) pn) + φ x σs))) {fs) + gs)x σs)) + hs)w x σs))) for all n Z 0 with initial conditions I1) I2), then )] 2.2) xn) Φ {Φ 1 exp gs) φ 1 pn)) + fs) for all n Z [0,], where Φ CR 0, R) is defined by Φr) := r 1 ds ws), r > 0, n 1 + exp gs) ) n 1 and 0 is chosen such that the RHS of 2.2) is well-defined, that is, )] Φ exp gs) φ 1 pn)) + fs) for all n Z [0,]. + exp n 1 gs) ) n 1 ht) ht) I m Φ Page 6 of 36

Proof. Fix ε > 0 and N Z [0,]. Define u : Z [0,N] R 0 by 2.3) un) := φ {ε 1 + pn) + φ x σt))) [ft) + gt)x σt)) + ht)w x σt)))]. By A5), u is non-decreasing on Z [0,N]. For any n Z [0,N], by A5) again, 2.4) un) φ 1 ε + pn)) > 0. As φ un)) > φ xn)), we have 2.5) un) > xn). Next, observe that if σn) 0, then by A3), σn) Z [0,N] and so x σn)) < u σn)) un). On the other hand, if σn) 0, then by A3) again, σn) Z [a,0] and so by I1), I2), A1), A5) and 2.4), x σn)) = ψ σn)) φ 1 pn)) φ 1 pn)) φ 1 pn) + ε) un). Hence we always have 2.6) x σn)) un) for all n Z [0,N]. Page 7 of 36

Therefore, for any s Z [0,N 1], by 2.3) and 2.6), φ u)s) = φ us + 1)) φ us)) = φ x σs))) {fs) + gs)x σs)) + hs)w x σs))) φ us)) {fs) + gs)us) + hs)w us)). On the other hand, by the Mean Value Theorem, we obtain φ u)s) = φ us + 1)) φ us)) = φ ξ) us) for some ξ [us), us + 1)]. Observe that by 2.4) and A5), φ ξ) > 0. Thus by the monotonicity of φ, for any s Z [0,N 1], Summing up, we have us) φ us)) {fs) + gs)us) + hs)w us)) φ ξ) fs) + gs)us) + hs)w us)). un) u0) = us) n 1 fs) + hs)w us)) + gs)us), Page 8 of 36

or [ ] un) φ 1 ε + pn)) + fs) + hs)w us)) + gs)us) for all n Z [0,N]. Hence by the discrete version of the Gronwall-Bellman inequality see, e.g., [16, Corollary 1.2.5]), [ ] un) φ 1 ε + pn)) + fs) + hs)w us)) exp gs) 2.7) [ ] N 1 φ 1 ε + pn)) + fs) + hs)w us)) gs) N 1 exp for all n Z [0,N]. Denote by vn) the RHS of 2.7). Then v is non-decreasing and for all n Z [0,N], 2.8) un) vn). Therefore, for any t Z [0,N 1], vt) = vt + 1) vt) N 1 = ht)w ut)) exp gs) N 1 ht)w vt)) exp gs). Page 9 of 36

On the other hand, by the Mean Value Theorem, we have Φ v)t) = Φ vt + 1)) Φ vt)) = Φ η) vt) = 1 wη) vt) for some η [vt), vt + 1)]. Observe that by 2.4), 2.8), and A2), wη) > 0. Therefore, as w is non-decreasing, Φ v)t) 1 N 1 wη) ht)w vt)) exp gs) N 1 ht) exp gs) for all t Z [0,N 1]. Summing up, we have On the other hand, N 1 Φ v)t) ht) exp gs). Φ v)t) = Φ vn)) Φ v0)) Page 10 of 36

therefore, = Φ vn)) Φ Φ vn)) Φ exp N 1 exp gs) N 1 gs) φ 1 ε + pn)) + φ 1 ε + pn)) + for all n Z [0,N]. In particular, taking n = N we have Φ vn)) Φ exp N 1 Since N Z [0,] is arbitrary, gs) φ 1 ε + pn)) + N 1 fs) N 1 )] fs) )] N 1 + ht) exp gs) N 1 fs) N 1 + exp gs) )] Φ vn)) Φ exp gs) φ 1 ε + pn)) + fs) n 1 + exp gs) )] ) N 1, ht). ) n 1 ht) Page 11 of 36

for all n Z [0,]. Hence )] vn) Φ {Φ 1 exp gs) φ 1 ε + pn)) + fs) n 1 + exp gs) and so by 2.5) and 2.8), ) n 1 xn) < un) vn) )] Φ {Φ 1 exp gs) φ 1 ε + pn)) + fs) n 1 + exp gs) for all n Z [0,]. Finally, letting ε 0 +, we conclude that ht) ) n 1 )] xn) Φ {Φ 1 exp gs) φ 1 pn)) + fs) + exp gs) for all n Z [0,]. ht) ) n 1 ht) Page 12 of 36

Remark 1. In many cases the non-decreasing function w satisfies 1 ds = ws). For example, w = constant > 0, ws) = s, etc., are such functions. In such cases Φ ) = and so we may take, that is, 2.2) is valid for all n Z 0. Theorem 2.2. Under Assumptions A1) A5), if x FZ a, R 0 ) is a function satisfying the nonlinear delay inequality { φ xn)) pn) + φ x σs))) fs) + gs)x σs)) s 1 + hs) kt)w x σt))) for all n Z 0 with initial conditions I1) I2), then )] 2.9) xn) Φ {Φ 1 exp gs) φ 1 pn)) + fs) + exp gs) ) n 1 s 1 hs)kt) for all n Z [0,β], where Φ CR 0, R) is as defined in Theorem 2.1, and β 0 is chosen such that the RHS of 2.9) is well-defined, that is, )] Φ exp gs) φ 1 pn)) + fs) Page 13 of 36

+ exp gs) ) n 1 s 1 hs)kt) I m Φ for all n Z [0,β]. Proof. Fix ε > 0 and M Z [0,β]. Define u : Z [0,M] R 0 by [ 2.10) un) := φ {ε 1 + pm) + φ x σδ))) fδ) + gδ)x σδ)) δ=0 ] δ 1 +hδ) kt)w x σt))). By A5), u is non-decreasing on Z [0,M]. For any n Z [0,M], by A5) again, 2.11) un) φ 1 ε + pm)) > 0. As φ un)) > φ xn)), we have 2.12) un) > xn). Using the same arguments as in the derivation of 2.6) in the proof of Theorem 2.1, we have 2.13) x σn)) un) for all n Z [0,M]. Page 14 of 36

Hence for any s Z [0,M 1], by 2.10) and 2.13), φ u)s) = φ us + 1)) φ us)) { s 1 = φ x σs))) fs) + gs)x σs)) + hs) kt)w x σt))) { s 1 φ us)) fs) + gs)us) + hs) kt)w ut)). On the other hand, by the Mean Value Theorem, φ u)s) = φ us + 1)) φ us)) = φ ξ) us) for some ξ [us), us + 1)]. Observe that by 2.12) and A5), φ ξ) > 0. Thus by the monotonicity of φ, for any s Z [0,M 1], { us) φ us)) s 1 fs) + gs)us) + hs) kt)w ut)) φ ξ) Summing up, we have s 1 fs) + gs)us) + hs) kt)w ut)). un) u0) = us) Page 15 of 36

s 1 fs) + hs) kt)w ut)) + gs)us), or [ ] s 1 un) φ 1 ε + pm)) + fs) + hs) kt)w ut)) + gs)us) for all n Z [0,M]. Hence by the discrete version of the Gronwall-Bellman inequality see, e.g., [16, Corollary 1.2.5]), [ un) φ 1 ε + pm)) + fs) 2.14) [ ] s 1 + hs) kt)w ut)) exp gs) φ 1 ε + pm)) + M 1 fs) ] s 1 + hs) kt)w ut)) gs) M 1 exp for all n Z [0,M]. Denote by vn) the RHS of 2.14). Then v is non-decreasing and for all n Z [0,M], 2.15) un) vn). Page 16 of 36

Therefore, for any δ Z [0,M 1], vδ) = vδ + 1) vδ) δ 1 ) = hδ) kt)w ut)) hδ) δ 1 ) kt)w vt)) hδ)w vδ)) δ 1 ) kt) On the other hand, by the Mean Value Theorem, gs) M 1 exp gs) M 1 exp gs). M 1 exp Φ v)δ) = Φ vδ + 1)) Φ vδ)) = Φ η) vδ) = 1 wη) vδ) for some η [vδ), vδ + 1)]. Observe that by 2.11), 2.14), and A2), wη) > 0. Therefore, as w is non-decreasing, Φ v)δ) 1 hδ)w vδ)) wη) δ 1 ) hδ) kt) δ 1 ) kt) gs) M 1 exp gs) M 1 exp Page 17 of 36

for all δ Z [0,M 1]. Summing up, we have or Φ v)δ) hδ) δ=0 δ=0 Φ vn)) Φ v0)) + hδ) δ=0 δ 1 ) kt) δ 1 ) kt) ) M 1 = Φ φ 1 ε + pm)) + fs) + hδ) δ=0 δ 1 ) kt) gs), M 1 exp gs) M 1 exp M 1 exp for all n Z [0,M]. In particular, taking n = M this yields Φ vm)) Φ φ 1 ε + pm)) + M 1 fs) M 1 + hδ) δ=0 ) ] gs) M 1 exp gs) M 1 exp δ 1 ] gs) ) kt) gs). M 1 exp Page 18 of 36

Since M Z [0,β] is arbitrary, ) ] Φ vn)) Φ φ 1 ε + pn)) + fs) exp gs) + hδ) δ 1 ) kt) exp gs) δ=0 for all n Z [0,β]. Hence ) ] vn) Φ {Φ 1 φ 1 ε + pn)) + fs) exp gs) + hδ) δ 1 ) kt) exp gs) δ=0 and so by 2.12) and 2.15), xn) < un) vn) ) ] Φ {Φ 1 φ 1 ε + pn)) + fs) exp gs) + hδ) δ 1 ) kt) exp gs) δ=0 Page 19 of 36

for all n Z [0,β]. Finally, letting ε 0 +, we conclude that )] xn) Φ {Φ 1 exp gs) φ 1 pn)) + fs) for all n Z [0,β]. + exp gs) ) n 1 δ 1 hδ)kt) Remark 2. Similar to the previous remark, in case Φ ) =, 2.9) holds for all n Z 0. Theorem 2.3. Under Assumptions A1), A3) and A4), if x FZ a, R 0 ) is a function satisfying the nonlinear delay inequality x r n) c r + x r σs)) {fs) + gs)x r σs)), n Z 0, with initial conditions I1) and δ=0 I3) ψ σs)) c for all s Z 0 with σs) 0, where r, c > 0 are constants, then [ n 1 2.16) xn) c r 1 fs)) n s=1 n 1 gs) t=s 1 ft)) ] 1 r for all n Z [0,γ], where γ 0 is chosen such that the RHS of 2.16) is welldefined. Page 20 of 36

Proof. Define u FZ 0, R 0 ) by 2.17) u r n) := c r + x r σs)) {fs) + gs)x r σs)), n Z 0. Clearly, u 0 is non-decreasing and 2.18) xn) un) for all n Z 0. Similar to the derivation of 2.6) in the proof of Theorem 2.1, we easily establish By 2.17), for any n Z 0, x σn)) un) for all n Z 0. u r n) = u r n + 1) u r n) = x r σn)) {fn) + gn)x r σn)) u r n) {fn) + gn)u r n) u r n + 1) {fn) + gn)u r n). As u0) = c, by elementary analysis, we infer from 2.17) that 2.19) un) yn) for all n Z [0,ρ] where Z [0,ρ] is the maximal lattice on which the unique solution yn) to the discrete Bernoulli equation y r n) = y r n + 1) {fn) + gn)y r n), n Z 0 2.20) y0) = c Page 21 of 36

is defined. Now the unique solution for 2.20) is see, e.g., [1]) 2.21) yn) = [ 1 fs)) c r n 1 n s=1 n 1 gs) t=s 1 ft)) ] 1 r for all n Z [0,γ]. The assertion now follows from 2.18), 2.19) and 2.21). Page 22 of 36

3. Immediate Consequences Direct application of the results in Section 2 yields the following consequences immediately. Corollary 3.1. Under Assumptions A1) A4), if x FZ a, R 0 ) is a function satisfying the nonlinear delay inequality 3.1) x n) pn) + x 1 σs)) {fs) + gs)x σs)) + hs)w x σs))) for all n Z 0 with initial conditions I1) and I4) ψ σs)) p 1 s) for all s Z0 with σs) 0, where 1 is a constant, then )] 3.2) xn) Φ {Φ 1 exp 1 g) p 1 1 n) + fs) ) + exp 1 1 g) ht) for all n Z [0,µ], where µ 0 is chosen such that the RHS of 3.2) is welldefined for all n Z [0,µ], and Φ is defined as in Theorem 2.1. Page 23 of 36

Proof. Let φ : R 0 R 0 be defined by φr) = r, r R 0. Then φ satisfies Assumption A5). By 3.1) we have φ xn)) pn)+ { fs) φ x σs))) Furthermore, it is easy to see that + gs) hs) x σs)) + w x σs))). φ xs)) p 1 s) = φ 1 ps)) for all s Z 0 with σs) 0. Thus Theorem 2.1 applies and the assertion follows. Remark 3. i) In Corollary 3.1, if we set = 2, pn) c 2, gn) 0, we have x 2 n) c 2 + x σs)) {fs) + hs)w x σs))), n Z 0 implies [ ] xn) Φ {Φ 1 c + 1 fs) + 1 hs), n Z [0,µ]. 2 2 This is the discrete analogue of a result of Pachpatte in [14]. Furthermore, if σ = id, this reduces to a result of Pachpatte in [18]. ii) In case Φ ) =, 3.2) holds for all n Z 0. Page 24 of 36

Corollary 3.2. Under Assumptions A1) A4) with p FZ 0, R + ), if x FZ a, R 1 ) satisfies the nonlinear delay inequality 3.3) x n) pn) + x σs)) {fs) + gs) ln x σs)) + hs)w ln x σs))) for all n Z 0 with initial conditions I1) and I5) ψ σs)) 1 ln ps)) for all s Z 0 with σs) 0, where > 0 is a constant, then [ ) 3.4) xn) exp {Φ 1 Φ exp 1 gs) )) 1 ln pn) + 1 fs) ) ] + exp 1 1 gs) ht) for all n Z [0,ν], where ν 0 is chosen such that the RHS of 3.4) is welldefined for all n Z [0,ν], and Φ is defined as in Theorem 2.1. Page 25 of 36

Proof. Letting yn) = ln xn), 3.3) becomes 3.5) exp yn)) pn) + exp y σs))) {fs) + gs)y σs)) + hs)w y σs))). Let φ : R 0 R 0 be defined by φr) = expr), r R 0. Then φ satisfies Assumption A5). Hence from 3.5), we have φ yn)) pn)+ { fs) φ y σs))) Furthermore, it is easy to see that + gs) hs) y σs)) + w y σs))). ψ σs)) 1 ln ps)) = φ 1 ps)) for all s Z 0 with σs) 0. Thus Theorem 2.1 applies and we have )] yn) Φ {Φ 1 exp 1 1 gs) ln pn) + 1 fs) ) + exp 1 1 gs) ht) for all n Z [0,ν], and from this the assertion follows. Page 26 of 36

Remark 4. In case Φ ) =, 3.4) holds for all n Z 0. Corollary 3.3. Under Assumptions A1) A4), if x FZ a, R 0 ) satisfies the nonlinear delay inequality { 3.6) x n) pn) + x 1 σs)) fs) + gs)x σs)) s 1 + hs) kt)w x σt))) for all n Z 0 with initial conditions I1) and I4), where 1 is a constant, then )] 3.7) xn) Φ {Φ 1 exp 1 gs) p 1 1 n) + fs) + exp 1 gs) 1 n 1 ) s 1 hs) kt) for all n Z [0,η], where η 0 is chosen such that the RHS of 3.7) is welldefined for all n Z [0,η], and Φ is defined as in Theorem 2.1. Proof. Let φ : R 0 R 0 be defined by φr) = r, r R 0. Then φ satisfies Page 27 of 36

Assumption A5). By 3.6), { φ xn)) pn) + φ fs) x σs))) + gs) x σs)) for all n Z 0. Furthermore, it is easy to see that + hs) s 1 kt)w x σt))) ψ σs)) p 1 s) = φ 1 ps)) for all s Z 0 with σs) 0. Thus Theorem 2.2 applies and we have )] xn) Φ {Φ 1 exp 1 gs) p 1 1 n) + fs) ) + exp 1 gs) 1 s 1 hs)kt) for all n Z [0,η]. Remark 5. i) In Corollary 3.3, if we put = 2, pn) c 2, gn) 0, we have { s 1 x 2 n) c 2 + x σs)) fs) + hs) kt)w x σt))), n Z 0 Page 28 of 36

implies [ ] xn) Φ {Φ 1 c + 1 fs) + 1 s 1 hs) kt), n Z [0,η]. 2 2 This is the discrete analogue of a result of Pachpatte in [14]. Furthermore, if σ = id and w = id, this reduces to a result of Pachpatte in [18]. ii) In case Φ ) =, 3.7) holds for all n Z 0. Corollary 3.4. Under Assumptions A1) A4) with p FZ 0, R + ), if x FZ a, R 1 ) satisfies the nonlinear delay inequality { 3.8) x n) pn) + x σs)) fs) + gs) ln x σs)) for all n Z 0 with initial conditions I1) and s 1 + hs) kt)w ln x σt))) I6) ψ σs)) 1 ln ps)) for all s Z 0 with σs) 0, where > 0 is any constant, then [ ) 3.9) xn) exp {Φ 1 Φ exp 1 gs) Page 29 of 36

1 ln pn) + 1 fs) ) + exp 1 gs) )) 1 ] s 1 hs) kt) for all n Z [0,λ], where λ 0 is chosen such that the RHS of 3.9) is welldefined for all n Z [0,λ], and Φ is defined as in Theorem 2.1. Proof. Letting yn) = ln xn), 3.8) becomes { 3.10) exp yn)) pn) + exp y σs))) fs) + gs)y σs)) s 1 + hs) kt)w y σt))) for all n Z 0. Let φ : R 0 R 0 be defined by φr) = expr), r R 0. Then φ satisfies Assumption A5). Hence from 3.10), we have φ yn)) pn) + φ y σs))) { fs) + gs) hs) s 1 y σs)) + kt)w y σt))) Page 30 of 36

for all n Z 0. Furthermore, it is easy to check that ψ σs)) 1 ln ps)) = φ 1 ps)) for all s Z 0 with σs) 0. Thus Theorem 2.2 applies and we have )] yn) Φ {Φ 1 exp 1 1 gs) ln pn) + 1 fs) ) 1 + exp gs) 1 s 1 hs)kt) for all n Z [0,λ], and from this the assertion follows. Remark 6. i) In Corollary 3.4, if we set = 2, pn) c 2, gn) 0, then { s 1 x 2 n) c 2 + x 2 σs)) fs) + hs) kt)w ln x σt))), n Z 0 implies [ ) ] xn) exp {Φ 1 1 Φ 2 ln pn) + 1 fs) + 1 s 1 hs) kt) 2 2 n Z [0,λ]. This is the discrete version of a result of Pachpatte in [14]. ii) In case Φ ) =, 3.9) holds for all n Z 0. Page 31 of 36

4. Application Consider the discrete delay equation 4.1) x n) = F n, x σn)), ) G n, s, x σs))), n Z 0 with initial conditions I1) and I4), where 1 is a constant, σ, ψ satisfy Assumptions A3), A4), x FZ a, R), F CZ 0 R 2, R), and G CZ 2 0 R, R). If F, G satisfy F n, u, v) pn) + K v, n Z 0, u, v R, Gn, s, v) [fs) + gs) v + hs)w v )] v 1, n, s Z 0, v R, for some p, f, g, h, w satisfying A1) and A2), and some constant K > 0, then every solution of 4.1) satisfies xn) = F n, x σn)), G n, s, x σs)))) pn) + K G n, s, x σs))) n 1 pn) + K G n, s, x σs))) n 1 pn) + K [fs) + gs) x σs)) + hs)w x σs)) )] x σs)) 1 Page 32 of 36

for all n Jx) := the maximal existence lattice on which x is defined. Applying Corollary 3.1, this yields xn) Φ 1 {Φ exp K )] g) p 1 K n) + fs) ) + exp K K g) ht) for all n Jx) Z [0,µ]. This gives the boundedness of solutions of 4.1). Page 33 of 36

References [1] R.P. AGARWAL, Difference and Inequalities, Marcel Dekker, New York, 2000. [2] D. BAINOV AND P. SIMEONOV, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992. [3] E.F. BECKENBACH AND R. BELLMAN, Inequalities, Springer-Verlag, New York, 1961. [4] R. BELLMAN, The stability of solutions of linear differential equations, Duke Math. J., 10 1943), 643 647. [5] I. BIHARI, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., 7 1956), 71 94. [6] W.S. CHEUNG, On some new integrodifferential inequalities of the Gronwall and Wendroff type, J. Math. Anal. Appl., 178 1993), 438 449. [7] W.S. CHEUNG AND Q.H. MA, Nonlinear retarded integral inequalities for functions in two variables, to appear in J. Concrete Appl. Math. [8] T.H. GRONWALL, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20 1919), 292 296. [9] H. HARAUX, Nonlinear Evolution Equation: Global Behavior of Solutions, Lecture Notes in Mathematics, v.841, Springer-Verlag, Berlin, 1981. Page 34 of 36

[10] Q.M. MA AND E.H. YANG, On some new nonlinear delay integral inequalities, J. Math. Anal. Appl., 252 2000), 864 878. [11] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, New York, 1970. [12] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991. [13] L. OU-IANG, The boundedness of solutions of linear differential equations y + At)y = 0, Shuxue Jinzhan, 3 1957), 409 415. [14] B.G. PACHPATTE, A note on certain integral inequalities with delay, Period. Math. Hungar., 31 1995), 229 234. [15] B.G. PACHPATTE, Explicit bounds on certain integral inequalities, J. Math. Anal. Appl., 267 2002), 48 61. [16] B.G. PACHPATTE, Inequalities for Finite Difference, Marcel Dekker, New York, 2002. [17] B.G. PACHPATTE, On some new inequalities related to a certain inequality arising in the theory of differential equations, J. Math. Anal. Appl., 251 2000), 736 751. [18] B.G. PACHPATTE, On some new inequalities related to certain inequalities in the theory of differential equations, J. Math. Anal. Appl., 189 1995), 128 144. Page 35 of 36

[19] P. Ch. TSAMATOS AND S.K. NTOUYAS, On a Bellman-Bihari type inequality with delay, Period. Math. Hungar., 23 1991), 91 94. [20] E.H. YANG, Generalizations of Pachpatte s integral and discrete inequalities, Ann. Differential, 13 1997), 180 188. Page 36 of 36