Finite dimensional topological vector spaces

Similar documents
Finite dimensional topological vector spaces

Chapter 2 Linear Transformations

i=1 β i,i.e. = β 1 x β x β 1 1 xβ d

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X.

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

Linear Algebra. Paul Yiu. Department of Mathematics Florida Atlantic University. Fall 2011

Part III. 10 Topological Space Basics. Topological Spaces

4 Countability axioms

Math General Topology Fall 2012 Homework 8 Solutions

and the union is open in X. If12U j for some j, then12 [ i U i and bx \ [ i (X \ U i ) U i = \ i ( b X \ U i )= \ i

Topological Vector Spaces III: Finite Dimensional Spaces

Definition 3 A Hamel basis (often just called a basis) of a vector space X is a linearly independent set of vectors in X that spans X.

Functional Analysis (H) Midterm USTC-2015F haha Your name: Solutions

Linear Algebra. Chapter 5

CHAPTER 9. Embedding theorems

MAT 578 FUNCTIONAL ANALYSIS EXERCISES

Exercise Solutions to Functional Analysis

7 Complete metric spaces and function spaces

Chapter 2 Metric Spaces

MATH Linear Algebra

Boolean Algebras, Boolean Rings and Stone s Representation Theorem

CW complexes. Soren Hansen. This note is meant to give a short introduction to CW complexes.

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan

Problem Set 6: Solutions Math 201A: Fall a n x n,

Integral Jensen inequality

INVERSE LIMITS AND PROFINITE GROUPS

If X is a compact space and K X is a closed subset, then K is

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

1 k x k. d(x, y) =sup k. y k = max

Then A n W n, A n is compact and W n is open. (We take W 0 =(

BROUWER FIXED POINT THEOREM. Contents 1. Introduction 1 2. Preliminaries 1 3. Brouwer fixed point theorem 3 Acknowledgments 8 References 8

3 Hausdorff and Connected Spaces

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

Weak Topologies, Reflexivity, Adjoint operators

Review of Linear Algebra

Week 5 Lectures 13-15

Topological vectorspaces

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

F 1 =. Setting F 1 = F i0 we have that. j=1 F i j

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

Filters in Analysis and Topology

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

Introduction to Topology

Chapter 3: Baire category and open mapping theorems

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

Chapter 2: Linear Independence and Bases

Lebesgue Measure on R n

Topological properties

Eberlein-Šmulian theorem and some of its applications

Measures and Measure Spaces

1 The Local-to-Global Lemma

Econ Lecture 8. Outline. 1. Bases 2. Linear Transformations 3. Isomorphisms

FUNCTIONAL ANALYSIS-NORMED SPACE

Extreme points of compact convex sets

Banach Spaces II: Elementary Banach Space Theory

Smarandachely Precontinuous maps. and Preopen Sets in Topological Vector Spaces

Maths 212: Homework Solutions

Normed and Banach spaces

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

On the topology of pointwise convergence on the boundaries of L 1 -preduals. Warren B. Moors

TOPOLOGY TAKE-HOME CLAY SHONKWILER

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Compact operators on Banach spaces

Abstract Vector Spaces and Concrete Examples

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

ALGEBRAIC GROUPS J. WARNER

INTRODUCTION TO NETS. limits to coincide, since it can be deduced: i.e. x

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Overview of normed linear spaces

Contents. Index... 15

Course 212: Academic Year Section 1: Metric Spaces

Homework 3 MTH 869 Algebraic Topology

Math 421, Homework #7 Solutions. We can then us the triangle inequality to find for k N that (x k + y k ) (L + M) = (x k L) + (y k M) x k L + y k M

NORMS ON SPACE OF MATRICES

Measurable functions are approximately nice, even if look terrible.

AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES

Introduction to Dynamical Systems

2.4 Annihilators, Complemented Subspaces

1. Simplify the following. Solution: = {0} Hint: glossary: there is for all : such that & and

A NICE PROOF OF FARKAS LEMMA

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6

Chapter 1. Introduction

Free Subgroups of the Fundamental Group of the Hawaiian Earring

Fuchsian groups. 2.1 Definitions and discreteness

Topology Homework Assignment 1 Solutions

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

This last statement about dimension is only one part of a more fundamental fact.

Winter School on Galois Theory Luxembourg, February INTRODUCTION TO PROFINITE GROUPS Luis Ribes Carleton University, Ottawa, Canada

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

LINEAR ALGEBRA: THEORY. Version: August 12,

Locally Convex Vector Spaces II: Natural Constructions in the Locally Convex Category

FUNCTIONAL ANALYSIS CHRISTIAN REMLING

MATRIX LIE GROUPS AND LIE GROUPS

1 Equivalence Relations

MA651 Topology. Lecture 9. Compactness 2.

Axioms of separation

Definition Suppose S R n, V R m are subspaces. A map U : S V is linear if

Transcription:

Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdor t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the (algebraic) dimension of X, denoted by dim(x), is the cardinality of a basis of X. If dim(x) is finite, we say that X is finite dimensional otherwise X is infinite dimensional. In this section we are going to focus on finite dimensional vector spaces. Let {e 1,...,e d } be a basis of X, i.e. dim(x) =d. Given any vector x 2 X there exist unique x 1,...,x d 2 K s.t. x = x 1 e 1 + x d e d. This can be precisely expressed by saying that the mapping K d! X (x 1,...,x d ) 7! x 1 e 1 + x d e d is an algebraic isomorphism (i.e. linear and bijective) between X and K d.in other words: If X is a finite dimensional vector space then X is algebraically isomorphic to K dim(x). If now we give to X the t.v.s. structure and we consider K endowed with the euclidean topology, then it is natural to ask if such an algebraic isomorphism is by any chance a topological one, i.e. if it preserves the t.v.s. structure. The following theorem shows that if X is a finite dimensional Hausdor t.v.s. then the answer is yes: X is topologically isomorphic to K dim(x). It is worth to observe that usually in applications we deal always with Hausdor t.v.s., therefore it makes sense to mainly focus on them. Theorem 3.1.1. Let X be a finite dimensional Hausdor t.v.s. over K (where K is endowed with the euclidean topology). Then: a) X is topologically isomorphic to K d, where d =dim(x). 43

3. Finite dimensional topological vector spaces 44 b) Every linear functional on X is continuous. c) Every linear map of X into any t.v.s. Y is continuous. Before proving the theorem let us recall some lemmas about the continuity of linear functionals on t.v.s.. Lemma 3.1.2. Let X be a t.v.s. over K and v 2 X. Then the following mapping is continuous. ' v : K! X 7! v. Proof. For any 2 K, wehave' v ( ) =M( v ( )), where v : K! K X given by ( ) :=(,v) is clearly continuous by definition of product topology and M : K X! X is the scalar multiplication in the t.v.s. X which is continuous by definition of t.v.s.. Hence, ' v is continuous as composition of continuous mappings. Lemma 3.1.3. Let X be a t.v.s. over K and L a linear functional on X. Assume L(x) 6= 0for some x 2 X. Then the following are equivalent: a) L is continuous. b) The null space Ker(L) is closed in X c) Ker(L) is not dense in X. d) L is bounded in some neighbourhood of the origin in X. Proof. (see Sheet 4, Exercise 4) Proof. of Theorem 3.1.1 Let {e 1,...,e d } be a basis of X and let us consider the mapping ' : K d! X (x 1,...,x d ) 7! x 1 e 1 + x d e d. As noted above, this is an algebraic isomorphism. Therefore, to conclude a) it remains to prove that ' is also a homeomorphism. Step 1: ' is continuous. When d = 1, we simply have ' ' e1 and so we are done by Lemma 3.1.2. When d>1, for any (x 1,...,x d ) 2 K d we can write: '(x 1,...,x d )= A(' e1 (x 1 ),...,' ed (x d )) = A((' e1 ' ed )(x 1,...,x d )) where each ' ej is defined as above and A : X X! X is the vector addition in the t.v.s. X. Hence, ' is continuous as composition of continuous mappings.

3.1. Finite dimensional Hausdor t.v.s. Step 2: ' is open and b) holds. We prove this step by induction on the dimension dim(x) of X. For dim(x) = 1, it is easy to see that ' is open, i.e. that the inverse of ': is continuous. Indeed, we have that ' 1 : X! K x = e 1 7! Ker(' 1 )={x 2 X : ' 1 (x) =0} = { e 1 2 X : =0} = {o}, which is closed in X, sincex is Hausdor. Hence, by Lemma 3.1.3, ' 1 is continuous. This implies that b) holds. In fact, if L is a non-identically zero functional on X (when L 0, there is nothing to prove), then there exists a o 6= x 2 X s.t. L( x) 6= 0. W.l.o.g. we can assume L( x) = 1. Now for any x 2 X, sincedim(x) = 1, we have that x = x for some 2 K and so L(x) = L( x) =. Hence, L ' 1 which we proved to be continuous. Suppose now that both a) and b) hold for dim(x) apple d 1. Let us first show that b) holds when dim(x) = d. Let L be a non-identically zero functional on X (when L 0, there is nothing to prove), then there exists a o 6= x 2 X s.t. L( x) 6= 0. W.l.o.g. we can assume L( x) = 1. Note that for any x 2 X the element x xl(x) 2 Ker(L). Therefore, if we take the canonical mapping : X! X/Ker(L) then (x) = ( xl(x)) = L(x) ( x) for any x 2 X. This means that X/Ker(L) = span{ ( x)} i.e. dim(x/ker(l)) = 1. Hence, dim(ker(l)) = d 1 and so by inductive assumption Ker(L) is topologically isomorphic to K d 1. This implies that Ker(L) is a complete subspace of X. Then, by Proposition 2.5.8-a), Ker(L) is closed in X and so by Lemma 3.1.3 we get L is continuous. By induction, we can cocnlude that b) holds for any dimension d 2 N. This immediately implies that a) holds for any dimension d 2 N. In fact, we just need to show that for any dimension d 2 N the mapping ' 1 : X! K d x = P d j=1 x je j 7! (x 1,...,x d ) is continuous. Now for any x = P d j=1 x je j 2 X we can write ' 1 (x) = (L 1 (x),...,l d (x)), where for any j 2{1,...,d} we define L j : X! K by L j (x) :=x j e j. Since b) holds for any dimension, we know that each L j is continuous and so ' 1 is continuous. Step 3: The statement c) holds. Let f : X! Y be linear and {e 1,...,e d } be a basis of X. For any j 2 {1,...,d} we define b j := f(e j ) 2 Y. Hence, for any x = P d j=1 x je j 2 X we 45

3. Finite dimensional topological vector spaces have f(x) =f( P d j=1 x je j )= P d j=1 x jb j. We can rewrite f as composition of continuous maps i.e. f(x) =A((' b1... ' bd )(' 1 (x)) where: ' 1 is continuous by a) each ' bj is continuous by Lemma 3.1.2 A is the vector addition on X and so it is continuous since X is a t.v.s.. Hence, f is continuous. Corollary 3.1.4 (Tychono theorem). Let d 2 N. The only topology that makes K d a Hausdor t.v.s. is the euclidean topology. Equivalently, on a finite dimensional vector space there is a unique topology that makes it into a Hausdor t.v.s.. Proof. We already know that K d endowed with the euclidean topology e is a Hausdor t.v.s. of dimension d. Let us consider another topology on K d s.t. (K d, ) is also Hausdor t.v.s.. Then Theorem 3.1.1-a) ensures that the identity map between (K d, e ) and (K d, ) is a topological isomorphism. Hence, as observed at the end of Section 1.1.4 p.12, we get that e. Corollary 3.1.5. Every finite dimensional Hausdor t.v.s. is complete. Proof. Let X be a Hausdor t.v.s with dim(x) = d < 1. Then, by Theorem 3.1.1-a), X is topologically isomorphic to K d endowed with the euclidean topology. Since the latter is a complete Hausdor t.v.s., so is X. Corollary 3.1.6. Every finite dimensional linear subspace of a Hausdor t.v.s. is closed. Proof. Let S be a linear subspace of a Hausdor t.v.s. (X, ) and assume that dim(s) = d < 1. Then S endowed with the subspace topology induced by is itself a Hausdor t.v.s. (see Sheet 5, Exercise 2). Hence, by Corollary 3.1.5 S is complete and therefore closed by Proposition 2.5.8-a). 3.2 Connection between local compactness and finite dimensionality 46 By the Heine-Borel property (a subset of K d is closed and bounded i it is compact), K d has a basis of compact neighborhoods of the origin (i.e. the closed balls centered at the origin in K d ). Thus the origin, and consequently every point, of a finite dimensional Hausdor t.v.s. has a basis of neighborhoods consisting of compact subsets. This means that a finite dimensional Hausdor

3.2. Connection between local compactness and finite dimensionality t.v.s. is always locally compact. Actually also the converse is true and gives the following beautiful characterization of finite dimensional Hausdor t.v.s due to F. Riesz. Theorem 3.2.1. A Hausdor t.v.s. is locally compact if and only if it is finite dimensional. For convenience let us recall the notions of compactness and local compactness for topological spaces before proving the theorem. Definition 3.2.2. A topological space X is compact if every open covering of X contains a finite subcovering. i.e. for any arbitrary collection {U i } i2i of open subsets of X s.t. X [ i2i U i there exists a finite subset J of I s.t. X [ i2j U i. Definition 3.2.3. A topological space X is locally compact if every point of X has a base of compact neighbourhoods. Just a small side remark: It is possible to show that every compact Hausdor space is also locally compact but there exist locally compact spaces that are not compact such as: K d with the euclidean topology any infinite set endowed with the discrete topology. Indeed, any set X with the discrete topology is locally compact, because for any x 2 X a basis of neighbourhoods of x in the discrete topology is given just {x} which is open and also compact. However, if X is infinite then it is not compact. In fact, if we take the infinite open covering S of X given by all the singletons of its points, then any finite subcovering of S will not contain at least one point of X. Proof. of Theorem 3.2.1 Let X be a locally compact Hausdor t.v.s., and K a compact neighborhood of o in X. As K is compact and as 1 2K is a neighborhood of the origin (see Theorem 2.1.10-3), there is a finite family of points x 1,...,x r 2 X s.t. K r[ (x i + 1 2 K). i=1 Let M := span{x 1,...,x r }.ThenMisalinear subspace of X and dim(m) < 1 is finite, hence M is closed in X by Corollary 3.1.6. Therefore, the quotient space X/M is Hausdor t.v.s. by Proposition 2.3.5. Let : X! X/M be the canonical mapping. As K M + 1 2 K,wehave (K) (M) + ( 1 2 K)= 1 2 (K), i.e. 2 (K) (K). By iterating we get 47

3. Finite dimensional topological vector spaces (2 n K) (K) for any n 2 N. As K is absorbing (see Theorem 2.1.10-5), we have X = S 1 n=1 2n K.Thus X/M = (X) = 1[ n=1 (2 n K) (K). Since is continuous and the continuous image of a compact set is compact, we get that (K) is compact. Thus X/M is a Hausdor t.v.s. which is compact. We claim that X/M must be of zero dimension, i.e. reduced to one point. This concludes the proof because it implies dim(x) =dim(m) < 1. Let us prove the claim by contradiction. Suppose dim(x/m) > 0then X/M contains a subset of the form R x for some ō 6= x 2 X/M. Sincesucha subset is closed and X/M is compact, R x is also compact which is a contradiction. 48