Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Similar documents
Applications of Radical Reactions in Asymmetric Synthesis. Brandon Meyers Michigan State University Department of Chemistry November 19, 2008

Recent Development in. Tandem Radical Reactions (TRR)

Chiral Brønsted Acid Catalysis

Scandium-Catalyzed Asymmetric Reactions

Additions to Metal-Alkene and -Alkyne Complexes

Chiral Bronsted Acids as Catalysts

Carbonyl Ylide Cycloadditions

Electrophilic Carbenes

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

"-Amino Acids: Function and Synthesis

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Asymmetric Catalysis by Lewis Acids and Amines

Organic Electron Donors

Total Synthesis of Oxazolomycin A

Asymmetric Nucleophilic Catalysis

Denmark Group Meeting. & Electrophilic rearrangement of amides

Use of Cp 2 TiCl in Synthesis

A Concise Synthesis of ( )- Aplyviolene Facilitated by a Stragetegic Ter<ary Radical Conjugate Addi<on

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Highlights of Schmidt Reaction in the Last Ten Years

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Literature Report I. Total Synthesis of (+)-Piperarborenine B. Reporter: Zheng Gu. Date:

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Stereoselective reactions of the carbonyl group

Stereoselective reactions of enolates: auxiliaries

Functionalization of C O Bonds. Stefan McCarver. MacMillan Lab Group Meeting

VI. Metal alkyls from oxidative addition / insertion

Chapter 5 Three and Four-Membered Ring Systems

Zr-Catalyzed Carbometallation

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Strained Molecules in Organic Synthesis

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Total Synthesis of ( )-Virginiamycin M2

JOC: 1985 Year in Review

Recent Advancement in Ag Mediated C-F Bond Formation. Chem 535 Literature Seminar Jiabao Zhang 02/21/2017

Conjugate (1,4-) addition

Catalytic Reactions in Organic Synthesis

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES

Coupling Reactions Using Excited State Organonickel Complex _LS_Daiki_Kamakura

Homogeneous Catalysis - B. List

Epoxidation with Peroxy Acids

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Spiro Monophosphite and Monophosphoramidite Ligand Kit

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Metallaphotoredox Catalysis (Including my work in Shū Kobayashi group from Oct to Aug. 2015)

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

Mechanistic Studies of Proline-Catalyzed Reactions

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Organocatalysis Enabled by N-Heterocyclic Carbenes

Prof. Ang Li. Literature Seminar Kosuke Minagawa (D2)

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Short Literature Presentation 10/4/2010 Erika A. Crane

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Denmark s Base Catalyzed Aldol/Allylation

CEM 852 Final Exam. May 5, 2011

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Strategies for Stereocontrolled Synthesis

Anion binding in Catalysis

Literature Report 3. Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. Date :

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

!"#$%&&'!&(!)*+,-./!01"2.3$*4!"!#$!%$!%&'(') *+,!-$!%&'(').!'/ *&%&*,$.&-!"!3$!4$!5)01+!.*!06'2

Three Type Of Carbene Complexes

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Suggested solutions for Chapter 40

Syntheses of Leucascandrolide A. Supergroup Meeting August 4 th, 2004 Yu Yuan

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY

Literature Report. Atroposelective Synthesis of Axially Chiral Arylpyrroles and Styrenes. : Zhong Yan : Ji Zhou :

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56,

II: Nomenclature. III: Charcteristics R SH. R S R' sulfide R SOH R S OH HO S O S OH. soft base easily oxidized. thiol. sulfenic acid.

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

Total Synthesis of (+)-Suaveolindole

Classics in Tetrahedron Letters

Organocopper Reagents

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Reporter: Yue Ji. Date: 2016/12/26

Total Synthesis of (-)-Mersicarpine

Transcription:

Asymmetric adical eactions Zhen Liu 08/30/2018

Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts Miscellaneous 2

Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts Miscellaneous 3

Introduction adical Chemistry 1 2 adical Features: Very reactive early planar (slight pyramidal) adicals Stability: 1 2 > 1 > 1 hyperconjugation effect 3 2 Et Cl 2 C (+)-1 Cl 2 hυ Et Cl 2 C Cl (±)-2 E π* Electrophilic ucleophilic Brown,. C. et. al. J. Am. Chem. Soc. 1940, 62, 3435. n (long pair) i Pr Et ( )-3 C DTBP Δ i Pr Et (±)-4 adical SM 1 2 Doering, W. von E. et. al. J. Am. Chem. Soc. 1952, 74, 3000. Parsons, A. F. An Introduction to Free adical Chemistry, xford: Blackwell Science 2000. 4

Introduction adical Chemistry adical Precursor Initiation adical-1 Propagation adical-2 Termination eutral Species Chain Process ne example: Common radical initiators: Br Et DTBP Et chanism: hυ or Δ 2 Br + Br Br initiation steps C C AIB The Fate of adicals Et 3 B Et Et + Br Br Br Et Et Br propagation steps Br + Br Atom Transfer Addtion to eutral Molecule Fragmentation 10 4 10 8 dm 3 mol 1 s 1 10 4 10 8 dm 3 mol 1 s 1 10 5 10 9 s 1 Br Br Br 2 Br Br Et Br Et termination steps Br Coupling 10 9 dm 3 mol 1 s 1 Sibi, M. P. et. al. Chem, ev. 2003, 103, 3263. 5

Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts Miscellaneous 6

eactions Using Chiral Auxiliary Porter, Giese and Lindner, 1989 gcl ab 4, 25 ºC + 40 : 1 vs. X X Favored Unfavored Porter,. A. et. al. J. Am. Chem. Soc. 1989, 111, 8311. Giese, 1990 gcl abd 4, 25 ºC D + D 13 : 1 Giese, B. et. al. J. Am. Chem. Soc. 1990, 112, 6741. 7

eactions Using Chiral Auxiliary aito, 2000 S 2 Bn I (5 eq.), BF 3 Et 2 (2 eq.) Bu 3 Sn (2.5 eq.), BEt 3 (5 eq.) DCM, 78 ºC S 2 Bn S 2 Entry I Yield (%) d.r. 1 EtI 80 Bn 95:5 2 PrI S 80 A 96:4 3 Attack BuI from si face is 83 preferred >98:2 Bn Mo(C) 6 (0.7 eq.) 1 Li 2 i Pr 2 /C, reflux S 2 i Pr TF i Pr 2 D-Valine 55% over 4 steps S Bn S Bn Bn S B C D aito, T. et. al. J. rg Chem. 2000, 65, 176. 8

eactions Using Chiral Auxiliary Sibi, 2002 C 2 Et i PrI (10 eq.), Sm(Tf) 3 (1 eq.) Bu 3 Sn (6 eq.), BEt 3 (3 eq.) 2, DCM/TF, 78 ºC Tf Tf Sm Tf C 2 Et x i Pr i Pr i Pr C 2 Et 95%, d.r. = 29:1 C 2 Et Br (10 eq.) Sm(Tf) 3 (1 eq.) Bu 3 Sn (6 eq.), BEt 3 (3 eq.) 2, DCM/TF, 78 ºC 71% C 2 Et I amds, TF 50% C 2 Et Li, 2 2 88% Sibi, M. P. et. al. J. rg. Chem. 2002, 67, 1738. 9 C 2 Et 1. B 3 /TF, 15 ºC 2. PPTS, reflux 3. BBr 3 (4 eq.) 69% for three steps ( )-Enterolactone

Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts Miscellaneous 10

Chiral Lewis Acid-diated eactions ydrogen Atom Transfer Bn I Bn (S)-L1 MgI 2 /Et 2 Bu 3 Sn, DCM, 78 ºC 5a, = C 2 5b, = C 2 Et 5c, = C 2 Bn 5d, = Entry Substrate Yield (%) ee (%) 1 2 3 4 5a 5b 5c 5d 88 62 () 84 65 () 89 58 () 78 30 (S) Conjugate adical eaction Murakata, M. et. al. Tetrahedron1999, 55, 10295. 2-aph C 2 Mg(Cl 4 ) 2 /L2 (1.3 eq.) X, BEt 3 / 2 Bu 3 Sn, DCM, 78 ºC 2-aph C 2 L2 Entry X Yield (%) ee (%) 1 2 3 4 AcBr C 2 Br EtI i PrI 76 80 71 65 72 85 () 62 83 () 5 I 54 27 () Sibi, M. P. et. al. Angew. Chem. Int. Ed. 2001, 40,1293. 11

Chiral Lewis Acid-diated eactions Cyclization eaction Et Br L3 (1.1 eq.) Mg(Cl 4 ) 2 (1 eq.) BEt 3,toluene, 4Å MS, 78 ºC Br C 2 Et 67% (94% ee) Et Mg Yang, D. et. al. J. Am. Chem. Soc. 2001, 123, 8612. Allylation eaction Br 1 + Z 2 2 3 3 MX 2, BEt 3 / 2 DCM, 78 ºC 1 + Z Br X M X vs. Entry 1 2 Config. MX 2 Z Yield (%) ee (%) 1 2 3 4 5 3 (, ) (, ) Zn(Tf) 2 SnBu 3 84 42 (S) Zn(Tf) 2 Si(Et) 3 65 60 (S) 88 90 () (, ) Zn(Tf) 2 Si 3 86 68 (S) -(C 2 ) 2 - (S, S) MgI 2 Si 3 65 88 () (, ) MgI 2 Si 3 X M X Porter,. A. et. al. J. rg. Chem. 1997, 62, 6702. 12

Chiral Lewis Acid-diated eactions Addition-Trapping eaction MgI 2 /L2 (30 mol%) I, BEt 3 / 2 + SnBu 3 DCM, 78 ºC = i Pr, 93%, 37:1 d.r., 93% ee =, 84%, 99:1 d.r., 97% ee Sibi, M. P. et. al. J. rg. Chem. 2001, 123, 9472. L2 Cycloaddition eaction + Eu(Tf) 3 (10 mol%) L4 (20 mol%) [u(bpy) 3 Cl 2 ] (5 mol%) i Pr 2 Et, C, rt., hυ trans-6 (92% ee) 71%, 7:1 d.r. L4 ab 4 n Bu Eu(Tf) 3 (10 mol%) L5 (30 mol%) [u(bpy) 3 Cl 2 ] (5 mol%) i Pr 2 Et, C, rt., hυ cis-6 (95% ee) 78%, 4.5:1 d.r. L5 n Bu *L n M u(bpy) 2+* 3 hυ i Pr 2 Et *L n M u(bpy) 2+ 3 u(bpy) + 3 [2+2] trans-6 or cis-6 Yoon, T. P. et. al. Science 2014, 344, 392. 13 e

Chiral Lewis Acid-diated eactions ggers, 2014 Λ-Ir (2 mol%) 1 a 2 P 4 (1.1 eq.) + Br EWG 2 visible light, 40 ºC 2 7 8 9 2 2 C 2 i Pr 1 EWG Br S Ir S Λ-Ir C C + PF 6 97%, 99% ee 87%, 97% ee 86%, 91% ee [Ir] EWG Br Λ-Ir [Ir] Asymmetric Catalysis [Ir] EWG SET [Ir] 9 PS PS + toredox Catalysis SET Br PS* Br EWG EWG 7 EWG ggers, E. et. al. ature 2014, 515, 100. 14 Visible light

Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts Miscellaneous 15

Transition tal-catalyzed eactions Cross-Coupling eactions Bn 1 + 2 ZnX Br racemic icl 2 glyme (10 mol%) ()-( i Pr)-Pybox (13 mol%) DMI/TF, 0 ºC Bn 2 1 up to 96% ee up to 90% yield i Pr ()-( i Pr)-Pybox i Pr Fu, G. C. et. al. J. Am. Chem. Soc. 2005, 127, 4594. Bpin X racemic 1 icl 2 glyme (10 mol%) (S, S)-L6 (13 mol%) 2 ZnBr (1.8 eq.) DMA/TF, 0 ºC Bpin 2 1 up to 95% ee up to 86% yield Ar Ar (S, S)-L6 (Ar = o-tolyl) Fu, G. C. et. al. Science 2016, 354, 1265. 2 1 2 Cl + racemic (1.2 eq.) X cat. CuCl/(S)-L7 hυ (blue LED) Li (1.5 eq.) toluene, 40 ºC 2 1 2 up to 99% ee up to 98% yield X P (S)-L7 Fu, G. C. et. al. Science 2016, 351, 681. 16

Transition tal-catalyzed eactions Alkene Difunctionalization eactions n Ar n = 1, 2 + I CF 3 Cu(C)4 PF 6 (7.5 mol%) (S, S)-L3 (7.5 mol%) MTBE, rt. Buchwald, S. L. et. al. Angew. Chem. Int. Ed. 2013, 52, 12655. n Ar CF 3 up to 83% ee up to 88% yield L3 n n = 1, 2 ', Cu(C) 4 PF 6 /L3 n ' n 3 n Ar S 2 n Ar Ar' I(Ac) 2, TMS 3 Ag 2 C 3, TsCl DTBP, Ar' 2 BF 4 Buchwald, S. L. et. al. J. Am. Chem. Soc. 2015, 137, 8069. Ar + I CF 3 Cu(C) 4 PF 6 (1 mol%) L2 (1.5 mol%), TMSC C, rt. Ar CF 3 C up to 99% ee L2 Liu, G. et. al. J. Am. Chem. Soc. 2016, 138, 15547. 17

Transition tal-catalyzed eactions C Functionalization Ar cat. CuAc/L* TMSC (2 3 eq.) C FSI (1.5 eq.) Ar C 6 6, rt., 2 2 2 3 L* 3 C 71%, 97% ee C 3 73%, 97% ee Cl C S 2 76%, 98% ee Liu, G. et. al. Science 2016, 353, 6303. S C 80%, 96% ee 2 i Pr Co i Pr 2 C 2 2 S 2 Cat-1 (2 mol%) Benzene, rt. 92%, 96:4 d.r. 2 C 2 S i Pr Cat-1 i Pr 2 C 2 S 2 Ar Cat-1 2 C 2 S [Co] Ar 2 C -abstraction 2 S [Co] Substitution Ar 2 C 2 S Ar Zhang, X. P. et. al. Chem. Sci. 2015, 6, 1219. 18

Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts Miscellaneous 19

eactions Using Chiral rganocatalysts ydrogen-bonding rganocatalysts (2.5 eq.) I Bu 3 Sn, BEt 3, toluene, 78 ºC 81%, 84% ee Bach, T. et. al. Angew. Chem. Int. Ed. 2004, 43, 5849. PET catalyst (30 mol%) toluene, 40 ºC, hυ 64%, 70% ee Bach, T. et. al. ature 2005, 436, 1139. Si 3 SnBu 3 P (10 mol%) 2 Si 3 2 [Ir(ppy) 2 (dtbpy)]pf 6 (2 mol%) dioxane, rt., hυ Et 2 C C 2 Et 90%, 92% ee P 2 * Knowles,.. et. al. J. Am. Chem. Soc. 2013, 135, 17735. 20

eactions Using Chiral rganocatalysts Chiral Brønsted Acids Bn I (5 eq.), QP (2 eq.) BEt 3 (0.5 eq.)/ 2 DCM/ 2, rt. Bn Bn I (5 eq.), QDP (2 eq.) BEt 3 (0.5 eq.)/ 2 DCM/ 2, rt. Bn Entry I Yield (%) :S 1 n cti 50 40:60 2 i PrI 83 21:79 Entry I Yield (%) :S 1 n cti 50 58:42 2 i PrI 83 62:38 3 I 60 1:>99 3 I 60 >99:1 2 P 2 Si-face attack 2 P 2 Quinine, QP 2 P 2 Quinidine, QDP Jang, D.. et. al. Chem. Commun. 2006, 5045. 21

eactions Using Chiral rganocatalysts Chiral Amine Catalysts SM Activation + ' Si 3 CA (2 eq.), ac 3 DME, 20 ºC CF 3 C (20 mol%) ' 70 88%, 87 95% ee IP 9.8 ev 3 Si IP 8.8 ev 3 Si CA oxidation t Bu IP 7.2 ev SM-activated CA oxidation Si 3 MacMillan, D. W. C. et. al. Science 2007, 316, 582. 22

eactions Using Chiral rganocatalysts Chiral Amine Catalysts SM Activation + FeCl 3, a 2, 2 (20 mol%) 49 78%, up to 90% ee Sibi, M. P. et. al. J. Am. Chem. Soc. 2007, 129, 4124. + TMS ' CA (2 eq.), DTBP, 2 Acetone, 20 ºC (20 mol%) ' 55 92%, 86 96% ee MacMillan, D. W. C. et. al. J. Am. Chem. Soc. 2007, 129, 7004. + KF 3 B ' CA (2 eq.), ac 3, 2 DME, 50 ºC (20 mol%) ' 61 93%, 89 96% ee MacMillan, D. W. C. et. al. J. Am. Chem. Soc. 2008, 130, 398. 23

eactions Using Chiral rganocatalysts rge otoredox with rganocatalysis 2+ n Bu + Br Fluorescent light rganocatalyst, u(bpy) 3 Cl 2 2,6-lutidine, DMF, rt. ex 84%, 96% ee Tf u 2Cl rganocatalyst u(bpy) 3 Cl 2 Si-face open u(bpy) 3 2+* hυ u(bpy) 3 2+ Br u(bpy) + 3 Br MacMillan, D. W. C. et. al. Science 2008, 322, 77. 24

eactions Using Chiral rganocatalysts + CF 3 I Ir(ppy) 2 (dtb-bpy)pf 6 (0.5 mol%) 2,6-lutidine, DMF, 20 ºC TFA CF 3 90 99% ee (20 mol%) MacMillan, D. W. C. et. al. J. Am. Chem. Soc. 2009, 131, 10875. + fac-ir(ppy) 3 (0.5 mol%) Br Ar Ar 2,6-lutidine, DMS, rt. 87 97% ee Tf Bn (20 mol%) MacMillan, D. W. C. et. al. J. Am. Chem. Soc. 2010, 132, 13600. 25

Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts Miscellaneous 26

Chiral rganotin ydride or Chiral Thiols Chiral rganotin ydride Br Et lewis acid (1 eq.) stannane (1.1 eq.) 9-BB, toluene, 78 ºC Et Mn Cl men = 2 Sn(men) 2 75%, 96% ee Schiesser, C.. et. al. Chem. Commun. 1999, 1665. Chiral Thiol C 2 Bn C 2 Bn + S Si (4-CF 3 C 6 4 ) 2 = 10-Bu-9-anthryl (3 mol%) Benzoyl peroxide, toluene, rt., hυ C 2 Bn C 2 Bn Bn 2 C Bn 2 C S Ar Ar Si Bu 95%, 95:5 d.r., 86% ee Maruoka, K. et. al. ature Chem. 2014, 6, 702. 27

Solid-State otochemistry tochemistry in Chiral Crystals i Pr 2 C C 2 i Pr hυ, solid i Pr 2 C C 2 i Pr P2 1 2 1 2 1 (chiral) 95% ee Scheffer, J..; Trotter, J. et. al. J. Am. Chem. Soc. 1986, 108, 5648. Bn S P2 1 (chiral) hυ, solid S Bn S Bn 81% ee, 100% conv. Sakamoto, M. et. al. J. Am. Chem. Soc. 1996, 118, 10664. 28

Enzyme-catalyzed eactions Biocatalysis n asad (1 mol%) ADP + (1 mol%) GD-105, glucose, TIS Glycerol, DMS 460 nm hυ, rt. Br n acemic LKAD (0.25 mol%) ADP + (0.4 mol%) kpi, i Pr, DMS 460 nm hυ, rt. n P 2 F as-ad 47%, e.r. 97/3 LKAD 91%, e.r. 2/98 as-ad 79%, e.r. 3/97 LKAD 56%, e.r. 4/96 as-ad 29%, e.r. 80/20 LKAD 80%, e.r. 4/96 as-ad 82%, e.r. 81/19 LKAD 74%, e.r. 9/91 P 2 AD + yster, T. K. et. al. ature 2016, 540, 414. 29

Acknowledgements 30