Allocation of Transportation Resources. Presented by: Anteneh Yohannes

Similar documents
Transportation Investment Decision Making for Medium to Large Transportation Networks

Final Report Building Our Way Out Of Congestion

Outline. 3. Implementation. 1. Introduction. 2. Algorithm

Numerical Methods. V. Leclère May 15, x R n

Network Equilibrium Models: Varied and Ambitious

Conservation laws and some applications to traffic flows

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

Routing. Topics: 6.976/ESD.937 1

transportation research in policy making for addressing mobility problems, infrastructure and functionality issues in urban areas. This study explored

Pareto-Improving Congestion Pricing on General Transportation Networks

Network Analysis with ArcGIS Online. Deelesh Mandloi Dmitry Kudinov

Lagrangian road pricing

Supplementary Technical Details and Results

A three-level MILP model for generation and transmission expansion planning

The discrete-time second-best day-to-day dynamic pricing scheme

Lecture 8 Network Optimization Algorithms

ArcGIS Online Routing and Network Analysis. Deelesh Mandloi Matt Crowder

Analysis and Design of Urban Transportation Network for Pyi Gyi Ta Gon Township PHOO PWINT ZAN 1, DR. NILAR AYE 2

Computing risk averse equilibrium in incomplete market. Henri Gerard Andy Philpott, Vincent Leclère

NONLINEAR. (Hillier & Lieberman Introduction to Operations Research, 8 th edition)

ECE580 Exam 2 November 01, Name: Score: / (20 points) You are given a two data sets

A new genetic approach for transport network design and optimization

Sustainable Transportation Network Design Incorporating Environment Disruption under Strategic User Equilibrium

APPENDIX Should the Private Sector Provide Public Capital?

TRANSPORTATION MODELING

The N k Problem using AC Power Flows

Microeconomic Algorithms for Flow Control in Virtual Circuit Networks (Subset in Infocom 1989)

User Equilibrium CE 392C. September 1, User Equilibrium

Beyond Normality: A Distributionally Robust Stochastic User Equilibrium Model

Travel Time Calculation With GIS in Rail Station Location Optimization

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Thursday 17th May 2018 Time: 09:45-11:45. Please answer all Questions.

RANDOM SIMULATIONS OF BRAESS S PARADOX

Lecture 3 Cost Structure

Chapter 1. Trip Distribution. 1.1 Overview. 1.2 Definitions and notations Trip matrix

Index Terms: Demand, Effective Travel Time, Perception Error.

Traffic Demand Forecast

Game Theory: introduction and applications to computer networks

Changes in the Spatial Distribution of Mobile Source Emissions due to the Interactions between Land-use and Regional Transportation Systems

Math 5490 Network Flows

Accessibility as an Instrument in Planning Practice. Derek Halden DHC 2 Dean Path, Edinburgh EH4 3BA

A Framework for Dynamic O-D Matrices for Multimodal transportation: an Agent-Based Model approach

Cyber-Physical Cooperative Freight Routing System

How to Estimate, Take Into Account, and Improve Travel Time Reliability in Transportation Networks

Returns to Scale in Networks. Marvin Kraus * June Keywords: Networks, congestion, returns to scale, congestion pricing

Alternative network robustness measure using system-wide transportation capacity for identifying critical links in road networks

Utility Maximizing Routing to Data Centers

A LAGRANGIAN RELAXATION FOR CAPACITATED SINGLE ALLOCATION P-HUB MEDIAN PROBLEM WITH MULTIPLE CAPACITY LEVELS

Friday, September 21, Flows

Decision Mathematics D1 Advanced/Advanced Subsidiary. Wednesday 23 January 2013 Morning Time: 1 hour 30 minutes

0-1 Reformulations of the Network Loading Problem

City monitoring with travel demand momentum vector fields: theoretical and empirical findings

Marginal Cost Pricing for System Optimal Traffic Assignment with Recourse under Supply-Side Uncertainty

A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem. Ryutsu Keizai University Naoto KATAYAMA

Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment

Co-optimization of topology design and parameterized control in a traffic network

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm

CS360 Homework 12 Solution

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

min 4x 1 5x 2 + 3x 3 s.t. x 1 + 2x 2 + x 3 = 10 x 1 x 2 6 x 1 + 3x 2 + x 3 14

The conjugate gradient method

ECE Optimization for wireless networks Final. minimize f o (x) s.t. Ax = b,

CSE 150. Assignment 6 Summer Maximum likelihood estimation. Out: Thu Jul 14 Due: Tue Jul 19

Travelling Salesman Problem

Unconstrained optimization

M.A. Botchev. September 5, 2014

Departure time choice equilibrium problem with partial implementation of congestion pricing

Lecture 19: Common property resources

Lecture XI. Approximating the Invariant Distribution

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours)

Ateneo de Manila, Philippines

Investigating uncertainty in BPR formula parameters

A Model of Traffic Congestion, Housing Prices and Compensating Wage Differentials

On the Smoothed Price of Anarchy of the Traffic Assignment Problem

8 Numerical methods for unconstrained problems

Publication List PAPERS IN REFEREED JOURNALS. Submitted for publication

Dynamic Pricing, Managed Lanes and Integrated Corridor Management: Challenges for Advanced Network Modeling Methodologies

OIM 413 Logistics and Transportation Lecture 6: Equilibration Algorithms for a General Network

A Comprehensive Modeling Framework for Hazmat Network Design, Hazmat Response Team Location, and Equity of Risk

Lecture 12 The Spatial Price Equilibrium Problem

Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma

Extended breadth-first search algorithm in practice

Tropical Optimization Framework for Analytical Hierarchy Process

Advanced Linear Programming: The Exercises

What is an integer program? Modelling with Integer Variables. Mixed Integer Program. Let us start with a linear program: max cx s.t.

OD-matrix Estimation Based on a Dual Formulation of Traffic Assignment Problem

IMPACTS OF THE EARTHQUAKES ON EXISTING TRANSPORTATION NETWORKS IN MEMPHIS AREA

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Topic 2: Algorithms. Professor Anna Nagurney

Yu (Marco) Nie. Appointment Northwestern University Assistant Professor, Department of Civil and Environmental Engineering, Fall present.

The Equilibrium Equivalent Representation for Variational Inequalities Problems with Its Application in Mixed Traffic Flows

Public Transport Versus Private Car: GIS-Based Estimation of Accessibility Applied to the Tel Aviv Metropolitan Area

Trip Distribution Model for Flood Disaster Evacuation Operation

Presentation in Convex Optimization

Decision Mathematics D2 Advanced/Advanced Subsidiary. Monday 1 June 2009 Morning Time: 1 hour 30 minutes

Capacity Planning with uncertainty in Industrial Gas Markets

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

ELEMENTARY LINEAR ALGEBRA

Constraint satisfaction search. Combinatorial optimization search.

Transcription:

Allocation of Transportation Resources Presented by: Anteneh Yohannes

Problem State DOTs must allocate a budget to given projects Budget is often limited Social Welfare Benefits Different Viewpoints (Two Players) Planners Road Users

Purpose of Project Produce a method of prioritizing projects Consider Total System Travel Time (TSTT) performance measure Allocate the budget to priority links Provide State DOTs with a decision making tool

Methodology Bi-Level Optimization Planners Upper Level Problem (ULP) Minimize Total System Travel Time (TSTT) Users Lower Level Problem (LLP) Traffic Assignment (UE)

Data Required Number of Links in the network Capacity Length Free Flow Travel Time Alpha and Beta parameters Connecting Nodes O/D Matrix Budget

Formulation Upper Level problem (ULP) Objective Function : Minimize TSTT = a x a t a (x a, y a ) Subject to: a g a (y a ) B y a 0: a A Where: TSTT : Total System Travel Time x a : Flow for link a y a : Capacity expansion for link a (nonnegative real value) t a : Travel time for link a t a (x a, y a ) : Travel cost on link a as a function of flow and capacity expansion g a y a : improvement cost function for link a B : Budget (nonnegative real value)

Formulation Lower Level problem (LLP) Minimize TT = a A x a t a (x a, y a )dx 0 (11) Subject to: x a = f k ij q ij = k k ij f k ij (i,j) IJ k K ij (i, j) IJ ij δ ak f ij k, a A (12) (13) 0, k k ij, (i, j) IJ, (14) q ij 0, (i, j) IJ (15)

Notations C a : The capacity for link a r f ij : Flow on path r, connecting each Origin-Destination (O-D) pair (i-j) q ij : Demand between each Origin-Destination (O-D) pair (i-j) t a : Travel time for link a t a (x a, y a ) : Travel cost on link a as a function of flow and capacity expansion x a : Flow for link a α a : Constant, varying by facility type (BPR function) β a : Constant, varying by facility type (BPR function) r δ a,ij : binary variable 0,1 {1,if link a A is on path k k^ij:0,otherwise} t o : Free flow time on link a y a : Capacity expansion for link a (nonnegative real value)

Flow Chart Initial Traffic Assignment Base traffic flow X Network planner s problem Minimize TSTT = (x a t a (x a, y a )) a A Design constraints No Microsoft Solver Foundation Generalized Reduced Gradient (GRG2) algorithm Did users stop responding to improvements? Y Yes X' User equilibrium problem Minimize TT x a = t a (x a, y a )dx a A 0 Frank Wolfe Algorithm (FW) Definitional constraint Demand conservation constraint Non-negativity constraint Stop

LLP Frank Wolfe Algorithm (FW) SOURCE: YOSEF SHEFFI, Massachusetts Institute of Technology Step 0: Initialization Perform all-or-nothing assignment based on ta =ta (0) a. A new flow vector {xa} will be generated. Set counter n = 1. Step 1: Update Set ta=ta (xa) a Step 2: Finding Direction Perform all-or-nothing assignment based on {ta}. A new auxiliary flow vector {x a} will be generated. Step 3: Line search Find αn (0 α 1) that solves equation : x a + (x n a x n a ) 0 min z x = t a w dw Step 4: Move x a n+1 = x a n + n x a n x a n, a Step 5: Convergence test a a x a n+1 x a n 2 a x a n k

Test Network 1 t a x a, y a = A a + B a x a C a + y a 4 TSTT y = (t a x a, y a. x a + 1.5d a y2 a a Arc a A a B a C a d a 1 4 0.60 40 2 2 6 0.90 40 2 3 2 0.30 60 1 4 5 0.75 40 2 5 3 0.45 40 2

Comparison of Results Hooke- Jeeves (H-J) EDO GA Current Study Case MINOS 1 Demand =100 y 1 1.34 1.25 1.31 1.33 1.33 y 2 1.21 1.20 1.19 1.22 1.21 y 3 0.00 0.00 0.06 0.02 0.00 y 4 0.97 0.95 0.94 0.96 0.96 y 5 1.10 1.10 1.06 1.10 1.10 Z 1200.58 1200.61 1200.64 1200.58 1200.58 2 Demand =150 y 1 6.05 5.95 5.98 6.08 6.06 y 2 5.47 5.64 5.52 5.51 5.46 y 3 0.00 0.00 0.02 0.00 0.00 y 4 4.64 4.60 4.61 4.65 4.64 y 5 5.27 5.20 5.27 5.27 5.27 Z 3156.21 3156.38 3156.24 3156.23 3156.21 3 Demand =200 y 1 12.98 13.00 12.86 13.04 12.98 y 2 11.73 11.75 12.02 11.73 11.73 y 3 0.00 0.00 0.02 0.01 0.00 y 4 10.34 10.25 10.33 10.33 10.34 y 5 11.74 11.75 11.77 11.78 11.74 Z 7086.12 7086.21 7086.45 7086.16 7086.11 4 Demand =300 y 1 28.45 28.44 28.11 28.48 28.47 y 2 25.73 25.75 26.03 25.82 25.71 y 3 0.00 0.00 0.01 0.08 0.00 y 4 23.40 23.44 23.39 23.39 23.41 y 5 26.57 26.56 26.58 26.48 26.55 Z 21209.90 21209.91 21210.54 21210.06 21209.90 GA H-J EDO MINOS Names of heuristics Genetic Algorithm Hooke-Jeeves algorithm Equilibrium Decomposed Optimization (Bolzano search) Modular In-core Non linear System Sources Mathew (2009) Abdulaal and LeBlanc (1979) Suwansirikul et al. (1987) Suwansirikul et al. (1987)

Test Network 2 O/D 6 8 9 1 120 150 100 2 130 200 90 4 80 180 110 t a x a, y a = A a + B a x a C a + y a 4 Source: Chiou et al (2005) TSTT y = (t a x a, y a. x a + θy a a Link a Aa Ba Ca θa 1 2 0.3 280 2 1.5 0.225 290 3 3 0.45 280 4 1 0.15 280 5 1 0.15 600 6 2 0.3 300 1.5 7 2 0.3 500 8 1 0.15 400 9 1.5 0.225 500 1 10 1 0.15 700 1 11 2 0.3 250 1.5 12 1 0.15 300 13 1 0.15 350 1 14 1 0.15 220

Comparison of Results Case SAB GP CG QNEW PT Current Study y6 0 0 0 0 0 0 y9 0 0 0 0 0 0 y10 0 0 0 0 0 0 y11 0 0 0 0 0 0 y13 128.087 128.103 137.445 137.445 127.793 75.149 Zy 4110.02 4110.02 4109.55 4109.55 4110.05 3891.685 GP CG QNEW PT SAB Gradient Projection method Conjugate Gradient projection method Quasi-NEWton projection method PARTAN version of gradient projection method Sensitivity Analysis Based Source: Chiou et al (2005)

Comparison of Results Comparison of results on 9-node grid network with scaling factors Scalar SAB GP CG QNEW PT Current Study 0.8 3043.18 3042.91 3042.91 3042.91 3043.27 3027.90 0.9 3549.36 3549.02 3549.02 3549.02 3549.45 3451.21 1.1 4634.97 4632.38 4632.38 4632.38 4632.38 4346.82 1.2 5137.64 5135.28 5135.29 5135.29 5135.29 4729.88 1.3 5700.01 5703.21 5697.22 5697.22 5697.22 5378.90 1.4 6240.73 6244.02 6237.98 6237.98 6237.98 5974.95 1.5 6858.2 6781.51 6781.51 6781.51 6781.51 6544.21 GP CG QNEW PT SAB Gradient Projection method Conjugate Gradient projection method Quasi-NEWton projection method PARTAN version of gradient projection method Sensitivity Analysis Based

Test Network 3 O/D 6 1 1 5-6 - 10

Comparison of Results Case 1 Demand (1,6)=5.0 Demand (6,1)=10.0 Names of heuristics Sources y 1 y 2 MINOS H-J EDO IOA Current Study y 3 1.2 0.13 y 4 y 5 y 6 6.58 3 6.26 6.95 4.6 y 7 y 8 y 9 IOA H-J EDO Iterative Optimization- Assignment algorithm Hooke-Jeeves algorithm Equilibrium Decomposed Optimization (Bolzano search) Allsop (1974) Abdulaal and LeBlanc (1979) Suwansirikul et al. (1987) y 10 y 11 y 12 MINOS Modular In-core Non linear System Suwansirikul et al. (1987) y 13 y 14 y 15 7.01 3 0.13 5.66 8.23 y 16 0.22 2.8 6.26 1.79 0 Z 211.25 215.08 201.84 210.86 213.24

Test Network 4 candidate links are marked by red arrow Sioux Falls Network

Comparison of Results Comparison of Results for Sioux Falls Network Case H-J H-J EDO SA SAB GP CG QNew PT GA Current Study y16 4.8 3.8 4.59 5.38 5.74 4.87 4.77 5.3 5.02 5.17 5.13 y17 1.2 3.6 1.52 2.26 5.72 4.89 4.86 5.05 5.22 2.94 1.35 y19 4.8 3.8 5.45 5.5 4.96 1.87 3.07 2.44 1.83 4.72 5.13 y20 0.8 2.4 2.33 2.01 4.96 1.53 2.68 2.54 1.57 1.76 1.32 y25 2 2.8 1.27 2.64 5.51 2.72 2.84 3.93 2.79 2.39 2.98 y26 2.6 1.4 2.33 2.47 5.52 2.71 2.98 4.09 2.66 2.91 2.98 y29 4.8 3.2 0.41 4.54 5.8 6.25 5.68 4.35 6.19 2.92 4.89 y39 4.4 4 4.59 4.45 5.59 5.03 4.27 5.24 4.96 5.99 4.45 y48 4.8 4 2.71 4.21 5.84 3.76 4.4 4.77 4.07 3.63 4.97 y74 4.4 4 2.71 4.67 5.87 3.57 5.52 4.02 3.92 4.43 4.4 Zy 82.5 82.61 84.5 81.89 84.38 84.15 84.86 83.19 84.19 81.74 80.99 GP CG QNEW PT Gradient Projection method Conjugate Gradient projection method Quasi-NEWton projection method PARTAN version of gradient projection method

Comparison of Results Comparison of Results for Sioux Falls Network for different demand level Scalar SAB GP CG QNew PT EDO IOA GA Current Study 0.8 51.76 48.38 48.78 48.84 48.81 49.51 53.58 48.92 48.15 FW Itr. 14 10 3 4 9 7 28 59 29 1 84.21 82.71 82.53 83.07 82.53 83.57 87.34 81.74 80.99 FW Itr. 11 9 6 4 7 12 31 77 35 1.2 144.86 141.53 141.04 141.62 142.27 149.39 150.99 137.92 135.80 FW Itr. 9 11 10 7 9 12 31 67 36 1.4 247.8 246.04 246.04 242.74 241.08 253.39 279.39 232.76 229.22 FW Itr. 15 9 6 5 7 17 16 78 36 1.6 452.01 433.64 408.45 409.04 431.11 427.56 475.08 390.54 380.91 FW Itr. 14 9 9 9 11 19 40 83 40 GA GP CG QNEW PT Genetic Algorithm Gradient Projection method Conjugate Gradient projection method Quasi-NEWton projection method PARTAN version of gradient projection method

Test Network 5 O/D 20 24 25 1 120 150 100 2 130 200 90 6 80 180 110 t a x a, y a = A a + B a x a C a + y a TSTT y = (t a x a, y a. x a + θ y a a Linka Aa Ba Ka θa Linka Aa Ba Ka θa 1 2 0.3 280 23 2 0.3 500 2 1.5 0.225 290 24 1 0.15 700 3 3 0.45 280 25 1.5 0.225 500 4 2 0.3 280 26 1 0.15 700 5 1 0.15 600 27 2 0.3 250 6 1 0.15 280 28 1.5 0.225 500 7 1 0.15 600 29 1 0.15 700 8 1 0.15 280 30 1 0.15 300 1 9 1 0.15 600 31 2 0.3 500 10 2 0.3 300 32 1 0.15 400 11 2 0.3 500 33 2 0.3 500 12 1.5 0.225 290 34 1 0.15 700 13 2 0.3 500 35 1.5 0.225 500 14 1 0.15 600 36 1 0.15 700 15 3 0.45 280 37 1.5 0.225 500 1 16 1.5 0.225 500 38 1 0.15 700 1 17 1 0.15 600 39 2 0.3 250 1.5 18 1.5 0.225 500 40 1 0.15 300 19 1 0.15 600 41 1 0.15 350 20 2 0.3 300 42 1 0.15 350 21 2 0.3 500 43 1 0.15 220 1 22 1 0.15 400 44 1 0.15 220 4

Comparison of Results Comparison of results on 25-node grid network with scaling factors Scalar SAB GP CG QNEW PT Current Study 0.8 7590.19 7590.06 7590.19 7590.19 7590.36 8108.75 0.9 8888.89 8888.77 8888.91 8888.91 8889.07 9226.66 1.1 11452 11440.9 11441.1 11441.1 11441.3 11378.61 1.2 12643.1 12632.5 12626.3 12626.3 12626.3 12500.24 1.3 13833.7 13831.6 13831.7 13831.7 13832.1 13683.70 1.4 15195.7 15185.6 15185.7 15185.7 15186.4 14937.38 1.5 16371.6 16354.6 16354.6 16354.6 16354.8 16253.29 GP CG QNEW PT Gradient Projection method Conjugate Gradient projection method Quasi-NEWton projection method PARTAN version of gradient projection method

Questions