Adaptation Oriented Simulations for Climate Variability

Similar documents
Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model

Multi-Scale Simulations for Adaptation to Global Warming and Mitigation of Urban Heat Islands

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Deep moist atmospheric convection in a subkilometer

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Development of Advanced Simulation Methods for Solid Earth Simulations

Taking an advantage of innovations in science and technology to develop MHEWS

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

ADEOS-II ミッションと海洋学 海洋気象学 (ADEOS-II Mission and Oceanography/Marine Meteorology)

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

The unification of gravity and electromagnetism.

2011/12/25

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

京都 ATLAS meeting 田代. Friday, June 28, 13

October 7, Shinichiro Mori, Associate Professor

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

Predictability Variation in Numerical Weather Prediction: a Multi-Model Multi-Analysis Approach

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Thermal Safety Software (TSS) series

A method for estimating the sea-air CO 2 flux in the Pacific Ocean

モータ用モデル予測電流制御における 予測用モータモデルの磁気特性表現の改善

Predictabilities of a Blocking Anticyclone and a Explosive Cyclone

Illustrating SUSY breaking effects on various inflation models

FDM Simulation of Broadband Seismic Wave Propagation in 3-D Heterogeneous Structure using the Earth Simulator

Numerical Experiments with Multi-Models for Paleo-Environmental Problems

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される

Estimation of Gravel Size Distribution using Contact Time

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

Future Change Storm Surge based on Multi-Scenario and Multi-Regional Climate Model Ensemble Experiments

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

Simulations of Atmospheric General Circulations of Earth-like Planets by AFES

Yutaka Shikano. Visualizing a Quantum State

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 )

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

EDL analysis for "HAYABUSA" reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Development of Flood Exposure Map Considering Dynamics of Urban Life. Yuling LIU, Norio OKADA, Dayong SHEN* and Yoshio KAJITANI**

Network of Evolutionary Trends and Maturity assessment through contradiction analysis 進化トレンドのネットワークと矛盾解析による成熟度評価

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

Global Spectral UV in Recent 6 Years and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

Parameter Estimation of Solar Radiation Pressure Torque of IKAROS

低温物質科学研究センター誌 : LTMセンター誌 (2013), 23: 22-26

Future perspective of seasonal prediction system developments at ECMWF ECMWF における季節予報システム開発の展望

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

Search and Digitalization of Maps at the National Diet Library

2A01 Fourier-transform spectroscopy of D + 2 using intense near-infrared few-cycle laser pulses [Abstract] [Introduction] [Methods]

Reaction mechanism of fusion-fission process in superheavy mass region

SML-811x/812x/813x Series

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

地理学における災害 防災研究の動向 IGC 2004 を通して 赤石直美 *

Video Archive Contents Browsing Method based on News Structure Patterns

External Review Report for Earthquake Research Institute The University of Tokyo 外部評価報告書. September 2014 平成 26 年 9 月 東京大学地震研究所

特別推進研究 研究期間終了後の効果 効用 波及効果に関する自己評価書

ATLAS 実験における荷電ヒッグス粒子の探索

Transcription:

Chapter 1 Earth Science Adaptation Oriented Simulations for Climate Variability Project Representative Keiko Takahashi Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology Authors Keiko Takahashi *1, Ryo Ohnishi *1, Takeshi Sugimura *1, Yuya Baba *1, Shinichiro Kida *1, Koji Goto *2 and Hiromitsu Fuchigami *3 * 1 Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology 2 NEC Corporation * * 3 NEC Informatec Systems LTD A coupled atmosphere-ocean-land model MSSG has been developed in the Earth Simulator Center, which is designed to model multi-scale interactions among the atmosphere, the ocean and the coupled system. The MSSG is designed and optimized to be run with high performance computation on the Earth Simulator (ES2) and attained about 32.2 % of the theoretical peak of ES2. Adding to the computational optimization, implementation and its impacts of new computational schemes, several time-space scale simulation results are shown in this report. Keywords: Coupled atmosphere-ocean model, multi-scale, multi-physics, high performance computing, the Earth Simulator 1. Introduction Multi-Scale Simulator for the Geoenvironment (MSSG), which is a coupled atmosphere-ocean-land global circulation model, has been developed for seamless simulation based on multi-scale multi-physics modeling strategy in order to predict not only weather but climate variability. Because of the necessary of high performance computation to realize seamless simulation, MSSG is optimized to be run on the Earth Simulator with high computational performance and it is designed to be available with flexibility for different space and time scales. In this fiscal year, we focus on the following issues Improvement of computational performance on the Earth Simulator 2 (ES2) to be fit the architectures of discritization schemes for ultra high resolution simulation, Improvement of physical performance of each component of MSSG; MSSG-A and MSSG-O, and Trial simulation aimed to multi-scale multi-physics simulations This report summarizes results of our project in FY2010. respectively. An atmospheric component of MSSG, which we call it MSSG-A, is a non-hydrostatic global/regional atmosphere circulation model. MSSG-A is compromised of fully compressive flux form [1], Smagorinsky-Lilly type parameterizations [2][3] for sub-grid scale mixing. In addition, for increasing usage flexibility, MYNN level-2.5 scheme, which is set as new planetary boundary layer scheme, increases predictability at the equatorial region and produces sustainable deep-convection. Surface fluxes [4][21] is adopted in MSSG. Cloud microphysics with mixed phases [5] and cumulus convective processes [6][7] are selected depending on grid scales. Simple cloud-radiation scheme based on the scheme in MM5 for long wave and shortwave interactions with both explicit cloud and clear-air are adopted and a new radiation scheme, MSTRNX 2. MSSG Model Improvement MSSG can be defined not only a coupled model but regional coupled model simulates phenomena with ultra high resolution such as several meters for horizontal which is required in simulations in urban canyon. Furthermore, global simulations are such that global/regional MSSG-A, global/regional MSSG-O, and global/regional MSSG, where MSSG-A and MSSG-O are atmospheric and oceanic components of MSSG, Fig. 1 Scale of MSSG as global/regional models with nesting schemes and resolution. 17

Annual Report of the Earth Simulator Center April 2010 - March 2011 which solves large negative temperature bias in global scale, are introduced in this fiscal year. Over land, the ground temperature and ground moisture are computed by using a bucket model. As upper boundary condition, Rayleigh friction layer is set. In the ocean component, which we call it MSSG-O, incompressive and hydrostatic/nonhydrostatic equations with the Boussinesq approximation are introduced based on Marshall's methods [8][9]. Smagorinsky type scheme [2][3] are used for the subgrid scale mixing. Algebraic Multi-Grid (AMG) method [10] is used in order to solve a Poisson equation in MSSG-O. In MSSG, we used the AMG library based on aggregation-type AMG[11], which has been developed by Fuji Research Institute Corporation. In both MSSG-A and MSSG-O, Yin-Yang grid system for the global [20] and Arakawa C grid is used. In MSSG-A, both the terrain following vertical coordinate with Lorenz type variables distribution [12] and z-coordinate are introduced. Each of coordinate are adopted to be suitable to grid scale objectives. MSSG-O uses the z-coordinate system for the vertical direction with partial cell which is introduced in this fiscal year. In MSSG-A, the 2 nd, 3 rd and 4 th Runge-Kutta schemes and leapflog schemes with Robert-Asselin time filter are available. In MSSG-O, leap-flog schemes with Robert-Asselin time filter is used. For momentum and tracer advection computations, several discritization schemes are available. In this study, the 5 th order upwind scheme is used for the MSSG-A and central difference is utilized in MSSG-O. In this fiscal year, WENO scheme is introduced and its impact is analyzed as described in flowing section. Horizontally explicit vertical implicit (HEVI) scheme [15] is adopted in MSSG-A. Conservation scheme was discussed [16] and no side effects of over lapped grid system such as Yin-Yang grid were presented [17] [18] due to validations results of various benchmark experiments [19]. 3. High performance computing of MSSG Considered those characteristics of the architecture of the Earth Simulator (ES2), MSSG is further optimized on it. The computing performance of MSSG-A is tuned as follows, - loop interchange for the increased loop length, Fig. 2 Sustained performance of MSSG-A. - shortening of computing time by eliminating redundant arithmetic operations using sqrt (square root) and cbrt (cubic root), - reduction of Byte/Flop ratio with loop unrolling and and exploitation of ADB, - mitigation of interdependency among arithmetic operations by rearrangement of instructions with the assembler language. After the performance tuning, the wall-clock time for the entire MSSG program on the 160 ES2 nodes (1280 cores) was successfully reduced by 37% from 172.0 sec to 108.2 sec with the achieved sustained performance of 42.2 TFLOPS (peak performance ratio of 32.2%). Computational performance statistics of main modules of MSSG-A on ES2 has achieved 18GFLOPS per one CPU of ES2. Horizontal resolution 3 km and 32 vertical layers for the global was also conducted with the 80 ES nodes (640 cores). The measured wall-clock time is 108.2 sec and 205.7 sec for 160 and 80 nodes, respectively with the parallelization ratio of 99.9915%, which can be derived from the Amdahl's law. Figure 2 shows the sustained performance measured with 1280 and 640 cores, the resulting performance curve using the parallelization ratio based on the Amdahl's law and the line representing the ideal parallelization ratio of 100%. As the results of optimizing, MSSG demonstrates excellent strong scaling. 4. Physical performance improvements in MSSG State-of-the-art tracer advection schemes, Weighted essentially non-oscillatory (WENO) scheme was introduced to MSSG-A in this fiscal year. In addition, physical validation of WENO scheme (WM), monotonic (MO) flux limiters, modified PD (MPD) and Wicker and Skamarock (WS) scheme are examined by cloud-resolving simulations of the squalllines. In fig. 3, lateral structure of the squall-lines simulated by different tracer advection schemes using 1-km resolution are compared. Simulated structure of the squall-lines is different comparing among the results with individual advection schemes. Those impacts to physical performance imply that the accuracy of tracer advection scheme has a great influence on the reproducibility and predictability of atmospheric state. In MSSG-Ocean model, two major model components "Open Boundary Condition" and "Surface forcing" were pursued. Off-line nesting was set by clamping temperature, salinity, and velocity fields to external file or prescribed setting at the boundaries. Restoring and damping regions were also implemented near the lateral boundaries for reducing numerical noise. To improve external forcing and temperature fields at the sea surface, bulk flux formula based on COARE3.0 was also implemented. Furthermore, tidal mixing on the sea surface temperature, its 1 st order process was implemented based on a simple parameterization scheme. It was clear that vertical 18

Chapter 1 Earth Science mixing with the tide was intensified in the Indian Ocean (Fig. 4). The numerical stability of partial cell method and MellorYamada 2.5 Mixing scheme was also improved for long-term integration in highly varying topographic region such as the Indonesian Seas. 5. Trial simulations for adaptation to climate variability After tuning in computational and physical schemes, for the first step to execute simulations for the adaptation in climate variability, we focus on two of different time-space scales. One is a trial simulation to validate the reproducibility of Madden Julian Oscillation (MJO) which is well known as multiscale phenomena. The other is a simulation with urban scale resolution. MSSG-A was set to 20 km horizontal resolution and 53 vertical layers and one month integration from 15th December 2006. Figure 5 shows a simulation result of precipitation to represent MJO with MSSG-A. Although volume of precipitation Fig. 4 The impact of tidal mixing to sea surface temperature. Top: region of the Indian Ocean with strong tidal mixing, middle: effect of tidal mixing on annual sea surface temperature and bottom: effect on summer season. Fig. 3 Lateral distributions of vertical wind speed (left) and temperature (right) at 1400m height and at 5 hour. Results with (a) WS,(b) WM,(c) MPD and (d) MO, respectively in cloud-resolving simulations of the squall-lines with 1-km horizontal resolution. Fig. 5 Longitude-time plot of precipitation (mm/h) averaged in the area 10S-5N. Upper: a simulation result with MSSG-A, bottom: observational data by TRMM 3B42. 19

Annual Report of the Earth Simulator Center April 2010 - March 2011 tends to be more than the observational data by TRMM, adapt climate variability (Fig. 6). In figure 6, simulation results typical multi-scale structure of MJO has been captured in the under conditions that both Sakura river and Kyobashi river simulation. are reproduced or not produced. Simulation results show the In urban scale simulations with O(1m) resolution, river impact of settled water surface such as rivers in urban area. The reproduction such as Sakura river and Kyobashi river in existence of a river suggests the change of not only temperature Kyobashi-ku is considered as one of the possible strategies to and horizontal wind field (Fig. 7) but of vertical wind field structure up to 300-500m height (data not shown). 6. Future work In this report, we presented optimized computational performance of MSSG and improvements of physical performance in MSSG due to state-of-art schemes were introduced. Furthermore, preliminary results were shown in order to perform multi-scale simulations to estimate strategies of adaptation in climate variability. Simulation results were comparable to observational data for each of scale simulation. These results encourage us to promote further large multiscale simulations. In near future, we are planning to validate the representation of El Niño by longer integration. The further possibility of multi-scale simulations will be validated by showing whether climate in urban area will be predictable or not Fig. 6 Region for urban scale simulation with 5m of horizontal and vertical resolution. under the condition of climate variability. References [1] Satomura, T. and Akiba, S., 2003: Development of high- precision nonhydrostatic atmospheric model (1): Governing equations. Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 46B, 331-336. [2] Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148-172. [3] Smagorinsky, J., Manabe, S., and Holloway, J. L. Jr., 1965: Numerical results from a nine level general circulation model of the atmosphere. Monthly Weather Review, 93, 727-768. [4] Zhang, D. and Anthes, R. A., 1982: A High-Resolution Model of the Planetary Boundary Layer - Sensitivity Tests and Comparisons with SESAME-79 Data. Journal of Applied Meteorology, 21, 1594-1609. [5] Reisner, J., Ramussen R. J., and Bruintjes, R. T., 1998: Explicit forecasting of supercoolez liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor., Soc., 124, 1071-1107. [6] Kain, J. S. and Fritsch, J. M., 1993: Convective parameterization for mesoscale models: The Kain-Fritsch Scheme. The Representation of Cumulus Convection in Numerical Models of the Atmosphre, Meteor. Monogr., 46, Amer. Meteor. Soc., 165-170. [7] Fritsch, J. M. and Chappell, C. F., 1980: Numerical prediction of convectively driven mesoscale pressure systems, Part I: Convective parameterization. J. Atmos. Fig. 7 Lateral wind velocity field (m/s) at 32.5m height, (a) without rivers, (b) with rivers and (c) differences between (a) and (b). Sci., 37, 1722-1733. [8] Marshall, J., Hill, C., Perelman, L., and Adcroft, A., 20

Chapter 1 Earth Science 1997a: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research, 102, 5733-5752. [9] Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C., 1997b: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research, 102, 5753-5766. [10] Stuben, K., 1999: A Review of Algebraic Multigrid. GMD Report 96. [11] Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. R. Met. Soc., 102, 405-418. [12] Gal-Chen, T. and Somerville, R. C. J., 1975: On the use of a coordinate transformation for the solution of the Navier- Stokes equations. Journal of Computational Physics, 17, 209-228. [13] Wicker, L. J. and Skamarock, W. C., 2002: Time-splitting methods for elastic models using forward time schemes. Monthly Weather Review, 130, 2088-2097. [14] Peng, X., Xiao, F., Takahashi, K., and Yabe T., 2004: CIP transport in meteorological models. JSME international Journal (Series B), 47(4), 725-734. [15] Durran, D., 1991: Numerical methods for wave equations in Geophysical Flud Dynamics, Springer. [16] Peng, X., Xiao, F., and Takahashi, 2006: K., Conservation constraint for quasi-uniform overset grid on sphere. Quarterly Journal Royal Meteorology Society., 132, pp. 979-996. [17] Takahashi, K. et al., 2004a: Proc. 7th International Conference on High Performance Computing and Grid in Asia Pacific Region, 487-495. [18] Takahashi, K. et al., 2004b: "Non-hydrostatic Atmospheric GCM Development and its computational performance", http://www.ecmwf.int/newsevents/meetings/ workshops/2004/ high_performance_ computing-11 th / presentations.html [19] Takahashi, K. et al., 2005: Non-hydrostatic atmospheric GCM development and its computational performance. Use of High Performance computing in meteorology, Walter Zwieflhofer and George Mozdzynski Eds., World Scientific, 50-62. [20] Kageyama, A. and Sato, T., 2004: The Yin-Yang Grid: An Overset Grid in Spherical Geometry. Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004gc000734. [21] Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, 1, Pfafflin and Ziegler, Eds., Gordon and Breach Publ. Group, Newark, 50-85. 21

Annual Report of the Earth Simulator Center April 2010 - March 2011 プロジェクト責任者 高橋桂子 著者 海洋研究開発機構地球シミュレータセンター 高橋桂子 * 1, 大西領 * 1, 杉村剛 * 1, 馬場雄也 * 1, 木田新一郎 * 1, 後藤浩二 * 2, 渕上弘光 * 3 * 1 海洋研究開発機構地球シミュレータセンター * 2 NEC 株式会社 * 3 NEC インフォマティックシステム株式会社 ES2 上における計算性能最適化をさらに推進した結果 ES2 160 ノード上で 42.2TFLOPS 理論ピーク性能比 32.2% を達成した また 高速化とともに並列性能を向上させ 1280 コアと 640 コアから推定した並列化率は 99.9915% であり 非常に高いスケーラビィリティを実現した ( 図 1) MSSG のモデル開発では トレーサ移流計算手法に新たなスキームを導入し (Weighted essentially non-oscillatory (WENO) スキームなど ) それらのスキームの精度が鉛直対流現象にどのような影響を与えるかを評価し WENO スキームの再現性がよいことがわかった また 海洋コンポーネント MSSG-O において 潮汐混合モデルを新たに導入し 鉛直混合過程へのインパクト再現実験を行った結果 観測とよい一致を得た また 季節変動現象を予測し その変動が都市 / 領域スケールの気象 気候現象へどのような影響を与えるかを予測する本プロジェクトの本来の目的のためのテストシミュレーションとして まず MSSG-A を用いて 1 か月積分のテストとして MJO の再現実験を行った 観測と比較した結果 東進 西進のマルチスケールな雲構造が再現できることを確認した ( 図 2) さらに 時間 空間スケールが最も詳細な都市計画の施策の評価のために 水平 鉛直ともに 5m メッシュで京橋地区の河川の再現の有無に対する大気状態の変化をシミュレーションし 解析した その結果 京橋川 桜川の再生により 再生地域の大気の水平構造だけでなく 鉛直構造へも影響を与えることがわかった キーワード : Coupled atmosphere-ocean model, multi-scale, multi-physics, high performance computing, the Earth Simulator 図 1. MSSG-A の計算性能スケーラビリティ 図 2. MSSG-A による MJO 再現のためのテストシミュレー ション結果 22