Biderivations of the Algebra of Strictly Upper Triangular Matrices over a Commutative Ring

Similar documents
Product Zero Derivations on Strictly Upper Triangular Matrix Lie Algebras

Linear Algebra and its Applications

BRUNO L. M. FERREIRA AND HENRIQUE GUZZO JR.

PERMANENTLY WEAK AMENABILITY OF REES SEMIGROUP ALGEBRAS. Corresponding author: jabbari 1. Introduction

Additivity Of Jordan (Triple) Derivations On Rings

Since Brešar and Vukman initiated the study of left derivations in noncom-

Group, Rings, and Fields Rahul Pandharipande. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S,

Additivity of maps on generalized matrix algebras

Linear Algebra and its Applications

Rational constants of monomial derivations

Strongly Nil -Clean Rings

On zero product determined algebras

On Regularity of Incline Matrices

The number of simple modules of a cellular algebra

Jordan α-centralizers in rings and some applications

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products.

Problems in Linear Algebra and Representation Theory

Zero-Divisor Graph of Triangular Matrix Rings over Commutative Rings 1

arxiv:math/ v1 [math.qa] 22 Nov 2005

A Generalization of VNL-Rings and P P -Rings

Jordan isomorphisms of triangular matrix algebras over a connected commutative ring

Linear maps. Matthew Macauley. Department of Mathematical Sciences Clemson University Math 8530, Spring 2017

Lie Ideals and Generalized Derivations. in -Prime Rings - II

LIE ALGEBRA PREDERIVATIONS AND STRONGLY NILPOTENT LIE ALGEBRAS

On generalized -derivations in -rings

SCHUR IDEALS AND HOMOMORPHISMS OF THE SEMIDEFINITE CONE

On the Least Eigenvalue of Graphs with Cut Vertices

HIGHER CLASS GROUPS OF GENERALIZED EICHLER ORDERS

Complete q-moment Convergence of Moving Average Processes under ϕ-mixing Assumption

QUATERNIONS AND ROTATIONS

Permutation transformations of tensors with an application

A matrix over a field F is a rectangular array of elements from F. The symbol

A note on restricted Lie supertriple systems

Strongly nil -clean rings

Dihedral groups of automorphisms of compact Riemann surfaces of genus two

THE JORDAN-CHEVALLEY DECOMPOSITION

Asymptotic behavior for sums of non-identically distributed random variables

Fixed points of the derivative and k-th power of solutions of complex linear differential equations in the unit disc

W P ZI rings and strong regularity

4.1 Primary Decompositions

Abel rings and super-strongly clean rings

ON THE MATRIX EQUATION XA AX = X P

Integral Extensions. Chapter Integral Elements Definitions and Comments Lemma

arxiv: v1 [math.ra] 28 Jan 2016

arxiv: v1 [math.ra] 23 Feb 2018

Polynomials of small degree evaluated on matrices

MULTIVARIATE BIRKHOFF-LAGRANGE INTERPOLATION SCHEMES AND CARTESIAN SETS OF NODES. 1. Introduction

Manoj K. Keshari 1 and Satya Mandal 2.

Bilateral truncated Jacobi s identity

Cartan s Criteria. Math 649, Dan Barbasch. February 26

RANK AND PERIMETER PRESERVER OF RANK-1 MATRICES OVER MAX ALGEBRA

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix.

ELEMENTARY LINEAR ALGEBRA

Formulas for the Drazin Inverse of Matrices over Skew Fields

arxiv:math/ v2 [math.ra] 14 Dec 2005

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

Definitions and Properties of R N

Conjugacy classes of torsion in GL_n(Z)

Group inverse for the block matrix with two identical subblocks over skew fields

Linear Algebra and Matrix Inversion

Lie Weak Amenability of Triangular Banach Algebra

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

DERIVATIONS IN PRIME RINGS

DICKSON POLYNOMIALS OVER FINITE FIELDS. n n i. i ( a) i x n 2i. y, a = yn+1 a n+1 /y n+1

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University

BERNARD RUSSO University of California, Irvine. Report on joint work with. Antonio M. Peralta Universidad de Granada, Spain

Generalized (α, β)-derivations on Jordan ideals in -prime rings

ON THE SUBGROUPS OF TORSION-FREE GROUPS WHICH ARE SUBRINGS IN EVERY RING

204 H. Almutari, A.G. Ahmad

Green s Function for an n-point Right Focal Boundary Value Problem

u n 2 4 u n 36 u n 1, n 1.

On EP elements, normal elements and partial isometries in rings with involution

The Residual Spectrum and the Continuous Spectrum of Upper Triangular Operator Matrices

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

1.4 Solvable Lie algebras

over a field F with char F 2: we define

HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION

Linear algebra. S. Richard

GENERATING NON-NOETHERIAN MODULES CONSTRUCTIVELY

An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson Equation

MATH 431: FIRST MIDTERM. Thursday, October 3, 2013.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy

Generalized core inverses of matrices

ACI-matrices all of whose completions have the same rank

2.3. VECTOR SPACES 25

STRONGLY J-CLEAN SKEW TRIANGULAR MATRIX RINGS *

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook.

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018

1 Last time: least-squares problems

MODEL THEORY OF PARTIAL DIFFERENTIAL FIELDS: FROM COMMUTING TO NONCOMMUTING DERIVATIONS

Generalized Multiplicative Derivations in Near-Rings

Numerical Analysis: Interpolation Part 1

Ann. Funct. Anal. 5 (2014), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

On Projective Planes

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

New lower bounds for hypergraph Ramsey numbers

Houston Journal of Mathematics. c 2012 University of Houston Volume 38, No. 1, Communicated by Kenneth R. Davidson

Transcription:

Journal of Mathematical Research & Exposition Nov., 2011, Vol. 31, No. 6, pp. 965 976 DOI:10.3770/j.issn:1000-341X.2011.06.002 Http://jmre.dlut.edu.cn Biderivations of the Algebra of Strictly Upper Triangular Matrices over a Commutative Ring Pei Sheng JI, Xiao Ling YANG, Jian Hui CHEN School of Mathematical Sciences, Qingdao University, Shandong 266071, P. R. China Abstract Let N n(r) be the algebra consisting of all strictly upper triangular n n matrices over a commutative ring R with the identity. An R-bilinear map φ : N n(r) N n(r) N n(r) is called a biderivation if it is a derivation with respect to both arguments. In this paper, we define the notions of central biderivation and extremal biderivation of N n(r), and prove that any biderivation of N n(r) can be decomposed as a sum of an inner biderivation, central biderivation and extremal biderivation for n 5. Keywords biderivation; strictly upper triangular matrix; algebra. Document code A MR(2010) Subject Classification 17B30; 17B40 Chinese Library Classification O177.1 1. Introduction Let R be a commutative ring with the identity. Denote by N n (R), where n is a positive integer greater than 1, the R-algebra of strictly upper triangular n n matrices over R. In recent years, many significant researches have been done in automorphisms, Lie automorphisms, derivations and Lie derivations of N n (R). Cao [4] studied the R-algebra automorphisms of N n (R). Cao [5, 6] investigated the Lie automorphisms group of N n (R). Ou et al. [8] and Ji [7] determined the Lie derivations of N n (R). Wang and Li [9] studied the structure of all triple derivations of N n (R). Someone described the derivations of N n (R). Let T be an R-algebra and M a T-bimodule. Recall that an R-linear map d : T M is called a derivation if d(ab) = d(a)b + ad(b) for all a, b in T. For example, take x M, and set D x (a) = ax xa for all a in T. In the following, we denote by [x, y] the commutator (the Lie product) of the elements x, y T. A bilinear map φ : T T T is called a biderivation if it is a derivation with respect to both components, meaning that, φ(xy, z) = xφ(y, z) + φ(x, z)y and φ(x, yz) = φ(x, y)z + yφ(x, z) for all x, y, z T. If T is a noncommutative algebra, then the map φ(x, y) = λ[x, y] for all x, y T, where λ Z(T), the center of T, is a basic example of biderivation, and we call it an inner biderivation. Received April 8, 2010; Accepted May 28, 2010 Supported by the National Natural Science Foundation of China (Grant No.10971117). * Corresponding author E-mail address: jipeish@yahoo.com (P. S. JI)

966 P. S. JI, X. L. YANG and J. H. CHEN Biderivations are a subject of research in various areas. Bresar et al. [3] proved that all biderivations on noncommutative prime rings are inner. Zhang et al. [10] showed that biderivations of nest algebras are usally inner. There are special cases of nest algebras with non-inner biderivations. Zhao et al. used the results in [10] to prove that every biderivation of an upper triangular matrix algebra is a sum of an inner biderivation and a special biderivation. Benkovic [1] generalized this result to triangular algebras. He proved that every biderivation of some certain triangular algebras is a sum of an inner biderivation and an extremal biderivation. The aim of this paper is to describe the biderivations of N n (R) for n 5. In the cases 2 n 4, we have already given the structure of the biderivations of N n (R). This paper is organized as follows. In Section 2, we construct certain special biderivation of N n (R) so as to build every biderivation of N n (R). In Section 3, we decompose any biderivation of N n (R) into a sum of those known ones. Now we introduce some preliminary notations and results about matrix algebras. Let e i,j be the standard matrix units for 1 i, j n. It is well known that the matrix set {e i,j : 1 i < j n} forms a basis of N n (R) and any x in N n (R) can be uniquely written as x = 1 i<j n x i,je i,j with x i,j R. Set M r = { x i,j e i,j N n (R) : x i,j R}, r = 1, 2,...,n 1, j i r and M r = 0 for r n. It is clear that each M r is an ideal of N n (R) and x 1 x 2 x r M r for any x 1, x 2,..., x r N n (R). It follows that M r M s M r+s. It is not difficult to know that the center of the R-algebra N n (R) is M = Re 1, To prove the main result of this paper, we need the following result, which might not be written down explicitly to our knowledge. Lemma 1.1 Let R be an arbitrary commutative ring with the identity and D a derivation of N n (R) for n 4. Then there is an n n diagonal matrix d, an element y N n (R) and c = (c 2,..., c ) R n 3 such that D(x) = [d, x] + [y, x] + i=2 x i,i+1c i e 1,n for all x = 1 i<j n x i,je i,j N n (R). 2. Certain standard biderivations of N n (R) In this section, we will give three types of standard derivations of N n (R), which will be used to describe arbitrary biderivations of N n (R). (A) Inner biderivations: Let d R. Then the map φ : N n (R) N n (R) N n (R), (x, y) d[x, y], is a biderivation of N n (R). We call it the inner biderivation of N n (R) induced by d. Note that the inner biderivation defined here is different from the one defined in the papers [1 3,10,11]. Since the center of N n (R) is Re 1,n, and for every x, y N n (R), we have that e 1,n [x, y] = 0. Hence the inner biderivation of N n (R) defined in [1 3,10,11] is the zero map. (B) Central biderivations: Let A be an (n 1) (n 1) matrix over R. We define an R- bilinear map φ A : N n (R) N n (R) N n (R) by φ A (y, x) = i,j=1 y i,i+1a i,j x j,j+1 e 1,n for all

Biderivations of the algebra of strictly upper triangular matrices over a commutative ring 967 x = 1 i<j n x i,je i,j, y = 1 i<j n y i,je i,j N n (R). Then it is easy to check that φ A is a biderivation of N n (R). We call it the central biderivation of N n (R) induced by A. (C) Extremal biderivations: Let a R. The R-bilinear map φ a : N n (R) N n (R) N n (R), which is defined by φ a (y, x) = a(y 2,3 x 1,3 e 1,n + y 2,3 x 2,3 e 2,n + y 1,3 x 2,3 e 1,n ) for all x = 1 i<j n x i,je i,j, y = 1 i<j n y i,je i,j N n (R), is a biderivation on N n (R). In fact, fix y = 1 i<j n y i,je i,j N n (R), for all x = 1 i<j n x i,je i,j, x = 1 i<j n x i,j e i,j, since (xx ) 2,3 = 0 and (xx ) 1,3 = x 1,2 x 2,3, we have that φ a(y, xx ) = ay 2,3 x 1,2 x 2,3 e 1,n. Computing directly, we get that φ a (y, x)x + xφ a (y, x ) =a(y 2,3 x 1,3 e 1,n + y 2,3 x 2,3 e 2,n + y 1,3 x 2,3 e 1,n )x + ax(y 2,3 x 1,3e 1,n + y 2,3 x 2,3e 2,n + y 1,3 x 2,3e 1,n ) =ax 1,2 y 2,3 x 2,3 e 1,n. Thus φ a (y, xx ) = φ a (y, x)x + xφ a (y, x ). This means that φ a is a biderivation with respect to the second component. Since φ a is a symmetric bilinear map, we have that φ a is a derivation with respect to the first component. Therefore φ a is a biderivation of N n (R). We call it the extremal biderivation of N n (R) induced by a R. 3. Biderivation of N n (R) In this section, we give the main result of this paper. Theorem 3.1 Let R be an arbitrary commutative ring with the identity and φ a biderivation of N n (R). If n 5, then there are elements a, d R and an (n 1) (n 1) matrix A over R such that for all x, y N n (R). φ(y, x) = d[y, x] + φ A (y, x) + φ a (y, x) In order to prove our main result, we need the following lemmas. Lemma 3.2 ([2, Corollary 2.4]) Let T be an algebra on a commutative ring R and φ : T T T a biderivation. Then for all x, y, u, v A. φ(x, y)[u, v] = [x, y]φ(u, v) In what follows, for 1 i < j n, since φ(e i,j, x) : N n (R) N n (R) is a derivation of N n (R), by Lemma 1.1, we suppose that φ(e i,j, x) = [d i,j, x] + [y i,j, x] + c i,j i x i,i+1 e 1,n for all x = 1 i<j n x i,je i,j N n (R), where d i,j = diag(d i,j 1,..., di,j n ) is a diagonal matrix over R, y i,j = 1 t<s n yi,j t,se i,j N n (R), and (c i,j 2,...,ci,j ) Rn 3. Lemma 3.3 For any (i, j) (1 i < j n), there is d i,j R such that d i,j = diag(d i,j, d i,j,...,d i,j ). i=2

968 P. S. JI, X. L. YANG and J. H. CHEN Hence [d i,j, x] = 0 for all x N n (R). Proof Step 1. First we will prove that if there is e t,s with s t < n 2 such that [e i,j, e t,s ] = 0, then d i,j t = d i,j s. Since [e i,j, e t,s ] = 0, by Lemma 3.2, we get that Hence φ(e i,j, e t,s )[u, v] = [e i,j, e t,s ]φ(u, v) = 0 for all u, v N n (R). φ(e i,j, e t,s ) =[d i,j, e t,s ] + [y i,j, e t,s ] + c i,j t δ t+1,s e 1,n =(d i,j t d i,j s )e t,s + [y i,j, e t,s ] + c i,j t δ t+1,s e 1,n M, where δ is the Kronecker s delta. Since s t < n 2, e t,s M. Since e t,s M s t \M s t+1 and [y i,j, e t,s ] + c i,j t δ t+1,s e 1,n M s t+1, we have d i,j t d i,j s = 0, i.e., d i,j t = d i,j s. Henceforth fix (i, j) (1 i < j n). Step 2. (i) Clearly, [e i,j, e 1,k ] = 0 for each 1 < k n 2 with k i. It follows from step 1 that d i,j 1 = d i,j k for all 1 < k n 2 with k i. (ii) Since [e i,j, e k,n ] = 0 for all 2 < k n 1 with k j, by Step 1, we have that d i,j k = di,j n for all 2 < k n 1 with k j. (iii) Since [e i,j, e i,k ] = 0 and [e i,j, e t,j ] = 0, by Step 1, we get that d i,j i i < k min{n, n 3 + i} and d i,j j = d i,j t all min{i, max{0, j n + 2}} k max{j, min{n, n 3 + i}}. Case 1 i = 1. = d i,j k for all j > k max{0, j n + 2}. Thus d i,j i = d i,j k It follows from Step 2 (i) that d 1,j 1 = = d 1,j. If j < n 2, by Step 2 (ii), we have that d 1,j = d1,j = d1,j So d 1,j 1 = d 1,j 2 = = d 1,j If j = n 2, then, by Step 2 (ii), d 1, suffices to prove that d 1, 2 = d 1, 1, we get d 1, 2 = d 1,. Thus d1, = d 1, n for all for. In this case, to complete the proof, it. Since [e 1,, e 2, ] = 0 and (n 1) 2 < n 2, by Step 1 = d 1, 2 = = d 1, If j = n 1, then, by Step 2 (ii), d 1, = d 1, Since [e 1,, e, ] = 0 and (n 1) (n 2) < n 2, by Step 1, we get d 1, = d 1,. Thus d1,1 = d 1, 2 = = d 1, When j = n, it follows from Step (ii) that d 1,n 3 = d 1,n 4 = = d 1,n Thus d 1,n 1 = d 1,n 2 = = d 1,n Case 2 i = 2. It follows from Step 2 (i) that d 2,j 1 = d 2,j 3 = = d 2,j, and from Step 2 (iii) that d2,j d 2,j 3 = = d 2,j. Thus d2,j 1 = d 2,j 2 = = d 2,j. If j n 2, by Step 2 (ii), we have that d 2,j d 2,n If j = n 1, then, by Step 2 (ii), d 1, = d2,j n = d 1, n When j = n, it follows from Step (ii) that d 2,n 3 = d 2,n. So d2,j 1 = d 2,j 2 = = d 2,j 1 = d 2, 2 =. Thus d 2, 2 = = d 2, 4 = = d 2,n Thus d2,n 1 = d 2,n 2 = =

Biderivations of the algebra of strictly upper triangular matrices over a commutative ring 969 Case 3 i 3. It follows from Step 2 (i) that d i,j 1 = d i,j 2 = = d i,j i 1, and from Step 2 (iii) that di,ji = d i,j i+1 = = di,j Since [e i,j, e i 1,i+1 ] = 0 and (i + 1) (i 1) < n 2, by Step 1, we get d i,j i 1 = di,j i+1. Thus di,j 1 = d i,j 2 = = d i,j This completes the proof. Henceforth, for 1 i < j n, we suppose that φ(e i,j, x) = [y i,j, x] + c i,j i x i,i+1 e 1,n for all x = 1 i<j n x i,je i,j N n (R), where y i,j = 1 t<s n yi,j t,se i,j N n (R), and (c i,j 2,...,ci,j ) R n 3. Since [e 1,n, x] = 0 for all x N n (R), we suppose that y i,j 1,n = 0 for all (i, j). In the proof of the following lemmas, we often use the following fact: Suppose c i,j R for all 1 i < j n. If 1 i<j n c i,jx i,j = 0 for all x = 1 i<j n x i,je i,j N n (R), then c i,j = 0 for all 1 i < j n. And for every z N n (R), and i=2 φ(e i,j, x)z = ([y i,j, x] + c i,j i x i,i+1 e 1,n )z = [y i,j, x]z i=2 zφ(e i,j, x) = z([y i,j, x] + c i,j i x i,i+1 e 1,n ) = z[y i,j, x]. Lemma 3.4 There exists an element d R such that (i) y 1,j = de 1,j + y 1,j 1, e 1, + y 1,j 2,n e 2,n for j < n 1; (ii) y 1,n = y 1,n 1, e 1, + y 1,n 2,n e 2,n; (iii) y 1, = y 1, 1, e 1, + y 1, 1, e 1, + y 1, 2,n e 2,n ; (iv) y i,j = de i,j + y i,j 1, e 1, + y i,j 2,n e 2,n for j n 1 and i > 2; (v) y i, = y i, 1, e 1, + y i, 1, e 1, + y 1, 2,n e 2,n + de i, for i > 2. i=2 Proof (I) For 1 < j n, it follows from e 1,2 e 1,j = 0 that 0 = φ(e 1,2 e 1,j, x) = e 1,2 φ(e 1,j, x) + φ(e 1,2, x)e 1,j = e 1,2 φ(e 1,j, x) = e 1,2 [y 1,j, x] n = ( y 1,j 2,t x t,s x 2,t yt,s)e 1,j 1,s s=4 2<t<s 2<t<s for all x = 1 i<j n x i,je i,j N n (R). Hence, for every 4 s n, 2<t<s y1,j 2,t x t,s 2<t<s x 2,ty 1,j t,s = 0 for all x = 1 i<j n x i,je i,j N n (R), which implies that y 1,j t,s = 0 for t > 2 and y 1,j 2,t = 0 for 3 t n 1. So y1,j = y1,j 1,t e 1,t + y 1,j 2,n e 2,n. (II) For j < n 1, since e 1,j e,n = 0, by (I), we have that 0 = φ(e 1,j e,n, x) = e 1,j φ(e,n, x) + φ(e 1,j, x)e,n = e 1,j [y,n, x] + [y 1,j, x]e,n n = ( y,n j,t x t,s x j,t y,n t,s )e 1,s + y 1,j 1,t x t,e 1,n s=j+2 j<t<s j<t<s for all x = 1 i<j n x i,je i,j N n (R). Therefore j<t<n y,n j,t x t,n j<t<s x j,ty,n t,n + 1,t x t, = 0 and j<t<s y,n x t,s j<t<s x j,ty,n t,s = 0 for j + 2 s < n, which y1,j j,t

970 P. S. JI, X. L. YANG and J. H. CHEN implies that y 1,j 1,t = y,n for all j < n 1, and y1,j 1,t = 0 for 2 t n 2 with t j. Suppose d = y,n, We have that y 1,j = de 1,j + y 1,j 1, e 1, + y 1,j 2,n e 2,n for j < n 1. (i) is proved. (III) Since e 1,n e,n = 0, by (I), we get that 0 = φ(e 1,n e,n, x) = e 1,n φ(e,n, x) + φ(e 1,n, x)e,n = φ(e 1,n, x)e,n = [y 1,n, x]e,n = y 1,n 1,t x t,e 1,n for all x = 1 i<j n x i,je i,j N n (R). Hence we have that y 1,n 1,t y 1,n = y 1,n 1, e 1, + y 1,n 2,n e 2,n. (IV) For 2 < i < n, since e 1,2 e i,j = 0, by (i), we have that = 0 for all 2 t n 2. Thus 0 = φ(e 1,2 e i,j, x) = e 1,2 φ(e i,j, x) + φ(e 1,2, x)e i,j = e 1,2 [y i,j, x] + [y 1,2, x]e i,j n = ( y i,j 2,t x t,s x 2,t yt,s)e i,j 1,s + dx 2,i e 1,j s=4 2<t<s 2<t<s for all x = 1 i<j n x i,je i,j N n (R). These imply that, for every 4 s n with s j, 2<t<s yi,j 2,t x t,s 2<t<s x 2,ty i,j t,s = 0, and that 2<t<j yi,j 2,t x t,j 2<t<j x 2,ty i,j t,j + dx 2,i = 0 for all x = 1 i<j n x i,je i,j N n (R). Therefore y i,j i,j = d and yi,j t,s = 0 unless t = 1 and (t, s) = (i, j), (2, n). So y i,j = yi,j 1,t e 1,t + y i,j 2,n e 2,n + de i,j. (V) For any (i, j) (i > 2 and j < n 1), since e i,j e,n = 0, by (IV), we have that 0 = φ(e i,j e,n, x) = e i,j φ(e,n, x) + φ(e i,j, x)e,n = e i,j [y,n, x] + [y i,j, x]e,n = dx j, e i,n + y i,j 1,t x t,e 1,n + dx j, e i,n = y i,j 1,t x t,e 1,n for all x = 1 i<j n x i,je i,j N n (R). This leads to yi,j 1,t x t, = 0, which implies that y i,j 1,t = 0 for all 2 t n 2. Thus yi,j = de i,j + y i,j 1, e 1, + y i,j 2,n e 2,n for j < n 1. (VI) For any i (i > 2), by (IV), it follows from e i,n e,n = 0 that 0 = φ(e i,n e,n, x) = e i,n φ(e,n, x) + φ(e i,n, x)e,n = φ(e i,n, x)e,n = [ y i,n 1,t e 1,t + y i,n 2,n e 2,n + de i,n, x]e,n = y i,n 1,t x t,e 1,n for all x = 1 i<j n x i,je i,j N n (R). Hence y i,n 1,t = 0 for all 2 t n 2. So y i,n = y i,n 1, e 1, + y i,n 2,n e 2,n + de i, (VII) Since e 1, e,n = 0, using (I) and (VI), we can get that 0 = φ(e 1, e,n, x) = e 1, φ(e,n, x) + φ(e 1,, x)e,n = e 1, [y,n 1, e 1, + y,n n 3 = y 1, 1,t x t, e 1,n 2,n e 2,n + de,n, x] + [ y 1, 1,t e 1,t + y 1, 2,n e 2,n, x]e,n

Biderivations of the algebra of strictly upper triangular matrices over a commutative ring 971 for all x = 1 i<j n x i,je i,j N n (R). Therefore n 3 x = 1 i<j n y1, x i,j e i,j N n (R), which implies that y 1, 1,t = 0 for all 2 t n 3. Thus 1,t x t, = 0 for all y 1, = y 1, 1, e 1, + y 1, 1, e 1, + y 1, 2,n e 2, (VIII) For i > 2, since e i, e,n = 0, by (VI), we have that 0 = φ(e i, e,n, x) = e i, φ(e,n, x) + φ(e i,, x)e,n n 3 = y i, 1,t x t, e 1,n for all x = 1 i<j n x i,je i,j N n (R). Therefore n 3 x = 1 i<j n yi, x i,j e i,j N n (R), which leads to that y 1, 1,t = 0 for all 2 t n 3. So 1,t x t, = 0 for all y i, = y i, 1, e 1, + y i, 1, e 1, + y 1, 2,n e 2,n + de i,. Lemma 3.5 For i = 2, we have the following equalities: (i) y 2,j = de 2,j + y 2,j 1, e 1, + y 2,j 3,n e 3,n + y 2,j 2,n e 2,n for j < n 1; (ii) y 2, = y 2, 1, e 1, + y 2, 1, e 1, + y 2, 3,n e 3,n + y 2, 2, e 2, + y 2, 2,n e 2,n ; (iii) y 2,n = y 2,n 1, e 1, + y 2,n 2,n e 2,n + y 2,n 2, e 2, + y 2,n 3,n e 3,n. Proof (I) For any j > 2, since e 1,3 e 2,j = 0, by Lemma 3.4(i), we have that 0 = φ(e 1,3 e 2,j, x) = e 1,3 φ(e 2,j, x) + φ(e 1,3, x)e 2,j = e 1,3 [y 2,j, x] + [y 1,3, x]e 2,j n = ( y 2,j 3,t x t,s s=5 3<t<s 3<t<s x 3,t y 2,j t,s )e 1,s for all x = 1 i<j n x i,je i,j N n (R). Hence, for every 5 s n, 3<t<s y2,j 3,t x t,s 3<t<s x 3,ty 2,j t,s = 0 for all x = 1 i<j n x i,je i,j N n (R). Therefore y 2,j t,s = 0 for t > 3 and y 2,j 3,t = 0 for 4 t n 1. So y2,j = y2,j 1,t e 1,t + n t=3 y2,j 2,t e 2,t + y 2,j 3,n e 3,n. (II) For 3 j < n 1, using (I) and Lemma 3.4 (iv), it follows from e 2,j e,n = 0 that 0 = φ(e 2,j e,n, x) = e 2,j φ(e,n, x) + φ(e 2,j, x)e,n = e 2,j [y,n, x] + [y 2,j, x]e,n = dx j, e 2,n + y 2,j 1,t x t,e 1,n + t=3 y 2,j 2,t x t,e 2,n y 2,j 2, x 1,2e 1,n for all x = 1 i<j n x i,je i,j N n (R). Therefore y2,j 1,t x t, y 2,j 2, x 1,2 = 0 and dx j, + t=3 y2,j 2,t x t, = 0 for all x = 1 i<j n x i,je i,j N n (R). Hence y 2,j 1,t = 0 for all 2 t

972 P. S. JI, X. L. YANG and J. H. CHEN n 2, d = y 2,j 2,j, and y2,j 2,t = 0 for 2 < t n 1 with t j. Thus y2,j = de 2,j + y 2,j 1, e 1, + y 2,j 3,n e 3,n + y 2,j 2,n e 2,n for j < n 1. (III) Since e 2, e,n = 0, by (I) and Lemma 3.4(iv), we have that 0 =φ(e 2, e,n, x) = e 2, φ(e,n, x) + φ(e 2,, x)e,n =e 2, [y,n 1, e 1, + y,n 2,n e 2,n + de,n, x]+ n [ n 3 = t=3 y 2, 1,t e 1,t + t=3 n 3 y 2, 2,t x t, e 2,n + y 2, 2,t e 2,t + y 2, 3,n e 3,n, x]e,n y 2, 1,t x t, e 1,n y 2, 2, x 1,2e 1,n for all x = 1 i<j n x i,je i,j N n (R). Therefore n 3 y2, 1,t x t, y 2, 2, x 1,2 = 0 and n 3 t=3 y2, 2,t x t, = 0 for all x = 1 i<j n x i,je i,j N n (R). It follows that y 2, 1,t = 0 for all 2 t n 3 and y 2, 2,t = 0 for all 3 t n 2. Thus y 2, = y 2, 1, e 1, + y 2, 1, e 1, + y 2, 3,n e 3,n + y 2, 2, e 2, + y 2, 2,n e 2, (IV) Since e 2,n e,n = 0, by (I), we have that 0 = φ(e 2,n e,n, x) = e 2,n φ(e,n, x) + φ(e 2,n, x)e,n n = φ(e 2,n, x)e,n = [ y 2,n 1,t e 1,t + y 2,n 2,t e 2,t + y 2,n 3,n e 3,n, x]e,n = y 2,n 1,t x t,e 1,n + t=3 t=3 y 2,n 2,t x t,e 2,n y 2,n 2, x 1,2e 1,n for all x = 1 i<j n x i,je i,j N n (R). Therefore y2,n 1,t x t, y 2,n 2, x 1,2 = 0 and t=3 y2,n 2,t x t, = 0 for all x = 1 i<j n x i,je i,j N n (R), which implies that y 2,n 1,t = 0 for 2 t n 2 and y 2,n 2,t = 0 for all 3 t n 1. Thus y 2,n = y 2,n 1, e 1, + y 2,n 2,n e 2,n + y 2,n 2, e 2, + y 2,n 3,n e 3,n. Lemma 3.6 (i) For all x N n (R), we have φ(e 1,n, x) = 0; (ii) For 3 < j < n, we get y 1,j = de 1,j and c 1,j t = 0 for 2 t n 2; (iii) Then y 1,3 = de 1,3, c 1,j t = 0 for 3 t n 2 and c 1,3 2 = y 2,3 3, Proof (I) By Lemma 3.4 (i) and (iv), it is easy to check that for all x N n (R). φ(e 1,n, x) =φ(e 1,3 e 3,n, x) = e 1,3 φ(e 3,n, x) + φ(e 1,3, x)e 3,n =e 1,3 [de 3,n + y 3,n 1, e 1, + y 3,n 2,n e 2,n, x]+ =0 [de 1,3 + y 1,3 1, e 1, + y 1,3 2,n e 2,n, x]e 3,n (II) Fix any i (2 < i < n 1), since φ(e 1,, x) = φ(e 1,i e i,, x) = e 1,i φ(e i,, x) +

Biderivations of the algebra of strictly upper triangular matrices over a commutative ring 973 φ(e 1,i, x)e i,, using Lemma 3.4 (i) and (v), we have that i.e., [y 1, 1, e 1, + y 1, 1, e 1, + y 1, 2,n e 2,n, x] + c 1, t x t,t+1 e 1,n = e 1,i [y i, 1, e 1, + y i, 1, e 1, + y 1, 2,n e 2,n + de i,, x]+ [de 1,i + y 1,i 1, e 1, + y 1,i 2,n e 2,n, x]e i,, y 1, 1, x,e 1, + y 1, 1, x,ne 1,n + y 1, 1, x,ne 1,n y 1, 2,n x 1,2 e 1,n + c 1, t x t,t+1 e 1,n = dx,n e 1,n for all x = 1 i<j n x i,je i,j N n (R). Hence y 1, 1, x, = 0 and y 1, 1, x,n + y 1, 1, x,n y 1, 2,n x 1,2 + c 1, t x t,t+1 = dx,n for all x = 1 i<j n x i,je i,j N n (R). Therefore y 1, 1, = 0, y1, 2,n = 0, y 1, 1, = d and c 1, t = 0 for 2 t n 2. So y 1, = de 1,. (III) For 4 j n 2, since φ(e 1,j, x) = φ(e 1,3 e 3,j, x) = e 1,3 φ(e 3,j, x) + φ(e 1,3, x)e 3,j, we get, using Lemma 3.4 (i, iv), that y 1,j 1, x,ne 1,n y 1,j 2,n x 1,2e 1,n + de 1,j x + c 1,j t x t,t+1 e 1,n = de 1,j x for all x = 1 i<j n x i,je i,j N n (R). Hence y 1,j 1, x,n y 1,j 2,n x 1,2 + c1,j t x t,t+1 = 0 for all x = 1 i<j n x i,je i,j N n (R), which implies that y 1,j 1, = y1,j 2,n 2 t n 2. Thus y 1,j = de 1,j. = 0 and c1,j t = 0 for (IV) Since φ(e 1,3, x) = φ(e 1,2 e 2,3, x) = e 1,2 φ(e 2,3, x)+φ(e 1,2, x)e 2,3, we see using Lemma 3.4 (i) and Lemma 3.5 (i) that y 1,3 1, x,ne 1,n y 1,3 2,n x 1,2e 1,n + de 1,3 x + c 1,3 t x t,t+1 e 1,n = de 1,3 x y 2,3 3,n x 2,3e 1,n for all x = 1 i<j n x i,je i,j N n (R). Hence y 1,3 1, x,n y 1,3 2,n x 1,2 + c1,3 t x t,t+1 = y 2,3 3,n x 2,3 for all x = 1 i<j n x i,je i,j N n (R). Therefore y 1,3 1, = y1,3 2,n = 0 for 3 t n 2. So y 1,3 = de 1,3. c 1,3 t Lemma 3.7 For 3 < j n, we get that y 2,j = de 2,j and c 2,j t = 0 for 2 t n 2. = 0, c1,3 2 = y 2,3 3,n and Proof (I) Since φ(e 2,n, x) = φ(e 2,3 e 3,n, x) = e 2,3 φ(e 3,n, x) + φ(e 2,3, x)e 3,n, by Lemma 3.4 (iv) and Lemma 3.5 (i, iii), we have that y 2,n 1, x,ne 1,n y 2,n 2,n x 1,2e 1,n y 2,n 2, x 1,2e 1, + y 2,n 2, x,ne 2,n y 2,n 3,n x 1,3e 1,n y 2,n 3,n x 2,3e 2,n + c 2,n t x t,t+1 e 1,n

974 P. S. JI, X. L. YANG and J. H. CHEN = dx 1,2 e 1,n for all x = 1 i<j n x i,je i,j N n (R). Therefore y 2,n 2, x 1,2 = 0, y 2,n 2, x,n y 2,n 3,n x 2,3 = 0 and y 2,n 1, x,n y 2,n 2,n x 1,2 y 2,n 3,n x 1,3+ t x t,t+1 = dx 1,2 for all x = 1 i<j n x i,je i,j N n (R), which means that y 2,n 2,n Thus y 2,n = de 2, c2,n = d, y2,n 1, = y2,n 2, = y2,n 3,n = 0, and c2,n t = 0 for 2 t n 2. (II) Since φ(e 2,, x) = φ(e 2,3 e 3,, x) = e 2,3 φ(e 3,, x) + φ(e 2,3, x)e 3,, by Lemma 3.4 (v) and Lemma 3.5 (i, ii), we have that y 2, 1, x,e 1, + y 2, 1, x,ne 1,n + y 2, 1, x,ne 1,n + y 2, 2, x,ne 2,n y 2, 2, x 1,2e 1, y 2, 2,n x 1,2 e 1,n y 2, 3,n x 1,3 e 1,n y 2, 3,n x 2,3 e 2,n + c 2, t x t,t+1 e 1,n = dx,n e 2,n dx 1,2 e 1, for all x = 1 i<j n x i,je i,j N n (R). Therefore y 2, 2, x,n y 2, 3,n x 2,3 = dx,n, y 2, 1, x, y 2, 2, x 1,2 = dx 1,2, y 2, 1, x,n + y 2, 1, x,n y 2, 2,n x 1,2 y 2, 3,n x 1,3 + c 2, t x t,t+1 e 1,n = 0 for all x = 1 i<j n x i,je i,j N n (R). This implies that y 2, 3,n = y 2, 1, = 0, y2, 2, = d, y 2, 1, = y2, 2,n = 0, and c 2, t = 0 for 2 t n 2. So y 2, = de 2,. (III) For 4 j < n 1, since φ(e 2,j, x) = φ(e 2,3 e 3,j, x) = e 2,3 φ(e 3,j, x) + φ(e 2,3, x)e 3,j, using Lemma 3.4 (iv) and Lemma 3.5 (i), we can get that y 2,j 1, x,ne 1,n y 2,j 2,n x 1,2e 1,n dx 1,2 e 1,j + de 2,j x y 2,j 3,n x 1,3e 1,n y 2,j 3,n x 2,3e 2,n + c 2,j t x t,t+1 e 1,n = de 2,j x dx 1,2 e 1,j for all x = 1 i<j n x i,je i,j N n (R). Therefore y 2,j 1, x,n y 2,j 2,n x 1,2 y 2,j 3,n x 1,3 + c 2,j t x t,t+1 = 0 for all x = 1 i<j n x i,je i,j N n (R). Hence y 2,j 1, = y2,j 2,n = y2,j 3,n 2 t n 2. So y 2,j = de 2,j. = 0, and c2,j t = 0 for Lemma 3.8 For i > 2 and j i 2, we have that y i,j = de i,j and c 2,j t = 0 for 2 t n 2. Proof (I) Since φ(e i,n, x) = φ(e i, e,n, x) = e i, φ(e,n, x) + φ(e i,, x)e,n, by Lemma 3.4 (iv) and (v), we have that [y i,n 1, e 1, + y i,n 2,n e 2,n + de i,n, x] + c i,n t x t,t+1 e 1,n

Biderivations of the algebra of strictly upper triangular matrices over a commutative ring 975 i.e., = e i, [de,n + y,n 1, e 1, + y,n 2,n e 2,n, x]+ [de i, + y i, 1, e 1, + y i, 2,n e 2,n + y i, 1, e 1,, x]e,n, dxe i,n + y i,n 1, x,ne 1,n y i,n 2,n x 1,2e 1,n + c i,n t x t,t+1 e 1,n = dxe i,n + y i, 1, x,e 1,n for all x = 1 i<j n x i,je i,j N n (R). Therefore y i,n 1, x,n y i,n 2,n x 1,2 + c i,n t x t,t+1 = y i, 1, x, for all x = 1 i<j n x i,je i,j N n (R). Hence y i,n 1, = yi,n 2,n = 0, yi, 1, = ci,n and c2,n t = 0 for 2 t n 3. Thus y i,n = de i, (II) Since φ(e i,, x) = φ(e i, e,, x) = e i, φ(e,, x) + φ(e i,, x)e, by Lemma 3.4 (iv) and (v), we have that dx,n e i,n dxe i, + y i, 1, x,ne 1,n y i, 2,n x 1,2e 1,n + y i, 1, x,e 1, + y i, 1, x,ne 1,n + c i, t x t,t+1 e 1,n = dx,n e i,n dxe i, for all x = 1 i<j n x i,je i,j N n (R). Therefore y i, 1, x, = 0, and y i, 1, x,n y i, 2,n x 1,2 + y i, 1, x,n + ci, t x t,t+1 = 0 for all x = 1 i<j n x i,je i,j N n (R). This implies that y i, 1, = yi, 1, = yi, 2,n = 0, and c 2, t = 0 for 2 t n 2. Thus y i, = de i,. By (I), we have that c i,n = yi, 1, = 0. (III) For any (i, j) (i > 2, i + 2 < j < n 1), since φ(e i,j, x) = φ(e i,i+1 e i+1,j, x) = e i,i+1 φ(e i+1,j, x) + φ(e i,i+1, x)e i+1,j, using Lemma 3.4 (iv), we can get that de i,j x dxe i,j + y i,j 1, x,ne 1,n y i,j 2,n x 1,2e 1,n + c i,j t x t,t+1 e 1,n = de i,j x dxe i,j for all x = 1 i<j n x i,je i,j N n (R). Therefore y i,j 1, x,n y i,j 2,n x 1,2 + ci,j t x t,t+1 = 0 for all x = 1 i<j n x i,je i,j N n (R). Hence y i,j 1, = yi,j 2,n = 0, and ci,j t = 0 for 2 t n 2. So y i,j = de i,j. Summarizing Lemmas 3.4 (i), 3.5 (i) and 3.6 3.8, we have the following result. Corollary 3.9 The following equalities hold (i) φ(e 1,n, x) = 0 for all x = 1 i<j n x i,je i,j N n (R); (ii) For 1 i n 1 with i 2, φ(e i,i+1, x) = [de i,i+1 + y i,i+1 1, e 1, + y i,i+1 2,n e 2,n, x] + x t,t+1 e 1,n for all x N n (R); ci,i+1 t (iii) For i + 2 j, except (i, j) = (1, 3), φ(e i,j, x) = [de i,j, x] for all x N n (R); (iv) φ(e 1,3, x) = [de 1,3, x] + c 1,3 2 x 2,3e 1,n for all x N n (R); (v) φ(e 2,3, x) = [de 2,3 + y 2,3 1, e 1, + y 2,3 2,n e 2,n + y 2,3 3,n e 3,n, x] + ci,i+1 t x t,t+1 e 1,n for all x N n (R), and y 2,3 3,n = c1,3 2.

976 P. S. JI, X. L. YANG and J. H. CHEN The Proof of Theorem 3.1 For 1 i n 1, denote y i,i+1 1, by ci,i+1, yi,i+1 2,n by c i,i+1 1, and c 1,3 2 = y 2,3 3,n by a. Then, for i 2, and for all x N n (R). Let A denote φ(e i,i+1, x) = [de i,i+1, x] + c i,i+1 t x t,t+1 e 1,n, t=1 φ(e 2,3, x) = [de 2,3, x] + [ ae 3,n, x] + c i,i+1 t x t,t+1 e 1,n, t=1 φ(e 1,3, x) = [de 1,3, x] + ax 2,3 e 1,n i,j=1 ci,i+1 j N n (R), it follows from Corollary 3.9 that φ(y, x) = y i,j φ(e i,j, x) 1 i<j n = 1 i<j n y i,j [de i,j, x] + e i,j. For y = 1 i<j n y i,je i,j, x = 1 i<j n x i,je i,j i=1 (y i,i+1 j=1 c i,i+1 j x j,j+1 e 1,n )+ y 2,3 [ ae 3,n, x] + ay 1,3 x 2,3 e 1,n =d[ y i,j e i,j, x] + (y i,i+1 c i,i+1 j x j,j+1 e 1,n )+ 1 i<j n i=1 j=1 a(y 2,3 x 1,3 e 1,n + y 2,3 x 2,3 e 2,n + y 1,3 x 2,3 e 1,n ) =d[y, x] + φ A (y, x) + φ a (y, x). We thus complete the proof of Theorem 3.1. Acknowledgments The authors would like to thank the referees for their comments. References [1] BENKOVIČ D. Biderivations of triangular algebras [J]. Linear Algebra Appl., 2009, 431(9): 1587 1602. [2] BREŠAR B. On generalized biderivations and related maps [J]. J. Algebra, 1995, 172(3): 764 786. [3] BREŠAR B, MARTINDALE W S, MIERS C R. Centralizing maps in prime rings with involution [J]. J. Algebra, 1993, 161(2): 342 357. [4] CAO You an, WANG Jingtong. A note on algebra automorphisms of strictly upper triangular matrices over commutative rings [J]. Linear Algebra Appl., 2000, 311(1-3): 187 193. [5] CAO You an. Automorphisms of the Lie algebra of strictly upper triangular matrices over certain commutative rings [J]. Linear Algebra Appl., 2001, 329(1-3): 175 187. [6] CAO You an, TAN Zuowen. Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2003, 360: 105 122. [7] JI Peisheng, YUAN Huali. Lie derivations of strictly upper triangular matrices over commutative rings [J]. Acta Math. Sinica (Chin. Ser.), 2007, 50(4): 737 744. (in Chinese) [8] OU Shikun, WANG Dengyin, YAO Ruiping. Derivations of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2007, 424(2-3): 378 383. [9] WANG Hengtai, LI Qingguo. Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring [J]. Linear Algebra Appl., 2009, 430(1): 66 77. [10] ZHANG Jianhua, FENG Shan, LI Hongxia, et al. Generalized biderivations of nest algebras [J]. Linear Algebra Appl., 2006, 418(1): 225 233.