CHEMISTRY - MCMURRY 7E CH.2 - ATOMS, MOLECULES AND IONS.

Similar documents
CHEMISTRY - TRO 4E CH.2 - ATOMS & ELEMENTS.

CHEMISTRY - ZUMDAHL 2E CH.1 - CHEMICAL FOUNDATIONS.

CHEMISTRY - BROWN 13E CH.2 - ATOMS, MOLECULES & IONS.

Chapter 2 Atoms and Elements

Chapter 2 Atoms, Ions, and the Periodic Table. Law of Conservation of Mass. Law of Conservation of Mass

Chapter 2 Atoms and Elements

ATOMIC STRUCTURE. Name: Period: Date: 1) = a generalization of scientific observations that what happens (does explain)

Chapter 2. Atoms, Ions, and the Periodic Table. Chapter 2 Topics. 2.1 Dalton s s Atomic Theory. Evidence for Atoms. Evidence for Atoms

Chapter 2: Atoms and Elements

A = number of protons + number of neutrons Z = number of protons

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Early Atomic Models. Atoms: the smallest particle of an element that retains the properties of that element.

4.1 Structure of the Atom

CHE 105 Exam 1 Spring 2016

Chapter 3. Table of Contents. Section 1 The Atom: From Philosophical Idea to Scientific Theory. Section 2 The Structure of the Atom

Lesson 6: Periodic Table & Atomic Theory

CHAPTER 3. Atoms: The Building Blocks of Matter

Law of Definite Proportion** (Proust): A given compound always contains exactly the same proportion of elements by mass.

Atoms, Molecules and Ions. Chapter 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct.

Exam Accelerated Chemistry Study Sheet Chap 04 The Atom/Periodic Table

Early Atomic Theory. Alchemy. The atom

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

If You Cut a Piece of Graphite

Chapter 3. Chapter 3. Objectives. Table of Contents. Chapter 3. Chapter 3. Foundations of Atomic Theory, continued. Foundations of Atomic Theory

Chapter Two: Early History of Chemistry. Three Important Laws. Dalton s Atomic Theory (1808) Three Important Laws (continued) Greek Explanation

Smoking at an early age may make it more difficult to quit smoking later. Which of the above statements is an opinion and which is a theory?

Accelerated Chemistry Study Guide Atomic Structure, Chapter 3

Chemistry Chapter 3. Atoms: The Building Blocks of Matter

Principles of Chemistry: A Molecular Approach, 3e (Tro) Chapter 2 Atoms and Elements

An atom is the smallest physical particle of an element that still retains the properties of that element.

ATOMS AND ELEMENTS. Democritus 400 B.C. Atomic Theory of Matter. Dalton s Postulates (1803) Page 1

Atomic Structure. Chapters 4, 8, Bravo 15,000 kilotons

How to Use This Presentation

Chapter 2. Atoms and the Periodic Table. Chemistry: Atoms First Julia Burdge & Jason Overby

AP CHEMISTRY THINGS TO KNOW

Chapter 3: Atomic Theory

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram:

Unit 2 continued-chemical Foundations Atoms, Ions, &Elements

SUMMARY (p. 44) The atom is % empty space and is composed of three particles. a. b. c.

Basic Concepts of Chemistry Notes for Students [Chapter 2, page 1] D J Weinkauff - Nerinx Hall High School

tomic tructure Chapter 3

Internal Structure of an Atom, Ions and Isotopes

Unit 1 review. Chapter 1, chapter , 2.4

CHAPTER 3. Chemical Foundations

Atomic Structure. Chapter 3

Chapter 2. Atoms and Ions

Section 3.1 Substances Are Made of Atoms

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture

History of Atomic Theory

Chemistry CRT Study Guide First Quarter

Elements. Review Questions. Copyright 2017 Pearson Canada Inc.

Chapter 5 Atomic Structure and the Periodic Table

Chapter 3 Atoms: The Building Blocks of Matter. Honors Chemistry 412

Early Models of the Atom

Chapter 2. Conservation of Mass. Law of Definite Proportions. Group Activity. Draw you idea of what an atom looks like.

Lecture Presentation. Chapter 2. Atoms and Elements. Christian Madu, Ph.D. Collin College Pearson Education, Inc.

Structure of Atoms. Atoms and Elements. Structure of Atoms. Structure of Atoms. Structure of Atoms. Structure of Atoms 10/9/13

The Atom & Periodic Table. Unit 2 Topics 4-6

Name Honors Chemistry: Atoms, protons, electrons, neutrons, and the Periodic Table

Chapter 2 Reading Guide AP Chemistry Date: Per:

VIII. Progression of the atomic model Democritus/Dalton --> Thomson --> Rutherford --> Bohr --> Quantum Mechanical

Chapter 4: Atomic Structure Section 4.1 Defining the Atom

Unit Two: Atomic Structure

CHAPTER 3 THE ATOM. 1. Matter is composed extremely small particles called atoms

Chapter 1. Chemical Foundations

Chap 4 Bell -Ringers

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles.

Properties of Atoms and The Periodic Table. Ch 16, pg

Chapter 2. Atoms and the Periodic Table. Chemistry: Atoms First Third Edition Julia Burdge and Jason Overby

The History of the Atom. How did we learn about the atom?

Honors Chemistry Unit 2: The Atom & Its Nucleus

Where it came from and what we know now

4. What is the law of constant composition (also known as the law of definite proportion)?

Atomic Structure. For thousands of years, people had many ideas about matter Ancient Greeks believed that everything was made up of the four elements

Unit 7 Study Guide: Name: KEY Atomic Concepts & Periodic Table

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Regents review Atomic & periodic

Chemistry: A Molecular Approach, 2e (Tro) Chapter 2 Atoms and Elements. Multiple Choice Questions

Atoms, Molecules, and Ions

Unit 3 Atomic Structure

Your Guide for Success Chemistry Unit Name:

Chapter 2. Atoms, Molecules, and Ions. Copyright 2018 Cengage Learning. All Rights Reserved.

2.1 Atomic Theory of Matter

Lecture Presentation. Chapter 2. Atoms and Elements. Christian Madu, Ph.D. Collin College Pearson Education, Inc.

Principles of Chemistry: A Molecular Approach 2e (Tro) Chapter 2 Atoms and Elements

Chapter 2. Atoms, Molecules, and Ions. Copyright 2017 Cengage Learning. All Rights Reserved.

Bravo 15,000 kilotons

Origins of the Atom. Atoms: The Building Blocks of Matter. Let s Get Ready to Rumble. Aristotle s Theory of the Atom CHAPTER 3

Structure of matter I

Campbell Chemistry Unit 2: Chapter 4 Atomic Theory and Structure and Ionic Nomenclature

Unit 3. Atoms and molecules

THE ATOM Pearson Education, Inc.

Rhonda Alexander IC Science Robert E. Lee

Atomic Structure. ppst.com

CHAPTER 4 Atomic Structure

Atoms and their structure

Modern Atomic Theory

Transcription:

!! www.clutchprep.com

CONCEPT: GROUP NAMES AND CLASSIFICATIONS Ever wonder where did this periodic table ever come from? At the end of the 18 th century, Lavoisier compiled a list of the 23 elements known at the time. In 1869, Dmitri Mendeleev coined the term Periodic Table. Today the total is 114 and still counting! Now, to understand chemistry fully it will be imperative that you memorize and learn the different portions of the Periodic Table. Phase Differences At room temperature (between 20 o C to 25 o C), all elements are except: Mercury and bromine are. Hydrogen, Nitrogen, Oxygen, Fluorine, Chlorine and the Noble Gases are. Page 2

CONCEPT: CHARGE DISTRIBUTIONS OF THE PERIODIC TABLE A majority of the elements on the periodic table are reactive because they all want to be like the. They have the perfect number of electrons in their outer atomic shells. 1. Metals tend to electrons to become positively charged ions called. Metals that have ONLY one charge are referred to as metals. Metals that have MORE THAN one charge are referred to as metals. 2. Nonmetals tend to electrons to become negatively charged ions called. Page 3

CONCEPT: ELEMENT SYMBOLS Some of the names and symbols for the elements are easy to recognize like Aluminum is Al, but some others aren t. EXAMPLE 1: Identify the elements by their given symbols. a. Au b. Hg c. Pb d. Fe e. Ag Some elements exist in nature connected to their exact double. We call these chemical Siamese twins. To recall them just remember this funny phrase: Have No Fear Of Ice Cold Beer Some elements exist in nature as monoatomic elements such as &. Some elements exist in nature as polyatomic molecules such as &. Page 4

CONCEPT: MASS CONVERSIONS The is the chemical unit for the amount of a substance. One mole (1 mol) contains 6.022 x 10 23 entities, which is known as. Entities means, or. We use when dealing with a single, individual element. We use or when dealing with more than one element or a compound. 6.022 x 10 23 atoms of Fe is equal to 1 mole of Fe and has a mass of 55.85 amu Atoms Moles Grams EXAMPLE: Determine the mass (in grams) found in 7.28 x 10 28 nitrogen atoms. 6.022 x 10 23 molecules of H2O is equal to 1 mole of H2O and has a mass of 18.016 amu Molecules Moles Grams EXAMPLE: Determine how many molecules of carbon dioxide, CO2, are found in 75.0 g CO2. Page 5

CONCEPT: MASS CONVERSIONS (PRACTICE) PRACTICE 1: If the density of water is 1.00 g/ml at 25 o C calculate the number of water molecules found in 1.50 x 10 3 µl of water. PRACTICE 2: Calculate the number of oxygen atoms found in 783.9 g CuSO4 5 H2O. PRACTICE 3: The density of the sun is 1.41 g/cm 3 and its volume is 1.41 x 10 27 m 3. How many hydrogen molecules are in the sun if we assume all the mass is hydrogen gas? PRACTICE 4 (CHALLENGE): A cylindrical copper wire is used for the fences of a house. The copper wire has a diameter of 0.0750 in. How many copper atoms are found in 5.160 cm piece? The density of copper is 8.96 g/cm 3. ( V = π r 2 h ). Page 6

CONCEPT: ATOMIC MASS Whether you call it atomic mass or weight both terms tell us the combined mass of the protons and neutrons in an element. The atomic masses listed for the elements on the periodic table are the of their isotopes. Isotopes are elements with the number of protons, but number of neutrons. Atomic Mass = [(Mass of Isotope 1) x (Fractional Abundance 1)] + [(Mass of Isotope 2) x (Fractional Abundance 2)] EXAMPLE 1: Antimony has two common isotopes. If one of the isotopes 121 Sb has an isotopic mass of 120.9038 amu and a natural abundance of 57.25%, what is the isotopic mass (to 4 significant figures) of the other isotope? The atomic mass of antimony is 121.8 g/mol. EXAMPLE 2: The atomic mass of an imaginary element A is 251.7 amu. If element A consists of two isotopes that have atomic masses of 250 and 253 respectively, what is the natural abundance of each isotope? Page 7

CONCEPT: MASS SPECTROMETRY Mass spectrometry involves the,, and of gaseous ions according to their mass to charge ratios. Page 8

CONCEPT: STRUCTURE OF THE ATOM We learned that the basic functional unit in chemistry is the. Now it s time to go into an atom to figure out its components: subatomic particles. In the center of an atom there is the, It contains the subatomic particles: and. Spinning around it we find the third subatomic particle: the. PROTONS are charged subatomic particles. ELECTRONS are charged subatomic particles.! NEUTRONS are charged subatomic particles. ATOMIC NUMBER equals the number of and determines of an element. ATOMIC MASS equals the number of in an element. EXAMPLE: Identify the unknown element. a. Element X (8 protons, 8 electrons, 8 neutrons) b. Element Y (35 protons, 36 electrons, 46 neutrons) c. Element Z (12 protons, 10 electrons, 13 neutrons) Page 9

CONCEPT: MODERN ATOMIC THEORY According to the Law of in a reaction matter is neither created nor destroyed. Originated in 1789 by Antoine Lavoisier. CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O (g) According to the Law of all samples of a compound, no matter on their origin or preparation has the same ratio in terms of their elements. Originated in 1797 by Joseph Proust. CO 2 Mass Ratio = (12.0gC) (32.0gO) = 0.375 According to the Law of when two elements (A & B) form different compounds, the masses of element B that combine with 1 g of A are a ratio of whole numbers. Originated in 1804 by John Dalton. NO Mass Ratio = (16.0gO) (14.0g N) =1.143 NO 2 Mass Ratio = (32.0gO) (14.0g N) = 2.286 The ratio of the two mass ratios obtained then gives us a whole number: 2.286 1.143 = 2.0 Page 10

CONCEPT: MODERN ATOMIC THEORY (PRACTICE) EXAMPLE 1: A 15.39 g sample of iodine reacts with 62.92 g of chlorine to form iodine pentachloride, ICl5. If iodine pentachloride is the only product formed calculate its mass. EXAMPLE 2: Two samples sodium fluoride decompose into their constituent elements. The first sample produces 15.8 kg of sodium and 20.1 kg of fluorine. If the second sample produces 192.0 g of sodium, how many grams of fluorine were also produced? PRACTICE: Which of the following is an example of the law of multiple proportions? a. A sample of bromine (Br) contains equal amounts of its two isotopes. b. Two different samples of H2O have the same mass ratio. c. The atomic mass of sodium (Na) is 22.99 amu. d. Two different compounds composed of sulfur (S) and oxygen (O) have different mass ratios: 2.48 g O: 1 g S and 1.24 g O: to 1 g S. Page 11

CONCEPT: THOMSON CATHODE RAY TUBE EXPERIMENT J.J. Thomson s cathode ray tube experiments led to the discovery of the. Apply an Electric Field When an electric field is applied across the cathode ray tube, the cathode ray is attracted to the plate with a charge. Applying a Magnetic Field A moving charged body behaves like a tiny magnet, and it can interact with an external magnetic field. The electrons are by the magnetic field. Determining the Charge-To-Mass Ratio In 1897, JJ Thomson, an English Physicist, determined the charge-to-mass ratio of an electron by adjusting the electric field so that the deflection (θe) was the same as the deflection (θb), and was able to calculate the charge-to-mass ratio of an electron using the following equation: e / m ratio = Eθ E B 2 l Thomson determined the charge-to-mass ratio of an electron to be -1.76 x 10 8 coulombs per gram, meaning it was approximately 2000 times lighter than hydrogen, the lightest known atom. e / m ratio = Eθ E B 2 l = 1.76 108 coulombs per gram Page 12

CONCEPT: MILLIKAN OIL DROP EXPERIMENT In 1913 Robert Millikan and Harvey Fletcher discovered the charge of an electron as being. The charge of an electron When an oil droplet is suspended, mass x acceleration (m x g) due to gravity is exactly counterbalanced by the electric force applied. The electric force applied equals the applied electric field E times the charge on the drop (q). Making them equal to one another: The mass of an electron By using his discovered charge and then the charge-to-mass ratio determined by Thomson s cathode ray tube experiment we are able to calculate the mass of electron. Page 13

CONCEPT: CHADWICK NEUTRON EXPERIMENT In 1920, Ernest Rutherford stated that the nucleus must contain neutral, massive particles. In the early 1930s with experiments designed by Walter Bothe as well as Mr. and Mrs. Joliot it was determined that bombarding with alpha particles would produce high-energy radiation. In 1932, James Chadwick modified the earlier experiments and determined that the unknown neutral particles in the nucleus were the. By examining the motion of these neutral and unknown particles, Chadwick was able to determine the velocity of the protons. Through he determined that the mass of the neutral particles were nearly identical to the mass of a proton. Relative (in amu) Absolute (in kg) Proton (p + ) 1.00727 1.673 x 10-27 Neutron (n o ) 1.00866 1.673 x 10-27 His equation to prove the existence of this neutral particle can be written as: Page 14

CONCEPT: RUTHERFORD GOLD FOIL EXPERIMENT The experiment also called the Rutherford Gold Foil experiment helped to discover that any given atom had a positively charged center called the. It is there where most of the atom s mass was concentrated. Subatomic Particle Charge Mass Relative Absolute Relative (in amu) Absolute (in kg) Proton (p + ) +1 +1.60 x 10-19 C 1.00727 1.673 x 10-27 Neutron (n o ) 0 0 1.00866 1.673 x 10-27 Electron (e ) 1-1.60 x 10-19 C 5.49 x 10-4 9.11 x 10-31 Page 15

3. How many molecules of hexane are contained in 55.0 ml of hexane? The density of hexane is 0.6548 g/ml and the molar mass is 86.17 g/mol. Page 16

4. How many SO3 ions are contained in 120.0 mg of Na2SO3? The molar mass of Na2SO3 is 126.05 g/mol. Page 17

5. What mass of phosphorus pentafluoride, PF5, has the same number of fluorine atoms as 50.0 g of oxygen difluoride, OF2? Page 18

6. How many bromide ions are there in 4.50 moles of gallium bromide? Page 19

7. How many moles of oxygen atoms are required to combine with 3.05 moles of Pb to create lead (IV) phosphate? Page 20

8. How many cations are there in 100.0 g of lithium nitride? Page 21

10. Which of the following amounts would contain the least atoms? a) 10.0 g Sr b) 10.0 g Br c) 10.0 g Mg d) 10.0 g Li Page 22

11. Which of the following amounts have the most molecules? a) 15.0 g N2 b) 15.0 g Br2 c) 15.0 g O2 d) 15.0 g I2 Page 23