Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Similar documents
Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

Rotational & Rigid-Body Mechanics. Lectures 3+4

Chapter 5. . Dynamics. 5.1 Introduction

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Dynamics. 1 Copyright c 2015 Roderic Grupen

Multibody simulation

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

112 Dynamics. Example 5-3

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

Multibody simulation

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

(W: 12:05-1:50, 50-N202)

Lesson Rigid Body Dynamics

Lecture II: Rigid-Body Physics

Classical Mechanics. Luis Anchordoqui

Differential Kinematics

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Robot Dynamics II: Trajectories & Motion

Dynamics of Open Chains

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

Translational and Rotational Dynamics!

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient

In most robotic applications the goal is to find a multi-body dynamics description formulated

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

Part 8: Rigid Body Dynamics

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Chapter 6: Momentum Analysis

Lecture «Robot Dynamics»: Dynamics and Control

Advanced Robotic Manipulation

Introduction to Robotics

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics

Robot Control Basics CS 685

1/30. Rigid Body Rotations. Dave Frank

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Rotational Kinematics

f x f y or else = m a y

Video 3.1 Vijay Kumar and Ani Hsieh

Case Study: The Pelican Prototype Robot

Introduction to Haptic Systems

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Multiple Integrals and Vector Calculus: Synopsis

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

Chapter 6: Momentum Analysis of Flow Systems

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Rotation. Rotational Variables

Rigid Body Rotation. Speaker: Xiaolei Chen Advisor: Prof. Xiaolin Li. Department of Applied Mathematics and Statistics Stony Brook University (SUNY)

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT

Phys 7221 Homework # 8

14. Rotational Kinematics and Moment of Inertia

Torque and Rotation Lecture 7

ROBOTICS Laboratory Problem 02

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Newton-Euler Dynamics of Robots

Physics 1A Lecture 10B

The Dynamics of Fixed Base and Free-Floating Robotic Manipulator

SOLUTIONS, PROBLEM SET 11

Rigid body dynamics. Basilio Bona. DAUIN - Politecnico di Torino. October 2013

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

9 Kinetics of 3D rigid bodies - rotating frames

Spacecraft Dynamics and Control

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

Chapter 8 Lecture Notes

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

Two-Dimensional Rotational Kinematics

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point.

12. Stresses and Strains

2.003 Engineering Dynamics Problem Set 6 with solution

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

Video 2.1a Vijay Kumar and Ani Hsieh

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Manipulator Dynamics (1) Read Chapter 6

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Robotics. Dynamics. Marc Toussaint U Stuttgart

Physics 106b/196b Problem Set 9 Due Jan 19, 2007

Video 1.1 Vijay Kumar and Ani Hsieh

MATHEMATICAL PHYSICS

A B Ax Bx Ay By Az Bz

Research Article On the Dynamics of the Furuta Pendulum

DYNAMICS OF PARALLEL MANIPULATOR

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

CIRCULAR MOTION AND ROTATION

Physics A - PHY 2048C

Lecture «Robot Dynamics»: Dynamics 2

Rotational Kinetic Energy

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004

Properties of surfaces II: Second moment of area

Transcription:

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1

Introduction Dynamics concerns the motion of bodies Includes Kinematics study of motion without reference to the force that cause it Kinetics relates these forces to the motion Dynamic behaviour of a robot: rate of change of arm configuration in relation to the torques exerted by the actuators. 25.1.218 J.Nassour 2

Forward vs. Inverse Forward dynamics Given vector of joint torques, work out the resulting manipulator motion. τ t = τ 1 τ n q(t) = Inverse Dynamics Given a vector of manipulator positions, velocities and acceleration. Find the required vector of joint torques. q t, q t, q(t) τ t q 1 q n 25.1.218 J.Nassour 3

Torques The actuator has to balance torques from 4 different sources: Dynamic torques (caused by the motion) Inertial (promotional to joint acceleration, according to Newton s law) Centripetal (promotional to square of joint velocity, direction toward the centre of circular motion) Coriolis (vertical forces, interaction of two rotating links) Static torques (caused by friction) Gravity torques (caused by gravity) External torques (exerted on the end effector, caused by the task) 25.1.218 J.Nassour 4

Centripetal Force A centripetal force is a force that makes a body follow a curved path. Its direction is always orthogonal to the velocity of the body and towards the fixed point of the instantaneous center of curvature of the path. 25.1.218 J.Nassour 5

Centrifugal Force 25.1.218 J.Nassour 6

The Coriolis Effect 25.1.218 J.Nassour 7

Manipulator Dynamics Mathematical equations describing the dynamic behaviour of the manipulator. Why needed? Simulation of the manipulator Design a suitable controller Evaluate the robot structure Joint torques Robot motion, i.e. acceleration, velocity, position 25.1.218 J.Nassour 8

Approaches to Dynamic Modeling Newton-Euler Formulation Balance of forces/torques Dynamic equations in numeric/recursive form. Lagrange Formulation Energy-Based approach Dynamic equations in symbolic/closed form Other Formulations 25.1.218 J.Nassour 9

Joint Space Dynamics M q q + V q, q + G q = Γ q: Generalized joint coordinates M q : Mass Matrix Kinetic Energy Matrix V q, q : Centrifugal and Coriolis forces G q : Gravity force Γ: Generalized forces 25.1.218 J.Nassour 1

Newton-Euler Formulation In static equilibrium F i and N i are equal to. Newton: Linear motion m i v ci = F i Euler: Angular Moment = inertia. Acc. + Centrifugal and Coriolis forces. N i = I Ci ω i + ω i I Ci ω i By projecting on each axis we eliminate the internal forces acting on the links, we find therefor the torques applied on each joint axis. N i F i -n i-1 m i I Ci -n i+1 -f i+1 τ i = n i T. z i f i T. z i Revolute Prismatic -f i-1 Link i 25.1.218 J.Nassour 11

Lagrange Formulation Link 2 Joint 3 Joint n-1 Link 1 Joint 2 Link n-1 Joint n Joint 1 Kinetic Energy of each link K i Potential energy P i The kinetic energy of the robot: Base K = i K i K = 1 2 qt. M. q By computing M, we can use it in: M q + V + G = τ 25.1.218 J.Nassour 12

Lagrange Formulation d dt L q i L q i = τ i Lagrange function is defined L = K P K: Total kinetic energy of the robot. P: Total potential energy of the robot. q i : Joint variable of i-th joint. q i : first time derivative of q i τ i : Generalized force (torque) at i-th joint. 25.1.218 J.Nassour 13

Center of Mass COM is the point on a body that moves in the same way that a single particle subject to the same external force will move. i r cm = 1 M r. dm = 1 M 1 m i r i r cm is the location of the centre of mass. M is the total mass of the object r is the location of the reference frame. dm is the differential element of mass at point r. 25.1.218 J.Nassour 14

Inertia The tendency of a body to remain in a state of rest or uniform motion. Inertial frame: the frame in which this state is measured (a frame at rest or moving with constant velocity). Non-Inertial frame: a frame that is accelerating with respect to the inertial frame. 25.1.218 J.Nassour 15

Moment of Inertia Moment of inertia is the rotational inertia of a body with respect to the axis of rotation. Moment of inertia depends on the axis and on the manner in which the mass is distributed. It is equal to the sum of the product between mass of particles and the square of their distance to the axis of rotation. I = i 1 m i r i 2 Where m i is the mass of particle i, and r i is the distance to the particle i. 25.1.218 J.Nassour 16

Moment of Inertia For a rigid body with a continuous distribution of mass, summation becomes integral over the whole body: I = r 2 dm Example: Inertia of a cylinder (length l, mass M): Consider the cylinder made up of an infinite number of cylinders thickness dr, at radius r, of mass dm, and volume dv. dm = ρ. dv = 2πlρrdr I = r 2 dm = 2πl ρr 3 dr = 2πlρ r 2 4 r 1 4 4 = M r 2 2 + r 1 2 4 25.1.218 J.Nassour 17

Inertia Tensor A rigid body, free to move in space, has an infinite number of possible rotation axis. The inertia matrix ( Inertia tensor) is the integral over the volume of all the vectors r locating all the points dv on the rigid body and scaled by the density of all the masses dm of the rigid body. For a rigid body rotating about a fixed point, which is not the centre of the mass, the inertia tensor is: I = I xx I xy I xz I yx I yy I yz I zx I zy I zz 25.1.218 J.Nassour 18

Inertia Tensor I = I xx I xy I xz I yx I yy I yz I zx I zy I zz Mass moments of inertia (diagonal terms): Mass products of inertia (offdiagonal terms): I xx = y 2 + z 2 ρ dv I xy = xy ρ dv I yy = x 2 + z 2 ρ dv I xz = xz ρ dv I zz = x 2 + y 2 ρ dv I yz = yz ρ dv 25.1.218 J.Nassour 19

Example Find the inertia tensor of a rectangle rotating about a fixed point A. I xx = y 2 + z 2 ρ dv I xx = I xx = I xx = h l h l h[ y3 w y 2 + z 2 ρ dxdydz y 2 + z 2 w ρ dydz 3 + z2 y ] l w ρ dz I xx = l 3 z 3 + z3 l 3 h w ρ I xx = h l 3 3 + z2 l w ρ dz I xx = l3 h 3 + h3 l 3 w ρ 25.1.218 J.Nassour 2

Example Find the inertia tensor of a rectangle rotating about a fixed point A. I xx = l3 h 3 + h3 l 3 w ρ Since the mass of the rectangle: m = wlh ρ I xx = m 3 l2 + h 2 25.1.218 J.Nassour 21

Example Find the inertia tensor of a rectangle rotating about a fixed point A. 25.1.218 J.Nassour 22

Translation of Inertia Tensor Parallel axis theorem. Moments of inertia: A Izz = CM I zz + m(r x 2 + r y 2 ) Product of inertia: A Ixy = CM I xy + m(r x r y ) 25.1.218 J.Nassour 23

Example Find the inertia tensor of a rectangle rotating about the COM. 25.1.218 J.Nassour 24

Example Find the inertia tensor of a rectangle rotating about the COM. 25.1.218 J.Nassour 25

Example Find the inertia tensor of a rectangle rotating about the COM. 25.1.218 J.Nassour 26

Example Find the inertia tensor of a rectangle rotating about the COM. 25.1.218 J.Nassour 27

Example Find the inertia tensor of a rectangle rotating about the COM. 25.1.218 J.Nassour 28

Example Moving the axes of rotation to the centre of mass results in a diagonal inertia tensor. 25.1.218 J.Nassour 29

Lagrange Formulation d dt L q L q = τ Lagrange function is defined L = K P K: Total kinetic energy of the robot. P: Total potential energy of the robot. q : Joint variable. q : first time derivative of q τ : Generalized force (torque). 25.1.218 J.Nassour 3

Lagrange Formulation d dt L q L q = τ Lagrange function is defined L = K P Since P = P q d dt K q i K q + P q = τ Inertial forces Gravity vector (gradient of potential energy) 25.1.218 J.Nassour 31

Lagrange Formulation d dt K q i K q = τ G q, P G q = q Inertial forces This equation can be written in the following from: Joint Space Dynamics M q q + V q, q + G q = Γ M q q + V q, q = Γ G q 25.1.218 J.Nassour 32

Lagrange Formulation d dt K q i K q = τ G K = q i d K dt q i K = 1 2 qt M(q) q q i 1 2 qt M q q = M(q) q = d dt M q = M q + M q d dt K q i K q = M q + M q 1 2 M qt q q 1 M qt qn q = M q + V(q, q) 25.1.218 J.Nassour 33

Lagrange Formulation d dt K q i K q = M q + If q =, V q, q = M q 1 2 If M = CONSTANT,, V q, q = M qt q q 1 M qt qn q = M q + V(q, q) Centrifugal and Coriolis forces We need to compute M from the kinetic energy equations then we have the dynamics of the robot. 25.1.218 J.Nassour 34

Dynamic Equations d dt K q i K q = M q + M q 1 2 M qt q q 1 M qt qn q = M q + V(q, q) M q q + V q, q + G q = τ K = 1 2 qt M q q M q M q V q, q 25.1.218 J.Nassour 35

Dynamic Equations Total kinetic energy K = K Link i = 1 2 qt M q ω i v Ci Link 2 Joint 3 Joint i Link i Link 1 Joint 2 Joint i+1 Joint 1 Base 25.1.218 J.Nassour 36

Kinetic Energy Work done by external forces to bring the system from rest to its current state. v K = 1 2 mv2 m F ω I C is a matrix ω is a vector K = 1 2 ωt I C ω I C τ 25.1.218 J.Nassour 37

Dynamic Equations The kinetic energy for link i: K i = 1 2 (m iv T Ci v Ci + ω T i I Ci ω i ) ω i v Ci Total kinetic energy: n Link 2 Joint 3 Joint i Link i K = i=1 K i Link 1 Joint 2 Joint i+1 Joint 1 Base 25.1.218 J.Nassour 38

Dynamic Equations Kinetic energy in quadratic form of generalized velocities: K = 1 2 qt M q Then we can write: 1 2 qt M n q = 1 2 i=1 (m i v T Ci v Ci + ω T i I Ci ω i ) How extract the mass matrix M? 25.1.218 J.Nassour 39

Dynamic Equations Kinetic energy in quadratic form of generalized velocities: K = 1 2 qt M q Then we can write: 1 2 qt M n q = 1 2 i=1 (m i v T Ci v Ci + ω T i I Ci ω i ) How extract the mass matrix M? v Ci = J vi q, ω i = J ωi q 25.1.218 J.Nassour 4

Dynamic Equations v Ci = J vi q ω i = J ωi q ω i v Ci Link 2 Joint 3 Joint i Link i Link 1 Joint 2 p Ci Joint i+1 Joint 1 Base 25.1.218 J.Nassour 41

Dynamic Equations 1 2 qt M n q = 1 2 i=1 (m i v T Ci v Ci + ω T i I Ci ω i ) 1 2 qt M v Ci = J vi q, ω i = J ωi q n q = 1 2 i=1 1 2 qt M q = 1 2 qt [ (m i q T J T vi J vi q + n i=1 q T J T ωi I Ci J ωi q) (m i J T vi J vi + J T ωi I Ci J ωi )] q 25.1.218 J.Nassour 42

Dynamic Equations M = n i=1 (m i J vi T J vi + J ωi T I Ci J ωi ) The mass matrix is the sum of Jacobians transpose Jacobians scaled by the mass properties (m i, I Ci ). If the robot has 1 DOF, M = With multiple links, the Jacobian matrices of all links contribute in the mass matrix. Each link has an impact on the total mass matrix. 25.1.218 J.Nassour 43

M = n i=1 Dynamic Equations (m i J vi T J vi + J ωi T I Ci J ωi ) J vi = p C i q 1 p Ci q 2 p C i qi ω i v Ci Link 2 Joint 3 Joint i Link i Link 1 Joint 2 p Ci Joint i+1 Joint 1 Base 25.1.218 J.Nassour 44

M = n i=1 Dynamic Equations (m i J vi T J vi + J ωi T I Ci J ωi ) J ωi = ρ 1 z ρ 2 z 1 ρ i z i 1 ω i v Ci Link 2 Joint 3 Joint i Link i Link 1 Joint 2 p Ci Joint i+1 Joint 1 Base 25.1.218 J.Nassour 45

Mass Matrix M q = m 11 m 12 m 1n m 21 m 22 m 2n m n1 m n2 m nn m 11 represents the inertia of the arm perceived at joint 1. m 11 = f q 2:n m 22 = f q 3:n m nn = constant 25.1.218 J.Nassour 46

Mass Matrix M q = m 11 m 12 m 1n m 21 m 22 m 2n m n1 m n2 m nn m 12 represents the coupling between the acceleration of joint 2 on joint 1. 25.1.218 J.Nassour 47

Mass Matrix M q = m 11 m 12 m 1n m 21 m 22 m 2n m n1 m n2 m nn 25.1.218 J.Nassour 48

Mass Matrix M q = m 11 m 12 m 1n m 21 m 22 m 2n m n1 m n2 m nn 25.1.218 J.Nassour 49

Mass Matrix M q = m 11 m 12 m 1n m 21 m 22 m 2n m n1 m n2 m nn 25.1.218 J.Nassour 5

Work out the mass matrix M. Example RP l 1 y I c2 m 2 m 1 I c1 x θ 1 d 2 25.1.218 J.Nassour 51

Work out the mass matrix M. Example RP M = n (m i J vi T J vi + J ωi T I Ci J ωi ) l 1 y I c2 m 2 i=1 m 1 J vi = p C i q 1 p Ci q 2 p C i qi θ 1 I c1 x d 2 J ωi = ρ 1 z ρ 2 z 1 ρ i z i 1 I = I xx I xy I xz I yx I yy I yz I zx I zy I zz 25.1.218 J.Nassour 52

Work out the mass matrix M. n M = (m i J T vi J vi + J T ωi I Ci J ωi ) i=1 Example RP M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + m 2 J v2 T J v2 + J ω2 T I C2 J ω2 In frame (o,x,y,z ) p C1 = J v1 = l 1 c 1 l 1 s 1, p C2 = l 1 s 1 l 1 c 1 d 2 c 1 d 2 s 1 l 1 y m 1 I c2 m 2 J v2 = d 2 s 1 c 1 d 2 c 1 s 1 θ 1 I c1 x d 2 25.1.218 J.Nassour 53

Example RP Work out the mass matrix M. M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + m 2 J v2 T J v2 + J ω2 T I C2 J ω2 J v1 = l 1 s 1 l 1 c 1 J v2 = d 2 s 1 c 1 d 2 c 1 s 1 m 1 J v1 T J v1 = m 1l 1 2 l 1 y I c2 m 2 m 2 J v2 T J v2 = m 2d 2 2 m 2 I c1 m 1 x θ 1 d 2 25.1.218 J.Nassour 54

Example RP Work out the mass matrix M. M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + m 2 J v2 T J v2 + J ω2 T I C2 J ω2 J ωi = ρ 1 z ρ 2 z 1 ρ i z i 1 J ω1 = 1 J ω2 = 1 l 1 y I c2 m 2 J ω1 T I C1 J ω1 = I zz1 I c1 m 1 x J ω2 T I C2 J ω2 = I zz2 25.1.218 J.Nassour 55 θ 1 d 2

Example RP Work out the mass matrix M. M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + m 2 J v2 T J v2 + J ω2 T I C2 J ω2 2 M = m 2 1l 1 + m 2d 2 + I zz1 m 2 + I zz2 M = m 1l 1 2 + I zz1 + m 2 d 2 2 + I zz2 m 2 l 1 y I c2 m 2 m 1 I c1 x θ 1 d 2 25.1.218 J.Nassour 56

Dynamic Equations d dt K q i K q = M q + M q 1 2 M qt q q 1 M qt qn q = M q + V(q, q) M q q + V q, q + G q = τ K = 1 2 qt M q q M q M q V q, q 25.1.218 J.Nassour 57

Centrifugal and Coriolis Forces V q, q = M q 1 2 M qt q q 1 M qt qn q M = m 11 m 12 m 1n m 21 m 22 m 2n m n1 m n2 m nn M q q + V q, q + G q = τ 25.1.218 J.Nassour 58

Centrifugal and Coriolis Forces V q, q = M q 1 2 M qt q q 1 M qt qn q For robot with 2 DOF M q q + V q, q + G q = τ m 11 m 12 m 12 m 22 q 1 q 2 + v 1 v 2 + g 1 g 2 = τ 1 τ 2 25.1.218 J.Nassour 59

Centrifugal and Coriolis Forces V q, q = M q 1 2 V q, q = m 11 m 12 M qt q q 1 M qt qn q m 12 m 22 q 1 2 q T m 111 m 121 m 121 m 221 q q T m 112 m 122 m 122 m 222 q m ijk = m ij qk m ij = m ij1 q 1 + m ij2 q 2 + + m ijk 25.1.218 J.Nassour 6 q k

Centrifugal and Coriolis Forces V q, q = m 11 m 12 m 12 m 22 q 1 2 q T m 111 m 121 m 121 m 221 q q T m 112 m 122 m 122 m 222 q V q, q = 1 2 (m 111 + m 111 m 111 ) 1 2 (m 211 + m 211 m 112 ) 1 2 (m 122 + m 122 m 221 ) 1 2 (m 222 + m 222 m 222 ) q 1 2 q 2 2 + m 112 + m 121 m 121 m 212 + m 221 m 122 q 1 q 2 25.1.218 J.Nassour 61

Centrifugal and Coriolis Forces V q, q = 1 2 (m 111 + m 111 m 111 ) 1 2 (m 211 + m 211 m 112 ) 1 2 (m 122 + m 122 m 221 ) 1 2 (m 222 + m 222 m 222 ) q 1 2 q 2 2 + m 112 + m 121 m 121 m 212 + m 221 m q 1 q 2 122 Christoffel Symbols: b ijk = 1 2 (m ijk + m ikj m jki ) b 122 V q, q = b 111 q 1 b 211 b 222 2 q 2 2 + 2b 112 2b 212 q 1 q 2 Terms of the type q 2 i are called centrifugal. Terms of the type q k are called coriolis. q i C q B q 25.1.218 J.Nassour 62

Example RP Work out the Centrifugal and Coriolis Vector V. l 1 y I c2 m 2 m 1 I c1 x θ 1 d 2 25.1.218 J.Nassour 63

Example RP Work out the Centrifugal and Coriolis Vector V. C q b 122 V q, q = b 111 q 1 b 211 b 222 2 q 2 2 B q + 2b 112 2b 212 q 1 q 2 l 1 y I c2 m 2 b ijk = 1 2 (m ijk + m ikj m jki ) m ijk = m ij q k θ 1 I c1 m 1 x d 2 B = 2b 112 C = b 122 b 211 = 2m 2d 2 = m 2 d 2 M = m 1l 1 2 + I zz1 + m 2 d 2 2 + I zz2 m 2 V = 2m 2d 2 θ 1 d 2 + m 2 d 2 θ 1 2 d 2 2 25.1.218 J.Nassour 64

Dynamic Equations M q q + V q, q + G q = τ Gravity vector? 25.1.218 J.Nassour 65

Gravity vector Link i G q = P q p Ci h i g Potential energy: P i = m i g h i + P G k q = P q k = n i (m i g T p c i q k ) P i = m i g T. p ci P = P i G = J v1 T J v2 T J vn T m 1 g m 2 g m n g i 25.1.218 J.Nassour 66

Gravity vector Link 2 Joint i Link i Link 1 m 2 g m i g m 1 g Base G = J v1 T m n g J v2 T J vn T m 1 g m 2 g m n g 25.1.218 J.Nassour 67

Work out the gravity vector G. Example RP l 1 y I c2 m 2 g m 1 I c1 x θ 1 d 2 25.1.218 J.Nassour 68

Example RP Work out the gravity vector G. G = J v1 T J v2 T G = J v1 T m 1 g J v2 T m 2 g J vn T m 1 g m 2 g m n g l 1 y g m 1 I c2 m 2 In frame (o,x,y,z ): The gravity vector is: g = g θ 1 I c1 x d 2 G = l 1 s 1 l 1 c 1 T m 1 g d 2 s 1 c 1 d 2 c 1 s 1 T m 2 g = m 1l 1 + m 2 d 2 gc 1 m 2 gs 1 25.1.218 J.Nassour 69

Work out the equation of motion. Example RP l 1 y I c2 m 2 g m 1 I c1 x θ 1 d 2 25.1.218 J.Nassour 7

Example RP Work out the equation of motion. g l 1 y I c2 m 2 m 1 l 2 1 + I zz1 + m 2 d 2 2 + I zz2 θ 1 m 2 d 2 m 1 + 2m 2d 2 θ 1 d 2 + m 2 d 2 θ 1 2 d 2 2 θ 1 I c1 x d 2 + m 1l 1 + m 2 d 2 gc 1 m 2 gs 1 = τ 1 f 2 m 1 l 1 2 + I zz1 + m 2 d 2 2 + I zz2 θ 1 + 2m 2 d 2 θ 1 d 2 + m 1 l 1 + m 2 d 2 gc 1 = τ 1 m 2 d 2 m 2 d 2 θ 1 2 + m 2 gs 1 = f 2 25.1.218 J.Nassour 71

Example PR Work out the mass matrix M. n M = (m i J T vi J vi + J T ωi I Ci J ωi ) i=1 M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + m 2 J v2 T J v2 + J ω2 T I C2 J ω2 d In frame (o,x,y,z ) q 1 l p C1 =, p C2 = 1 J v1 = 1 ds 2 J v2 = dc 2 q 1 + dc 2 ds 2 q 1 25.1.218 J.Nassour 72 y m 1 I c1 l I c2 m 2 q 2 x

Example PR Work out the mass matrix M. n M = (m i J T vi J vi + J T ωi I Ci J ωi ) i=1 M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + m 2 J v2 T J v2 + J ω2 T I C2 J ω2 d In frame (o,x,y,z ) q 1 l p C1 =, p C2 = J ω1 = J ω2 = 1 q 1 + dc 2 ds 2 q 1 25.1.218 J.Nassour 73 y m 1 I c1 l I c2 m 2 q 2 x

Example PR Work out the mass matrix M. M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + m 2 J v2 T J v2 + J ω2 T I C2 J ω2 d M = m 1 + m 2 m 2 ds 2 m 2 ds 2 I zz2 + m 2 d 2 y m 2 I c2 q 2 m 1 I c1 x l q 1 25.1.218 J.Nassour 74

Example PR d Work out the gravity vector G. G = J v1 T J v2 T G = J v1 T m 1 g J v2 T m 2 g J vn T m 1 g m 2 g m n g y m 1 I c1 I c2 m 2 q 2 In frame (o,x,y,z ): The gravity vector is: g = g l x q 1 G = 1 T m 1 g 1 ds 2 dc 2 T m 2 g = dc 2 m 2 g 25.1.218 J.Nassour 75

Example PR d Work out the Centrifugal and Coriolis Vector V. b 122 V q, q = b 111 q 1 b 211 b 222 2 q 2 2 b ijk = 1 2 (m ijk + m ikj m jki ) + 2b 112 2b 212 y q 1 q 2 m 1 I c1 I c2 m 2 q 2 m ijk = m ij q k l x B = C = V = m 2dc 2 q 1 q 2 + m 2dc 2 q 1 2 q 2 2 q 1 M = m 1 + m 2 m 2 ds 2 m 2 ds 2 I zz2 + m 2 d 2 25.1.218 J.Nassour 76

Example PR d Work out the equation of motion. y m 2 m 1 + m 2 m 2 ds 2 q 1 m 2 ds 2 I zz2 + m 2 d 2 q 2 m 1 I c1 I c2 q 2 + q 1 q 2 + m 2dc 2 q 1 2 q 2 2 l x + dc 2 m 2 g = f 1 τ2 q 1 m 1 + m 2 q 1 m 2 ds 2 q 2 m 2 dc 2 q 2 2 = f 1 m 2 ds 2 q 1 + I zz2 + m 2 d 2 q 2 + dc 2 m 2 g = τ 2 25.1.218 J.Nassour 77

Work out the equation of motion. Example PP M = m 1 + m 2 m 2 m 1 + m 2 q 1 + g m 1 + m 2 = f 1 m 2 q 2 = f 2 25.1.218 J.Nassour 78

Example RR g Work out the equation of motion. y l 2 m 2 l 1 l c2 I c2 q 2 l c1 I c1 m 1 q 1 x M q q + V q, q + G q = τ 25.1.218 J.Nassour 79

Example RR g Work out the mass matrix M. n M = (m i J T vi J vi + J T ωi I Ci J ωi ) y l 1 l c2 l 2 m 2 i=1 M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + l c1 I c2 q 2 m 2 J T v2 J v2 + J T ω2 I C2 J ω2 In frame (o,x,y,z ) m 1 I c1 q 1 p C1 = J v1 = l c1 c 1 l c1 s 1, p C2 = l c1 s 1 l c1 c 1 l c2 c 12 + l 1 c 1 l c2 s 12 + l 1 s 1 x J v2 = l c2 s 12 l 1 s 1 l c2 s 12 l c2 c 12 + l 1 c 1 l c2 c 12 25.1.218 J.Nassour 8

Example RR g Work out the mass matrix M. n M = (m i J T vi J vi + J T ωi I Ci J ωi ) y l 1 l c2 l 2 m 2 i=1 M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + l c1 I c2 q 2 m 2 J T v2 J v2 + J T ω2 I C2 J ω2 In frame (o,x,y,z ) m 1 I c1 q 1 p C1 = J ω1 = J ω2 = l c1 c 1 l c1 s 1 1 1 1, p C2 = l c2 c 12 + l 1 c 1 l c2 s 12 + l 1 s 1 x 25.1.218 J.Nassour 81

Example RR g Work out the mass matrix M. n M = (m i J T vi J vi + J T ωi I Ci J ωi ) y l 1 l c2 l 2 m 2 i=1 M = m 1 J v1 T J v1 + J ω1 T I C1 J ω1 + m 2 J v2 T J v2 + J ω2 T I C2 J ω2 l c1 I c2 q 2 I c1 m 1 q 1 x M = m 2l 2 1 + 2m 2 l 1 l c2 c 2 + m 1 l 2 c1 + m 2 l 2 c2 + I zz1 m 2 I 2 c2 + l 1 m 2 I c2 c 2 + I zz2 m 2 I c2 2 + l 1 m 2 l c2 c 2 + I zz2 m 2 I c2 2 + I zz2 25.1.218 J.Nassour 82

Example RR g Work out the gravity vector G. G = J v1 T J v2 T G = J v1 T m 1 g J v2 T m 2 g J vn T m 1 g m 2 g m n g y l c1 l 1 I c1 l c2 l 2 I c2 m 2 q 2 In frame (o,x,y,z ): The gravity vector is: g = g m 1 q 1 x G = l c1 s 1 l c1 c 1 T m 1 g l c2 s 12 l 1 s 1 l c2 s 12 l c2 c 12 + l 1 c 1 l c2 c 12 T m 2 g 25.1.218 J.Nassour 83

Example RR g Work out the gravity vector G. G = J v1 T J v2 T G = J v1 T m 1 g J v2 T m 2 g J vn T m 1 g m 2 g m n g y l c1 l 1 I c1 l c2 l 2 I c2 m 2 q 2 In frame (o,x,y,z ): The gravity vector is: g = g m 1 q 1 x G = gm 2 l c2 c 12 + l 1 c 1 + gm 1 l c1 c 1 gm 2 l c2 c 12 25.1.218 J.Nassour 84

Example RR Work out the Centrifugal and Coriolis Vector V. b 122 V q, q = b 111 q 1 b 211 b 222 2 q 2 2 + 2b 112 2b 212 q 1 q 2 g l 2 b ijk = 1 2 (m ijk + m ikj m jki ) y m 2 m ijk = m ij q k l 1 l c2 I c2 q 2 l c1 B = 2l 1l c2 m 2 s 2 l 1 l c2 m 2 s 2 C = l 1 l c2 m 2 s 2 m 1 I c1 q 1 x V q, q = 2l 1l c2 m 2 s 2 q 1 q 2 + l 1 l c2 m 2 s 2 l 1 l c2 m 2 s 2 q 1 2 q 2 2 25.1.218 J.Nassour 85

Work out the equation of motion. Example RR m 2 l 2 1 + 2m 2 l 1 l c2 c 2 + m 1 l 2 c1 + m 2 l 2 c2 + I zz1 m 2 I 2 c2 + l 1 m 2 l c2 c 2 + I zz2 q 1 m 2 I 2 c2 + l 1 m 2 I c2 c 2 + I zz2 m 2 I 2 c2 + I zz2 q 2 + 2l 1l c2 m 2 s 2 q 1 q 2 + l 1 l c2 m 2 s 2 l 1 l c2 m 2 s 2 q 1 2 q 2 2 g + gm 2 l c2 c 12 + l 1 c 1 + gm 1 l c1 c 1 gm 2 l c2 c 12 = τ 1 τ 2 l 2 y m 2 l 1 l c2 I c2 q 2 l c1 q 1 25.1.218 J.Nassour 86 x m 1 I c1

Work out the equation of motion. Example RR m 2 l 2 1 + 2m 2 l 1 l c2 c 2 + m 1 l 2 c1 + m 2 l 2 c2 + I zz1 m 2 I 2 c2 + l 1 m 2 l c2 c 2 + I zz2 q 1 m 2 I 2 c2 + l 1 m 2 I c2 c 2 + I zz2 m 2 I 2 c2 + I zz2 q 2 + 2l 1l c2 m 2 s 2 q 1 q 2 + l 1 l c2 m 2 s 2 l 1 l c2 m 2 s 2 q 1 2 q 2 2 g + gm 2 l c2 c 12 + l 1 c 1 + gm 1 l c1 c 1 gm 2 l c2 c 12 = τ 1 τ 2 l 2 The centrifugal terms on one joint are proportional to the square of the velocity of the other joint, and are at a maximum when the two links are perpendicular. y l c1 l 1 I c1 l c2 I c2 m 2 q 2 25.1.218 J.Nassour 87 x m 1 q 1

Work out the equation of motion. Example RR m 2 l 2 1 + 2m 2 l 1 l c2 c 2 + m 1 l 2 c1 + m 2 l 2 c2 + I zz1 m 2 I 2 c2 + l 1 m 2 l c2 c 2 + I zz2 q 1 m 2 I 2 c2 + l 1 m 2 I c2 c 2 + I zz2 m 2 I 2 c2 + I zz2 q 2 + 2l 1l c2 m 2 s 2 q 1 q 2 + l 1 l c2 m 2 s 2 l 1 l c2 m 2 s 2 q 1 2 q 2 2 g + gm 2 l c2 c 12 + l 1 c 1 + gm 1 l c1 c 1 gm 2 l c2 c 12 = τ 1 τ 2 l 2 The Coriolis term is proportional to the product of the two joint velocities, and is also at a maximum when the two links are perpendicular. y l c1 l 1 I c1 l c2 I c2 m 2 q 2 25.1.218 J.Nassour 88 x m 1 q 1