CP 2 Properties of polygonal plane areas

Similar documents
Centroids & Moments of Inertia of Beam Sections

Mechanics of Materials CIVL 3322 / MECH 3322

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Centers of Gravity - Centroids

General Method for Calculating Chemical Equilibrium Composition

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

1 Lyapunov Stability Theory

Numerical Analysis Formulae Booklet

Centroids Method of Composite Areas

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx

Multiple Choice Test. Chapter Adequacy of Models for Regression

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10,

Laboratory I.10 It All Adds Up

Mu Sequences/Series Solutions National Convention 2014

CENTROID (AĞIRLIK MERKEZİ )

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these

CENTROID (AĞIRLIK MERKEZİ )

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

1 Onto functions and bijections Applications to Counting

Exponentials and Logarithms Review Part 2: Exponentials

Regression and the LMS Algorithm

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

MATH 247/Winter Notes on the adjoint and on normal operators.

CHAPTER 4 RADICAL EXPRESSIONS

L5 Polynomial / Spline Curves

Review Exam II Complex Analysis

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Chapter 9 Jordan Block Matrices

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Big Data Analytics. Data Fitting and Sampling. Acknowledgement: Notes by Profs. R. Szeliski, S. Seitz, S. Lazebnik, K. Chaturvedi, and S.

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Ideal multigrades with trigonometric coefficients

Physics 114 Exam 2 Fall Name:

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation?

Correlation and Regression Analysis

Power Flow S + Buses with either or both Generator Load S G1 S G2 S G3 S D3 S D1 S D4 S D5. S Dk. Injection S G1

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

Solutions to problem set ); (, ) (

Model Fitting, RANSAC. Jana Kosecka

Multiple Linear Regression Analysis

Lecture Notes Forecasting the process of estimating or predicting unknown situations

St John s College. Preliminary Examinations July 2014 Mathematics Paper 1. Examiner: G Evans Time: 3 hrs Moderator: D Grigoratos Marks: 150

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

UNIT 7 RANK CORRELATION

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture 2: The Simple Regression Model

MEASURES OF DISPERSION

Econometric Methods. Review of Estimation

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Lecture 3 Probability review (cont d)

Computational Geometry

The Mathematical Appendix

Asymptotic Formulas Composite Numbers II

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients

= y and Normed Linear Spaces

CHAPTER 5 INTEGRATION

Descriptive Statistics

Lines, Conics, Tangents, Limits and the Derivative

Exercises for Square-Congruence Modulo n ver 11

Nonlinear Piecewise-Defined Difference Equations with Reciprocal Quadratic Terms

8.1 Hashing Algorithms

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

1 Review and Overview

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

Transforms that are commonly used are separable

Support vector machines II

Objectives of Multiple Regression

MA/CSSE 473 Day 27. Dynamic programming

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

Chapter 3. Linear Equations and Matrices

Third handout: On the Gini Index

DATE: 21 September, 1999 TO: Jim Russell FROM: Peter Tkacik RE: Analysis of wide ply tube winding as compared to Konva Kore CC: Larry McMillan

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number.

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

STK4011 and STK9011 Autumn 2016

Lecture 9: Tolerant Testing

Shear Stresses. Shear Stresses. Stresses in Beams Part 4

Lecture 07: Poles and Zeros

FREQUENCY ANALYSIS OF A DOUBLE-WALLED NANOTUBES SYSTEM

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

Chapter 3. Differentiation 3.3 Differentiation Rules

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

CSE 5526: Introduction to Neural Networks Linear Regression

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has

Correlation and Simple Linear Regression

Introduction to Numerical Differentiation and Interpolation March 10, !=1 1!=1 2!=2 3!=6 4!=24 5!= 120

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

TESTS BASED ON MAXIMUM LIKELIHOOD

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING

Instituto Tecnológico de Aeronáutica FINITE ELEMENTS I. Class notes AE-245

Numerical Differentiation

Summary of the lecture in Biostatistics

Functions of Random Variables

Transcription:

CP Propertes of polgoal plae areas Ket D. Hjelmstad Scool for Sustaale Egeerg ad te Bult Evromet Ira. Fulto Scools of Egeerg roa State Uverst

Te propertes of cross sectos Cross Secto Cross Secto Logtudal s Te propertes of cross sectos. I te stud of eams (cludg te aal ar ad torso) t ecomes evdet tat muc of te eavor s dctated te propertes of te cross sectoal geometr. I fact, te resstace to deformato s alwas a fucto of te dstruto of materal a cross secto. For te aal ar te cross sectoal area s ke; for torso te polar momet of erta sows up; for fleure te momet of erta aout te as of edg s a mportat propert. Tese propertes are essetal to determg te deformato uder load. Most of te classcal trcks of te trade tat ca e used servce of te computato of geometrc propertes amout to makg use of te propertes of smple geometrc peces (ofte rectagles) to uld up te overall cross sectoal propertes. Wat we sow ts set of otes s tat t s possle to derve te tegrals eeded to compute te cross sectoal propertes for a geeral tragle ad te use tat asc foudato to create a metod to compute te cross sectoal propertes of a closed polgoal rego. Ts approac s ased o two ke oservatos: () all tegrals ca e dvded to peces ad () t s possle to add a tegral tat s ot te pscal rego as log as ou sutract t rgt ack out.

Te ke cross sectoal propertes c e 3 C e r ρ Te tesor (or outer) product of vectors v v v v T v v vv v v v vv v Te ke cross sectoal propertes. Cosder te geeral cross secto defed at left. We estals a (, ) coordate sstem wt org, ad mage aoter coordate sstem (, ) passg troug te cetrod C. For eam teor we eed to compute area ad momet of erta (aout te cetrod). To compute te momet of erta we eed te locato of te cetrod. Te area s smpl defed as te sum of te ftesmal areas tat make up te cross secto: J ρρ Te cetrod of a area s defed as follows: c r I oter words, t s te costat vector c tat s te average over te area of te posto r of te ftesmal areas. Fall, te momet of erta (tesor) s defed as Were te vector r s te dstace from te cetrod C to te ftesmal area of tegrato.

Te momet of erta tesor Te momet of erta tesor. Te prolem wt computg J s tat t s defed terms of te cetrodal coordate sstem. We ca compute t te regular coordates otg tat ( vector addto) Tus, we ca compute ρ r c c e 3 C e r ρ J ρρ r c r c r r c r r c c c r r c r r c c c r r c c c c c c r r c c c c cc T c c c c c c c c c c r r rr T Terefore, we ca compute te momet of erta tesor te orgal coordate sstem as J r r c c We eed te cetrodal dstace c, ad we eed to fgure out ow to compute te tegral of rr.

Te geeral tragular rego c Te asc tragle e 3 j e ll of tese ke quattes ca e computed from te vectors ad j j j m Te geeral traglular rego. We ca specale te oto of our cross sectoal propertes to a geeral tragular rego (sow at left). We wll eed to get specfc aout ow to do te tegrals over ts rego. ce we ave foud te results, we ca use tem as a asc uldg lock a algortm to compute te tree asc propertes of a polgoal cross secto (ad, takg pots close togeter we ca appromate cross sectos wt curved edges, too). We wll costruct our cocept of te tragle from te posto vectors of te two vertces ad j (wc wll le o a edge of te polgo later). Tese vectors are ad j. From tese vectors we ca compute,, ad te ut vectors ad m (as sow te o at left). j j m j

Itegrato over te tragle Itegrato over te tragular rego. It wll e coveet to set up te area tegrato te coordate sstem ad m (wc appes ot to e rectagular). m d m d w( ) Tus, te elemet of tegrato s m e d d e d m d s d d s m e m m 3 3 Te varales of tegrato are (measures dstace drecto) ad (measures dstace m drecto), wc are te rage Note ow te lmts of tegrato are doe te o at rgt. d te tegrato over te area s doe as w( ) ( ) s ( ) d d s ( ) d d

rea of te geeral tragle rea of te geeral tragle. We ca compute area of te tragle as follows: m w( ) s s d s d s s d d Note ow oe alf ase tmes egt stll seems to e part of te pcture. Te factor s takes care of two tgs: () tat te tragle s ot a rgt tragle ad () f t turs out to e egatve te te area s egatve. Te area of te geeral tragle s For eam teor we eed to compute area, cetrodal locato, ad momet of erta (aout te cetrod): s

Te cetrod of te tragle m w( ) We wll sum te cotrutos for eac tragle so we wll ot compute c (te locato of te cetrod) for te cross secto utl we add up all of te p cotrutos. Te cetrod of te tragle. We ca compute te tegral of r over te tragle as follows: p s m d d s r m d s md 3 3 s 3 6 s 3 6 m 3 3 m p r m 3 3 m Note tat p s oe trd of te dstace from te edges, ut adjusted te geeral area ad measured te drectos ad m. Te locato of te cetrod of te geeral tragle s

Te tegral of r r Te vector r to te elemetal pot of tegrato s r m It s coveet to defe tesors B m m C m m Tese tesors are costat over te tragle ad terefore ca e pulled out of te tegral. Note tat we wll ot compute te actual momet of erta aout te cetrod at ts pot ecause we pla to add togeter multple peces to costruct te momet of erta for polgoal regos. So we wll smpl compute (ad accumulate) te tegrals of te outer product. Te tegral of r r. We ca compute te tegral of te outer product of r wt tself for te tragular rego as follows: r r s m m d d d d B C s 3 s B 3 C d 3 3 3 3 s B 3 Cd 4 4 4 s 4 8 B s B C 3 3 4 8 B C 4 6 Hece, we ave te followg result (wc we wll evetuall use to compute te momet of erta) R r r B C 4 6 3 C

Postve ad egatve regos We ca compute tegrals over a cross secto cosderg postve ad egatve areas. I regos were tere are ot, te cacel eac oter out. Te I-eam, for eample, ca e costructed from te large (postve) rectagle ad te two smaller (egatve) rectagles. (+) (-) (-) w w w w w (+) + (-) = () ctual cross secto Postve rego Negatve rego Zero rego We wll use ts geeral dea to accumulate te cotrutos of te tragles tat defe te sdes of te polgo. If s s greater ta ero te area wll e postve ad f t s less ta ero te te area wll e egatve. For a rego tat as ot a postve ad egatve cotruto te et effect ( all of our tegrals) wll e ero. Hece, ts s a good wa to la out te calculato.

ccumulato of propertes Cosder te cross secto sow at rgt. Takg te pots sequetall we see te cotrutos of four tragles. If m s to te paper te te area s egatve (red), oterwse t s postve (lue). Notce ow te areas outsde te cross secto get eactl oe postve ad oe egatve cotruto. I te ed, ol te lue rego remas. 4 3 m Te Cross Secto Tragle (sde -) 4 4 m 3 3 m m Tragle (sde -3) Tragle 3 (sde 3-4) Tragle 4 (sde 4-)

Postve regos ad egatve regos m Postve regos ad egatve regos. Te power of te approac we are takg s te alt to dstgus etwee postve regos ad egatve regos. We we use te geeral tragle as te uldg lock for computg tegrals over a polgoal sape we must e ale to assg a postve or egatve value to eac pece accord wt te eed to eter add tat porto to te sum or sutract t from te sum. Te term s takes care of ts ssue. Recall te defto e 3 e me 3 3 s m m ccordg to te defto of cross product, te agle s clockwse from te vector to te vector m. You ca see ow ts plas out te two eamples elow (te tragles for sdes - ad -3 for our eample). Te se fucto s postve te frst ad secod quadrat ad egatve te trd ad fourt, ad ts gves te tegrals ter algerac sg. lso, as te vectors ted to pot alog te same le te magtude gets smaller (to reflect tat te rego of te tragle gets smaller). m s s m

lgortm 4 Te Cross Secto Te process ca e put to a program wt te steps outled at rgt. I te loop we carr out te computatos assocated wt te tragle wose edge s defed te curret vertces. We te accumulate tose to sums for eac of te propertes (.e., we are addg up all of te cotrutos of all tragles). ce te loop s complete we ca fs te computatos of c ad J, fd te prcpal values, ad prt ad/or plot te results. 3 lgortm. We ca orgae te computato as follows:. Store coordates of vertces arra N N. Itale propertes, p, R 3. Loop over te sdes, : N a. Compute te ut vectors ad m from. Compute s m e c. Compute te tragle cotrutos, p r, ad R r r d. dd te cotrutos to te wole, p p p, R R R 4. Fs te computato of c ad J c p /, J R c c 5. Compute prcpal values of J 6. Prt ad plot results

Prcpal values of J e 3 e C Te mamum ad mmum values of te erta tesor J are ts egevalues. Tese are te values of J tat we would compute te (',') coordate sstem (f we kew wat t was advace). For a smmetrc cross secto J s dagoal ad te te ma/m values are equal to te dagoal elemets of J. Prcpal values of J. We te off-dagoal elemets of te tesor J are ot ero tat mples tat te J ad J values are ot te mamum or mmum momets of erta of te cross secto. Te wa we computed J ad te frst step of lag dow a coordate sstem (, ). We foud te locato of te cetrod C ad tat allowed us to al dow te coordate sstem (,), wc s smpl a traslato of te orgal coordate sstem to pass troug te cetrod. Tese two coordate sstems were proal cose ecause of some oter aspect of te prolem we are trg to solve (e.g., edg aout te -as). But, as far as te propertes of te cross secto are cocered, te coce s artrar. terestg questo to ask s ts: Could we pck a coordate sstem (',') suc a wa tat te values of J ad J are te ggest or smallest possle? Te aswer s es ad te coordate sstem we eed pots te drecto of te egevectors of J. Smlarl, te actual ma/m values are te egevalues of J. MTLB gves us a ver eas wa to compute te egevalues of a matr: Jma = eg(j)