SHG Spectroscopy. Clean surfaces Oxidation SOI wafer

Similar documents
Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Second-Harmonic Generation Studies of Silicon Interfaces

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation.

Quadratic nonlinear interaction

Electron spins in nonmagnetic semiconductors

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Surface Characte i r i zat on LEED Photoemission Phot Linear optics

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

2.1 Experimental and theoretical studies

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Optical SHG and RAS of molecular adsorption at Si(001) step edges

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida

Supplementary Figure 1

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Raman and SHG spectroscopy of ligand- stabilized Si nanocrystals

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

1.1 FEATURES OF SPECTROSCOPIC ELLIPSOMETRY

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

In order to determine the energy level alignment of the interface between cobalt and

Step-induced electronic resonance at vicinal Si(001) observed by spectroscopic SHG and RAS

SUPPLEMENTARY INFORMATION

Spectroscopic Ellipsometry (SE) in Photovoltaic Applications

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Nonlinear Spectroscopy of Si Nanostructures. Mike Downer University of Texas at Austin

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Ultrafast Electron-Electron Dynamics in Graphene Daniele Brida

Electroluminescence from Silicon and Germanium Nanostructures

Second-harmonic scanning optical microscopy of poled silica waveguides

Holcomb Group Capabilities

Optical Nonlinearities in Quantum Wells

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

Light Interaction with Small Structures

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents

Highly Nonlinear Fibers and Their Applications

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials

Core Level Spectroscopies

12. Nonlinear optics I

Jaroslav Hamrle. October 21, 2014

Solar Cell Materials and Device Characterization

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Fundamentals of Nanoelectronics: Basic Concepts

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of

Sub-wavelength electromagnetic structures

36. Nonlinear optics: χ(2) processes

Application of IR Raman Spectroscopy

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Supporting Information

SUPPLEMENTARY INFORMATION

Nonlinear optics spectroscopy in glasses doped with nanoparticles

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction

NONLINEAR TRANSITIONS IN SINGLE, DOUBLE, AND TRIPLE δ-doped GaAs STRUCTURES

THz QCL sources based on intracavity difference-frequency mixing

IV. Surface analysis for chemical state, chemical composition

Radiation Effects in Emerging Materials Overview Leonard C. Feldman

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations

SECOND HARMONIC GENERATION IN SI/SIO2 SYSTEMS. Heungman Park. Dissertation. Submitted to the faculty of the. Graduate school of Vanderbilt University

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Collective effects in second-harmonic generation from plasmonic oligomers

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Time-resolved spectroscopy

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Spectroscopies for Unoccupied States = Electrons

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Electrically Driven Polariton Devices

X-Ray Radiation Channeling through Micro-Channel Plates: spectroscopy with a Synchrotron Radiation Beam

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion

Cavity QED with quantum dots in microcavities

Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth Epitaxy (IGE)

Study on Bose-Einstein Condensation of Positronium

The effectiveness of HCl and HF cleaning of Si 0.85 Ge 0.15 surface. Stanford Synchrotron Radiation Lab, Menlo Park, CA 94025

Studying of the Dipole Characteristic of THz from Photoconductors

Models for Time-Dependent Phenomena

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Optical manipulation of valley pseudospin

Damping of magnetization dynamics

Supporting Materials

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

SUPPLEMENTARY INFORMATION

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University

Entangled Photon Generation via Biexciton in a Thin Film

Part II Course Content. Outline Lecture 9. Frequency Correlations & Lineshapes. Nonlinear Spectroscopic Methods

9 Atomic Coherence in Three-Level Atoms

Laser detection ofradiation enhanced electron transport in ultra-thin oxides

Probing Matter: Diffraction, Spectroscopy and Photoemission

Graphene for THz technology

Optical Properties of Solid from DFT

Поляризационная спектроскопия

In-situ Multilayer Film Growth Characterization by Brewster Angle Reflectance Differential Spectroscopy

Multi-Purpose Nonlinear Optical Microscope. Principle and its Applications to Polar Thin Film Observation

Time-resolved spectroscopy

requency generation spectroscopy Rahul N

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

SUPPLEMENTARY INFORMATION

Transcription:

SHG Spectroscopy Clean surfaces Oxidation SOI wafer

Scan regions Idler: 730-1050 nm 1000-1400 nm Signal: 680-550 nm Ti:Sapphire: 700-1000 nm 600-500 nm SHG set-up

Bergfeld, Daum, PRL 90, 2915 SHG from GaAs

Spectroscopy onsi/sio₂ interfaces 3.4 ev: E₀/E₁ transition at Γ-point 42eV: 4.2 E₂ transition at Γ-point 3.6 ev: Interface transition

Si(100) Si/Ge SiO₂Si/Ge SiO Growth of strained layer

SHG (a arb. units) units) SHG (arb. 10 8 6 4 2 0 4 2 0 Si(111)7x7 Clean SHG Spectroscopy 10 L O 2 p to p 2,0 2,5 3,0 3,5 4,0 4,5 Clean p to s 2,0 2,5 3,0 3,5 4,0 4,5 5,0 SH Photon Energy (ev) ergy (ev) En 4 3 2 1 0-1 -2-3 Interband transitions Surface states below 3.4 ev K Γ M U 2 U 1 /S 1 10 L O 2 2.8 ev (1.4 ev): 1ω S 2 U 1 Surface states 2.0/2.4 ev: 2ω S 3 U 1 34eV: 3.4 2ω E 1 4.4 ev: 2ω E 2 S 2 S 3

Pump-probe: Dynamics of surface states 4 3 Energ gy (ev) 2 1 0 U 2 U 1 /S 1-1 S 2-2 S 3-3 K Γ M Höfer et al. PRB 73 245305 (2006) Saturation and recovery of unoccupied ad-atom state by pump pulse. Intra band 100 fs, interband (surface) 1-2 ps Surface states to bulk 100 ps

χ ( 2) s (2 ω ) SH resonances f exp( iφ ) n n ( ω ω + ½iγ ) n n + f exp( iφ ) m m (2ω ω + ½iγ ) m m ) n, m 10 SHG [a arb. units] 9 8 7 6 5 4 3 p to p polarization Clean Resonances: 2.05 ev SS 1ω resonance 306 3.06 ev SS 2ω resonance 3.34 ev E 1 2ω resonance 4.34 ev E 2 2ω resonance 1ω or 2ω resonances? 2 1 10 L oxygen Constructive / destructive interference 0 1.5 2 2.5 3 3.5 4 4.5 5 SH Photon Energy [ev]

SH resonances its] G [arb. un SH 9 8 7 6 5 4 3 2 1 Resonances: ptoppolarization p polarization 2.15 ev SS 1ω resonance 3.06 ev SS 2ω resonance 3.34 ev E 1 2ω resonance 3.55 ev Si-O 2ω resonance 4.34 ev E 2 2ω resonance Clean 10 L oxygen New resonance from Si-O bonds at the interface Daum et al. PRL 93 097402 0 1.5 2 2.5 3 3.5 4 4.5 5 SH Photon Energy [ev]

Ge(111) linear response Lowest direct transition very weak Spin-orbit splitting of 2.1-eV transition ~0.2 2eV

Ge(111) spectra comparison 2.1-2.4 ev transitions: spin-orbit or interface states? 2.8-3.0 ev transitions: sensitive to surface treatment.

Ge(111) spectra comparison 2.1-2.4 ev transitions: spin-orbit or interface states? 2.8-3.0 ev transitions: sensitive to surface treatment. Additional peak at 3.1 ev? What happens below 2.0 ev?

Second harmonic generation spectroscopy pyon SOI wafers Kjeld Pedersen Thomas Garm Pedersen Aalborg University Denmark

Sn nanocrystals in Si 1,2 1,0 Sn in Si Bulk sample 1,0 0,8 SH HG (arb. units) 0,8 0,6 0,4 0,2 Si epilayer Si wafer Sn nits) SH HG (arb. u 0,6 0,4 0,2 Si epilayer Si device layer Oxide Si wafer 0,0 700 800 900 1000 1100 1200 1300 Pump Wavelength (nm) 0,0 700 800 900 1000 1100 1200 1300 1400 Pump Wavelength (nm) Samples from Arne Nylandsted Conclusion: Don t use SOI wafers for structures for optical characterization (Unless you want to probe the SOI interfaces)

SOI SHG from interfaces 1 380 nm Si SHG (arb b. units) 0,1 400 nm SiO 2 Log scale! Si device layer Oxide Si handling wafer ~380 nm ~400 nm 0,01 700 800 900 1000 1100 1200 1300 1400 Pump Wavelength (nm) SHG oscillations Linear properties SHG sources Can the oscillations be used to isolate SHG from buried interfaces?

SOI wafers Fast IC s transistor insulation CMOS MEMS Si Photonics. Si device layer Oxide ~200 nm ~200 nm Si handling wafer

SHG measurements on SOI interfaces B. Jun, IEEE Trans Nucl Sci, 51, 3231 B. Jun, Appl. Phys. Lett. 85, 3095 N. Tolk, Microelectronic Engineering 84, 2089

Linear properties Ellipsometry c parame eters (s 1 and s 2 ) 0,8 SOI wafer Fit to eliipsometric data: 209 nm Si 0,4 410 nm SiO 2 0,0-0,4 psometri Elli -0,8-1,2 400 500 600 700 800 Wavelength (nm)

Linear properties Reflection multilayer structure 1 2 3 4 Si SiO₂ Si

Linear reflection data from Palik Refle ection 1,0 0,8 0,6 04 0,4 0,2 θ=30 o θ=40 o Refle ection Refle ection 0,0 0,8 0,6 04 0,4 0,2 0,0 0,8 0,6 0,4 0,2 0,0 600 800 1000 1200 1400 1600 600 800 1000 1200 1400 1600 θ=50 o θ=60 o 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600 θ=70 o 600 800 1000 1200 1400 1600 Wavelength (nm) Fit to data: d Si =203 nm d oxide =402 nm θ=30 o θ=70 o 600 800 1000 1200 1400 1600 Wavelength (nm)

SHG set-up Scan regions Idler: 720-1400 nm Signal: 680-500 nm Excitations: 1-5 ev

Refractive index absorption 2ω 7 ω 6 Si ve Inde ex Refracti 5 4 3 2 1 n i 0 n r 200 400 600 800 1000 1200 1400 1600 1800 Wavelength (nm) Transparent to pump light in whole region Transparent to pump light in whole region Strong absorption of SHG for pump shorter than 800 nm

SHG spectra 12 11 SOI wafer, 200 nm Si, 400 nm SiO 2 SHG (arb. units) 10 9 8 6 5 4 3 E 2 Interface E 7 E 1 70 o 60 o 50 o 40 o 30 o 2 1 0 500 600 700 800 900 1000 1100 1200 1300 1400 Pump Wavelength(nm) Resonances at critical points + oscillations

SHG spectra 10 SOI wafer, 200 nm Si, 400 nm SiO 2 SHG 1 Log scale! 70 o 60 o 50 o 40 o 30 o 0,1 E 2 E 1 Interface 0,01 500 600 700 800 900 1000 1100 1200 1300 1400 Pump Wavelength(nm)

SHG sources Sum of radiations from dipole sheets ω ω 2ω Interface contributions Bulk contributions

Rotational anisotropy Bulk contribution 1,0 SHG (a arb. unit ts) 0,8 0,6 0,4 02 0,2 0,0 p to p λ p =750 nm θ=60 o y=(0.9+0.1*cos(4*pi/180*col(a)))^2 0 45 90 135 180 225 270 315 360 Rotational Angle (deg.) Bulk contribution ~10%

Effect of linear reflections 1 st interface Reflectio on 1 0,1 0,01 SHG R(2ω) R(ω) θ=50 o + Min at 550 nm + Min at 1000 nm + Peak at 750-800 nm Min at 620 nm 1E-3 500 600 700 800 900 1000 1100 1200 1300 Wavelength (nm)

SHG Si/SiO₂ interface response Natural oxide W. Daum, PRB 59, 2915 Si(100) interface resonance 60 nm thermal oxide Depends on interface formation Interface resonance part of response function in near IR (eg. 800 nm) 105 nm dry/wet/dry +annealing

Si(111)/oxide interface 10 Si(111)7x7 SHG (a arb. units) 8 6 4 2 Clean 10 L O 2 p to p SHG (arb b. units) 0 4 2 0 20 2.0 25 2.5 30 3.0 35 3.5 40 4.0 45 4.5 p to s Clean 10 L O 2 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SH Photon Energy (ev)

Model SHG from dipole sheets Sipe s model: J. Opt. Soc. Am. B4, 481 (1987) Phys. Rev. B35, 1129 (1987) Field in medium 1 from source in medium i z 1 2 P z i i n E = E + 1 i, 1 i Other models: Bethune, J. Opt. Soc. Am. B6, 910 Yeganeh, Phys. Rev. B46, 1603 Wierenga, Physica B204, 281

SHG model (continued) P (2ω) = i χ (2) ijk E j ( ω) E k ( ω) f l iφl ( exp( ) 2 ) χ = 2 2 l 2ω ω l iγ l l E, E, : 1 2 Interface χ eff = a1ξ + a2γ + a3 zxx + a4 zzz + a5 xyz Bulk Anisotropic Bulk Isotropic Surface Isotropic Depends on angle of incidence

Interface contributions units) SHG (arb. 10 9 8 χ (2) constant θ=50 o 7 Exp 6 1st interface 3rd interface 5 2nd interface 4 3 2 1 0 500 600 700 800 900 1000 1100 1200 1300 Wavelength (nm) Only 1st interface for λ<850 nm Peak at 900 nm: 2nd and 3rd interface

Fit to experiments 10 SHG model: 3 interfaces θ=50 o 10 θ=30 o SHG (arb b. units) 1 2nd and 3rd interface 0,1 b. units) SHG (ar 1 0,1 0,01 0,01 500 600 700 800 900 1000 1100 1200 1300 Wavelength (nm) 500 600 700 800 900 1000 1100 1200 1300 Wavelength (nm) Si device layer Oxide Si handling wafer 1st 2nd 3rd Same χ² ²for both angles and dfor all ll3i interfaces No bulk contribution

Looking for buried interfaces SHG (arb. units s) 1,0 0,8 0,6 0,4 0,2 d Si =200 nm d SiO =400 nm SiO 2 χ (2) =1 1st interface 2nd 3rd SHG (arb. units) 1,0 d Si =100 nm 0,8 =200 nm )dsio 2 0,6 0,4 0,2 χ (2) =1 SHG (arb. units) 1,0 0,8 0,6 0,4 0,2 0,0 500 600 700 800 900 1000 1100 1200 1300 1400 d Si =300 nm d SiO2 =300 nm 2 χ (2) =1 500 600 700 800 900 1000 1100 1200 1300 1400 Wavelength (nm) Wavelength (nm) 1st interface 2nd 3rd 0,0 500 600 700 800 900 1000 1100 1200 1300 1400 Wavelength (nm) 0,0 We can find a wavelength to test 3rd interface 2nd interface is difficult to reach Si device layer Oxide Si handling wafer 1st 2nd 3rd

Conclusions Oscillations in SHG from SOI wafer Multiple reflections in linear field Multiple reflections in SH field Variations in χ² of Si Only first interface for λ<800 nm Wavelength for2 nd and 3 rd interface can be found λ p,θ