MILITARY SPECIFICATION MICROCIRCUITS, LINEAR, 8 BIT, DIGITAL-TO-ANALOG CONVERTERS, MONOLITHIC SILICON

Similar documents
MICROCIRCUITS, DIGITAL, TTL, FLIP-FLOPS, MONOLITHIC SILICON. Inactive for new design after 7 September 1995

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, DECODERS MONOLITHIC SILICON. Inactive for new design after 7 September 1995.

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, SCHOTTKY TTL, FLIP-FLOPS, CASCADABLE, MONOLITHIC SILICON

MICROCIRCUITS, DIGITAL, BIPOLAR, ADVANCED SCHOTTKY TTL, DECADE COUNTERS, MONOLITHIC SILICON

MILITARY SPECIFICATION MICROCIRCUITS, LINEAR, LOW OFFSET OPERATIONAL AMPLIFIERS, MONOLITHIC SILICON

MICROCIRCUITS, DIGITAL, BIPOLAR LOW-POWER SCHOTTKY TTL, FLIP-FLOPS, CASCADABLE, MONOLITHIC SILICON. Inactive for new design after 18 April 1997.

STANDARD MICROCIRCUIT DRAWING MICROCIRCUIT, LINEAR, PRECISION TIMER, MONOLITHIC SILICON

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, MONOSTABLE MULTIVIBRATORS, MONOLITHIC SILICON

MILITARY SPECIFICATION MICROCIRCUITS, LINEAR, CMOS/ANALOG MULTIPLEXERS/DEMULTIPLEXERS WITH OVERVOLTAGE PROTECTION, MONOLITHIC SILICON, POSITIVE LOGIC

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. A Update to current requirements. Editorial changes throughout. - gap Raymond Monnin

MICROCIRCUITS, DIGITAL, LOW-POWER SCHOTTKY TTL, COUNTERS, MONOLITHIC SILICON. Inactive for new design after 18 April 1997.

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED REV SHEET REV SHEET 15 REV STATUS OF SHEETS SHEET

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. A Delete all match referenced tests as specified under Table I. - ro C.

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. A Changes in accordance with N.O.R R M. A. FRYE

Reactivated after 17 Jan and may be used for new and existing designs and acquisitions.

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. A Drawing updated to reflect current requirements R. MONNIN

STANDARD MICROCIRCUIT DRAWING MICROCIRCUIT, LINEAR, 4-CHANNEL DIFFERENTIAL, ANALOG MULTIPLEXER, MONOLITHIC SILICON

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. C Update boilerplate paragraph to current MIL-PRF requirements. - ro C.

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED R. HEBER devices back to the document. - ro

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, CMOS, STATIC SHIFT REGISTER, MONOLITHIC SILICON, POSITIVE LOGIC

STANDARD MICROCIRCUIT DRAWING MICROCIRCUIT, LINEAR, CMOS 8-BIT DAC WITH OUTPUT AMPLIFIER, MONOLITHIC SILICON

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED SIZE A

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. A Changes in accordance with NOR 5962-R Monica L.

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, SCHOTTKY TTL, ARITHMETIC LOGIC UNIT / FUNCTION GENERATORS, MONOLITHIC SILICON

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, CMOS 4096 BIT STATIC RANDOM ACCESS MEMORY (RAM) MONOLITHIC SILICON

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED

STANDARD MICROCIRCUIT DRAWING. MICROCIRCUIT, DIGITAL-LINEAR, BiCMOS, RADIATION HARDENED, NON-INVERTING QUAD DRIVER, MONOLITHIC SILICON

PERFORMANCE SPECIFICATION SHEET

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. C Add radiation hardened level L devices and delete figures 1 and 3. - ro R.

Reactivated after 10 Aug and may be used for new and existing designs and acquisitions.

REVISIONS. A Changes made in accordance with NOR 5962-R thl Raymond L. Monnin

throughout. --les. Raymond Monnin H Update to reflect latest changes in format and requirements. Correct

PERFORMANCE SPECIFICATION SHEET

REVISIONS. A Changes in accordance with NOR 5962-R thl Monica L. Poelking

DEPARTMENT OF DEFENSE TEST METHOD STANDARD METHOD 304, RESISTANCE-TEMPERATURE CHARACTERISTIC

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. B Add class T requirements. Update boilerplate. Redrawn. - rrp R.

Dual 3-channel analog multiplexer/demultiplexer with supplementary switches

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. A Changes in accordance with NOR 5962-R Raymond L. Monnin

Radiation Performance Data Package MUX8522-S

DETAIL SPECIFICATION SHEET

HEF4028B. 1. General description. 2. Features. 3. Applications. 4. Ordering information. BCD to decimal decoder

MILITARY SPECIFICATION DIGITAL LANDMASS BLANKING (DLMB) DATA PROGRAM

74HC1GU04GV. 1. General description. 2. Features. 3. Ordering information. Marking. 5. Functional diagram. Inverter

DLA LAND AND MARITIME COLUMBUS, OHIO TITLE MICROCIRCUIT, LINEAR, CMOS SPDT SWITCH, MONOLITHIC SILICON REVISIONS

Case Outline(s). The case outlines shall be designated in Mil-Std-1835 and as follows:

Temperature range Name Description Version XC7SET32GW 40 C to +125 C TSSOP5 plastic thin shrink small outline package; 5 leads; body width 1.

2-input EXCLUSIVE-OR gate

REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED. A Add device type 02 and case outline Y. - ro C. SAFFLE SIZE A

PERFORMANCE SPECIFICATION SHEET

CMOS HIGHSPEED 8-BIT A/D CONVERTER WITH TRACK AND HOLD. Case Outline(s). The case outlines shall be designated in Mil-Std-1835 and as follows:

Case Outline(s). The case outlines shall be designated in Mil-Std-1835 and as follows:

Device Type Generic Number Circuit Function 01 DG406A(x)/883B 16-Channel Analog Multiplexer 02 DG407A(x)/883B Dual 8-Channel Analog Multiplexer

60 V, 0.3 A N-channel Trench MOSFET

PSMN006-20K. N-channel TrenchMOS SiliconMAX ultra low level FET

74HC1G02; 74HCT1G02. The standard output currents are half those of the 74HC02 and 74HCT02.

STANDARD MICROCIRCUIT DRAWING MICROCIRCUIT, DIGITAL, RADIATION HARDENED CMOS, ANALOG MULTIPLEXER/ DEMULTIPLEXER, MONOLITHIC SILICON

74HC1G86; 74HCT1G86. 2-input EXCLUSIVE-OR gate. The standard output currents are half those of the 74HC/HCT86.

MICROCIRCUIT, HYBRID, CMOS, LINEAR, ANALOG MULTIPLEXER, 64 CHANNEL, +3.3 TO +5 VOLT

PERFORMANCE SPECIFICATION SHEET

XC7SET General description. 2. Features. 3. Applications. Ordering information. Inverting Schmitt trigger

N-channel TrenchMOS logic level FET

N-channel enhancement mode Field-Effect Transistor (FET) in a small SOT23 (TO-236AB) Surface-Mounted Device (SMD) plastic package using

2-input AND gate with open-drain output. The 74AHC1G09 is a high-speed Si-gate CMOS device.

Radiation Performance Data Package MUX8501-S

Case Outline(s). The case outlines shall be designated in Mil-Std-1835 and as follows:

NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD) plastic package.

PERFORMANCE SPECIFICATION SHEET SWITCHES, THERMOSTATIC, (BIMETALLIC), TYPE I, SINGLE POLE, SINGLE THROW (SPST), 5 AMPERES

74HC2G16; 74HCT2G16. The 74HC2G16; 74HCT2G16 is a high-speed Si-gate CMOS device. The 74HC2G16; 74HCT2G16 provides two buffers.

PHB108NQ03LT. N-channel TrenchMOS logic level FET

150 V, 2 A NPN high-voltage low V CEsat (BISS) transistor

NPN/PNP transistor pair connected as push-pull driver in a SOT457 (SC-74) Surface-Mounted Device (SMD) plastic package.

74VHC08; 74VHCT08. The 74VHC08; 74VHCT08 provide the quad 2-input AND function.

Case Outline(s). The case outlines shall be designated in Mil-Std-1835 and as follows:

74HC2G34; 74HCT2G34. The 74HC2G34; 74HCT2G34 is a high-speed Si-gate CMOS device. The 74HC2G34; 74HCT2G34 provides two buffers.

74AHC259; 74AHCT259. The 74AHC259; 74AHCT259 has four modes of operation:

N-channel TrenchMOS standard level FET. Higher operating power due to low thermal resistance Low conduction losses due to low on-state resistance

74HC General description. 2. Features. 3-to-8 line decoder, demultiplexer with address latches; inverting

N-channel TrenchMOS standard level FET. High noise immunity due to high gate threshold voltage

PSMN B. N-channel TrenchMOS SiliconMAX standard level FET. High frequency computer motherboard DC-to-DC convertors

74HC General description. 2. Features. Octal D-type flip-flop; positive-edge trigger; 3-state; inverting

5-stage Johnson decade counter

PHD/PHP36N03LT. 1. Product profile. 2. Pinning information. N-channel TrenchMOS logic level FET. 1.1 General description. 1.

The 74LV08 provides a quad 2-input AND function.

PSMN004-60B. N-channel TrenchMOS SiliconMAX standard level FET. High frequency computer motherboard DC-to-DC convertors

4-bit magnitude comparator

2 Input NAND Gate L74VHC1G00

PERFORMANCE SPECIFICATION SHEET

N-channel TrenchMOS logic level FET

74AHC1G00; 74AHCT1G00

PSMN005-75B. N-channel TrenchMOS SiliconMAX standard level FET. High frequency computer motherboard DC-to-DC convertors

The 74LVC1G02 provides the single 2-input NOR function.

PERFORMANCE SPECIFICATION CAPACITORS, FIXED, CERAMIC DIELECTRIC, HIGH RELIABILITY, DISCOIDAL, GENERAL SPECIFICATION FOR

PHP110NQ08T. N-channel TrenchMOS standard level FET

74AHC14; 74AHCT14. Hex inverting Schmitt trigger

PSMN013-80YS. N-channel LFPAK 80 V 12.9 mω standard level MOSFET

N-channel 30 V 1.3 mω logic level MOSFET in LFPAK

PSMN2R6-40YS. N-channel LFPAK 40 V 2.8 mω standard level MOSFET

PSMN8R3-40YS. N-channel LFPAK 40 V 8.6 mω standard level MOSFET

N-channel TrenchMOS ultra low level FET. Higher operating power due to low thermal resistance Interfaces directly with low voltage gate drivers

Transcription:

NCHPOUND October, 2011 SUPERSEDNG MLM8510/11B 21 June 2005 MLTARY SPECFCATON MCROCRCUTS, LNEAR, 8 BT, DGTALTOANALOG CONVERTERS, MONOLTHC SLCON This specification is approved for use by all Departments and Agencies of the Department of Defense. Reactivated for new design as of 10 February 2005. May be used for either new or existing design acquisition. The requirements for acquiring the product herein shall consist of this specification sheet and MLPRF855. 1. SCOPE 1.1 Scope. This specification covers the detail requirements for monolithic silicon, 8 bit, digitaltoanalog converters. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MLM8510 have been superseded by MLPRF855, (see 6.4. 1.2 Part or dentifying Number (PN. The PN is in accordance with MLPRF855, and as specified herein. 1.2.1 Device types. The device types are as follows: Device type Circuit 01 D/A Converter, 8 bit, 0.19% linearity 02 D/A Converter, 8 bit, 0.11% linearity 1.2.2 Device class. The device class is the product assurance level as defined in MLPRF855. 1.2. Case outline. The case outlines are as designated in 185 and as follows: Outline letter Descriptive designator Terminals Package style E GDP1T16 or CDP2T16 16 Dualinline 1. Absolute maximum ratings. Supply voltage [V CC CC]... 6 Vdc Voltage, digital input to negative supply [V logic CC]... 0 to 6 Vdc Voltage, logic control LC... V CC to V CC Reference voltage input 14, V 15... V CC to V CC Reference input current ( 14... 5.0 ma Reference input differential voltage [ 14 V 15]... ±18 Vdc Lead temperature (soldering, 60 sec... 00 C. Junction temperature (T J... 175 C Storage temperature... 65 C to 150 C Comments, suggestions, or questions on this document should be addressed to: DLA Land Maritime, ATTN: DLA Land Maritime VAS, P.O. Box 990, Columbus, OH 4218990, or emailed to linear@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSST Online database at https://assist.daps.dla.mil. AMSC N/A C 5962

1.4 Recommended operating conditions. Supply voltage range... ±5 Vdc to ±15 Vdc 1/ 2/ Ambient temperature range... 55 C to 125 C 1.5 Power and thermal characteristics. Case outline Package Maximum allowable maximum θ JC maximum θ JA power dissipation E Dualinline 400 mw @ T A = 125 C 5 C/W 120 C/W 2. APPLCABLE DOCUMENTS 2.1 General. The documents listed in this section are specified in sections, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections, 4, or 5 of this specification, whether or not they are listed. 2.2 Government documents. 2.2.1 Specifications, standards, and handbooks. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the solicitation or contract. DEPARTMENT OF DEFENSE SPECFCATONS MLPRF855 ntegrated Circuits, Manufacturing, General Specification for. DEPARTMENT OF DEFENSE STANDARDS 88 185 Test Method Standard for Microelectronics. nterface Standard Electronic Component Case Outlines. (Copies of these documents are available online at https://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 191115094. 2.2 Order of precedence. n the event of a conflict between the text of this specification and the references cited herein the text of this document shall takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.. REQUREMENTS.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4. and 6...2 tem requirements. The individual item requirements shall be in accordance with MLPRF855 and as specified herein or as modified in the device manufacturer's Quality Management (QM plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.. Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MLPRF855 and herein. 1/ A slight degradation in linearity can occur when the supply is near the ±5 V end of the recommended operating range. 2/ Sequence of power supply turnon must be V CC prior to V CC unless the positive supply has current limiting resistance of 100 Ω ±10%. f a current limiting resistance is used, a slight degradation in linearity will occur. 2

..1 Terminal connections and functional block diagram. The terminal connections and functional block diagram shall be as specified on figure 1...2 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request... Case outlines. The case outlines shall be as specified in 1.2...4 Lead material and finish. The lead material and finish shall be in accordance with MLPRF855 (see 6.6..5 Electrical performance characteristics. The electrical performance characteristics are as specified in table, and apply over the full recommended ambient operating temperature range, unless otherwise specified..6 Electrical test requirements. Electrical test requirements for each device class shall be the subgroups specified in table. The electrical tests for each subgroup are described in table..7 Marking. Marking shall be in accordance with MLPRF855..8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 56 (see MLPRF855, appendix A. 4. VERFCATON. 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MLPRF855 or as modified in the device manufacturer s Quality Management (QM plan. The modification in the QM plan shall not effect the form, fit, or function as function as described herein. 4.2 Screening. Screening shall be in accordance with MLPRF855, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply: a. The burnin test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MLPRF855. The burnin test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB in accordance with MLPRF855 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of 88. NOTE: f accelerated hightemperature test conditions are used, the device manufacturer shall ensure that at least 85 percent of the applied voltage is dropped across the device at temperature. The device is not considered functional under accelerated test conditions. b. nterim and final electrical test parameters shall be as specified in table, except interim electrical parameters test prior to burnin is optional at the discretion of the manufacturer. c. Additional screening for space level product shall be as specified in MLPRF855. 4. Qualification inspection. Qualification inspection shall be in accordance with MLPRF855. 4.4 Technology Conformance inspection (TC. Technology conformance inspection shall be in accordance with MLPRF855 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4.

TABLE. Electrical performance characteristics. Characteristics Symbol Conditions 1/ 55 C T A 125 C (table and figures 2,, and 4 unless otherwise indicated Device type Min Max Units Supply current from V CC CC All input bits high All 0.4.8 ma Supply current from CC All input bits high All 7.8 0.8 ma V CC Full scale current All input bits high, 01 1.94 2.04 ma Measure O 02 1.984 2.000 All input bits low, Measure O 01 1.94 2.04 ma 02 1.984 2.000 Zero scale current ZS All input bits low, measure O 01 2.0 2.0 µa 02 1.0 1.0 Power supply sensitivity from V CC Power supply sensitivity from V CC Power supply sensitivity from V CC Power supply sensitivity from V CC ZS All input bits high, measure O 01 2.0 2.0 µa 02 1.0 1.0 P SS 1 All input bits high, measure O All 4.0 4.0 µa V CC = 4.5 V to 5.5 V, V CC = 18 V PSS 1 All input bits low, measure O All 4.0 4.0 µa V CC = 4.5 V to 5.5 V, V CC = 18 V P SS 2 All input bits high, measure O All 8.0 8.0 µa V CC = 12 V to 18 V, V CC = 18 V PSS 2 All input bits low, measure O All 8.0 8.0 µa V CC = 12 V to 18 V, V CC = 18 V P SS 1 All input bits high, measure O All 8.0 8.0 µa V CC = 18 V, V CC = 12 V to 18 V PSS 1 All input bits low, measure O All 8.0 8.0 µa V CC = 18 V, V CC = 12 V to 18 V P SS 2 All input bits high, measure O All 2.0 2.0 µa V CC = 18 V, V CC = 4.5 V to 5.5 V, REF = 1 ma PSS 2 All input bits low, measure O, V CC = 18 V, V CC = 4.5 V to 5.5 V Output current range R 1 All input bits high, measure O V CC = 10 V, V REF = 15 V R1 All input bits low, measure O V CC = 10 V, V REF = 15 V Output current range R 2 All input bits high, measure O V CC = 12 V, V REF = 25 V See footnote at end of table. R2 All input bits low, measure O V CC = 12 V, V REF = 25 V All 2.0 2.0 µa All 2.1 ma All 2.1 ma All 4.2 ma All 4.2 ma 4

TABLE. Electrical performance characteristics Continued. Characteristics Symbol Conditions 1/ 55 C T A 125 C (table and figures 2,, and 4 unless otherwise indicated Device type Min Max Units Reference bias current REF All input bits low All.0 0 µa High level input current H All input bits V N = 18 V, each input All 0.05 10.0 µa measured separately Low level input current L All input bits V N = 10 V, each input All 10.0 µa measured separately Full scale current at All input bits high, measure O, 01 1.90 2.08 ma 18 V compliance V O = 18 V 02 1.94 2.04 Full scale current at 10 V compliance Change in full scale current due to voltage compliance Positive bit errors NL Negative bit errors See footnote at end of table. All input bits low, measure O, V O = 18 V All input bits high, measure O, V O = 10 V All input bits low, measure O, V O = 10 V C All input bits high, measure O, V O = 18 V to 10 V All input bits low, C measure O, NL NL NL 01 1.90 2.08 ma 02 1.94 2.04 01 1.90 2.08 ma 02 1.94 2.04 01 1.90 2.08 ma 02 1.94 2.04 25 C T A 125 C All 4.0 4.0 µa T A = 55 C 8.0 8.0 25 C T A 125 C All 4.0 4.0 µa T A = 55 C 8.0 8.0 V O = 18 V to 10 V Positive bit errors 01 0 0.19 % Measure O, 02 0 0.11 Positive bit errors 01 0 0.19 % Measure O, 02 0 0.11 Negative bit errors 01 0.19 0 % Measure O, 02 0.11 0 Negative bit errors 01 0.19 0 % Measure O, 02 0.11 0 5

TABLE. Electrical performance characteristics Continued. Characteristics Symbol Conditions 1/ 55 C T A 125 C (table and figures 2,, and 4 unless otherwise indicated Positive and negative bit NL error difference Measure O, Σ Measure O, Device type Min Max Units NL 01 0.05 0.05 % 02 0.0 0.0 01 0.05 0.05 % 02 0.0 0.0 Positive relative accuracy NL Measure O, Σ NL 01 0 0.19 % 02 0 0.11 Negative relative accuracy NL Measure O, Σ NL 01 0 0.19 % 02 0 0.11 NL Measure O, Σ NL 01 0 0.19 % 02 0 0.11 NL Measure O, Σ NL Monotonicity (i Measure O, ( ON ON1 0 at each major carry point 01 0 0.19 % 02 0 0.11 All 0 16.0 µa (i Measure O, ( ON ON 1 0 at each All 0 16.0 µa major carry point Output symmetry 01 8.0 8.0 µa 02 4.0 4.0 Full scale current temperature coefficient T C( All input bits high, measure O All 50.0 50.0 ppm/ C TC ( All input bits low, measure O All 50.0 50.0 ppm/ C Propagation delay time, hightolow level Propagation delay time, lowtohigh level Reference amplifier input slew rate t PHL Figure, measure V O All 6.0 60.0 ns t PLH Figure, measure V O All 6.0 60.0 ns d O/dt Figure 4, measure V O, T A = 25 C Settling time hightolow t SHL Figure, output within 1/2 LSB of final value of O,T A = 25 C Settling time lowtohigh t SLH Figure, output within 1/2 LSB of final value of O,T A = 25 C All 1.5 ma/µs All 10 15 ns All 10 15 ns 1/ The following electrical performance characteristics apply unless otherwise stated in table : ±V CC = ±15 Vdc, source resistance = 50 Ω, REF = 2.0 ma. 6

TABLE. Electrical test requirements. MLPRF855 test requirements Subgroups (see table Class S Class B devices devices nterim electrical parameters 1 1 Final electrical test parameters 1*, 2, 1*, 2, Group A test requirements 1, 2,, 9, 10, 11, 12 Group B electrical test parameters when 1, 2, and using the method 5005 QC option table V delta Group C endpoint electrical parameters Group D endpoint electrical parameters *PDA applies to subgroup 1. limits 1, 2, and table V delta limits 1, 2,, 9, 10, 11, 12 N/A 1 and table V delta limits 1, 2, 1 7

Terminal connections. Functional block diagram. Figure 1. Terminal connections and functional block diagram. 8

NOTES: 1/ The reference D/A converter selected should have a resolution of 8 bits or more, and a linearity of 0.015% or better. 2/ The voltage reference should have an accuracy of ±0.02% or better. / All relays are shown in their unexcited state. FGURE 2. Test circuit for static tests. 9

NOTES: 1. For turnon, V L = 2.7 V; for turnoff, V L = 0.7 V. 2. Minimize capacitance at this node, by using short runs and adequate spacing between runs.. Diodes must be Schottky type (MBD 501 or equivalent. 4. Bandwidth of oscilloscope used for waveform measurement should be 50 MHz minimum; saturation of preamp must be avoided. FGURE. Test circuit for propagation delay and settling time, device type 01 and 02. 10

FGURE. Test circuit for propagation delay and settling time, device type 01 and 02 Continued. 11

FGURE 4. Test circuit for slew rate, device types 01 and 02. 12

1 Subgroup Symbol 88 method Test No. TABLE. Group A inspection for device types 01 and 02. Energized relays No. Value Unit Min Max Min Max 18 162 9 V 10 V 11 V 12 V 1 V 14 V 15 V 1 CC 005 1 11111111 15 15 15 15 0 11 1 ma CC = 1 0.4.8 0.4.8 ma T A = 25 C CC 2 11111111 15 15 15 15 0 12 2 ma CC = 2 7.8 0.8 7.8 0.8 1/ 11111111 15 15 15 15 0 11111111 24 E 1 V = 1.992 0.01E 1 1.94 2.04 1.984 2 ma 4 00000000 15 15 15 15 0 11111111 K2 24 E 2 V 1.94 2.04 1.984 2 = 1.992 0.01E 2 ZS 5 00000000 15 15 15 15 0 K4 24 E V ZS = 10E 2 2 1 1 µa 6 11111111 15 15 15 15 0 K2, K4 24 E ZS 4 V ZS = 10E 4 2 2 1 1 P SS 1 7 11111111 5.5 18 15 15 0 11111111 24 E 5 V P SS 1 = 10(E 5E 6 4 4 4 4 µa 8 11111111 4.5 18 15 15 0 11111111 24 E 6 V 4 4 4 4 PSS 1 9 00000000 5.5 18 15 15 0 11111111 K2 24 E 7 V PSS 1 = 10(E 7E 8 4 4 4 4 µa 10 00000000 4.5 18 15 15 0 11111111 K2 24 E 8 V 4 4 4 4 P SS 2 11 11111111 18 18 15 15 0 11111111 24 E 9 V P SS 2 = 10(E 9E 10 8 8 8 8 µa 12 11111111 12 18 15 15 0 11111111 24 E 10 V 8 8 8 8 PSS 2 1 00000000 18 18 15 15 0 11111111 K2 24 E 11 V PSS 2 = 10(E 11E 12 8 8 8 8 µa 14 00000000 12 18 15 15 0 11111111 K2 24 E 12 V 8 8 8 8 P SS 1 15 11111111 18 12 15 15 0 11111111 24 E 1 V P SS 1= 10(E 1E 9 8 8 8 8 µa PSS 1 16 00000000 18 12 15 15 0 11111111 K2 24 E 14 V PSS 1 = 10(E 14E 11 8 8 8 8 µa P SS 2 17 11111111 18 5.5 15 15 0 11111111 K5 24 E 15 V P SS 2= 10(E 15E 16 2 2 2 2 µa 18 11111111 18 4.5 15 15 0 11111111 K5 24 E 16 V 2 2 2 2 PSS 2 19 00000000 18 5.5 15 15 0 11111111 K2, K5 24 E 17 V PSS 2 = 10(E 17E 18 2 2 2 2 µa 20 00000000 18 4.5 15 15 0 11111111 K2, K5 24 E 18 V 2 2 2 2 R 1 21 11111111 15 15 10 0 5 0 K1, K4 26 E 19 V R 1 = 0.2E 19 2.1 2.1 ma R1 22 00000000 15 15 10 0 5 0 K1, K2, K4 26 E 20 V 2.1 2.1 R1 = 0.2E 20 R 2 2 11111111 25 15 12 0 5 0 K1, K4 26 E 21 V R 2 = 0.2E 21 4.2 4.2 ma R2 24 00000000 25 15 12 0 5 0 K1, K2, K4 26 E 22 V 4.2 4.2 R2 = 0.2E 22 REF 25 00000000 0 15 15 15 15 0 K 10 A REF = X 10 6 0 0 µa H1 26 2/ 10000000 15 15 15 15 0 1 4 A H1 = 4 X 10 6 0.05 10 0.05 10 µa H2 27 2/ 01000000 15 15 15 15 0 2 5 A 6 H2 = 5 X 10 0.05 10 0.05 10 µa H 28 2/ 00100000 15 15 15 15 0 6 A H = 6 X 10 6 0.05 10 0.05 10 µa H4 29 2/ 00010000 15 15 15 15 0 4 7 A H4 = 7 X 10 6 0.05 10 0.05 10 µa H5 0 2/ 00001000 15 15 15 15 0 5 8 A H5 = 8 X 10 6 0.05 10 0.05 10 µa H6 1 2/ 00000100 15 15 15 15 0 6 9 A H6 = 9 X 10 6 0.05 10 0.05 10 µa H7 2 2/ 00000010 15 15 15 15 0 7 10 A H7 = 10 X 10 6 0.05 10 0.05 10 µa H8 2/ 00000001 15 15 15 15 0 8 11 A H8 = 11 X 10 6 0.05 10 0.05 10 µa L1 4 2/ 01111111 15 15 15 15 0 1 12 A L1 = 12 X 10 6 10 10 µa L2 5 2/ 10111111 15 15 15 15 0 2 1 A L2 = 1 X 10 6 10 10 µa L 6 2/ 11011111 15 15 15 15 0 14 A L = 14 X 10 6 10 10 µa L4 7 2/ 11101111 15 15 15 15 0 4 15 A L4 = 15 X 10 6 10 10 µa L5 8 2/ 11110111 15 15 15 15 0 5 16 A L5 = 16 X 10 6 10 10 µa L6 9 2/ 11111011 15 15 15 15 0 6 17 A L6 = 17 X 10 6 10 10 µa L7 40 2/ 11111101 15 15 15 15 0 7 18 A L7 = 18 X 10 6 10 10 µa L8 41 2/ 11111110 15 15 15 15 0 8 19 A L8 = 19 X 10 6 10 10 µa See footnotes at end of table.

14 TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized method No. 18 162 relays No. Value Unit Min Max Min Max 9 V 10 V 11 V 12 V 1 V 14 V 15 V 1 V CAL1 42 15 15 0 0 18 00000000 K 24 E 2 V V CAL1 = E 2 V T A = 25 C 4 11111111 15 15 0 0 18 11111111 24 E 24 V = 1.992 0.01(E 24 E 2 1.90 2.08 1.94 2.04 ma 44 00000000 15 15 0 0 18 11111111 K2 24 E 25 V = 1.9920.01(E 25 E 2 1.90 2.08 1.94 2.04 ma V CAL2 45 15 15 15 15 10 00000000 K 24 E 26 V V CAL2 = E 26 V 46 11111111 15 15 15 15 10 11111111 24 E 27 V = 1.9920.01(E 27 E 26 1.90 2.08 1.94 2.04 ma 47 00000000 15 15 15 15 10 11111111 K2 24 E 28 V = 1.9920.01(E 28 E 26 1.90 2.08 1.94 2.04 ma C 48 C = 1000( 4 4 4 4 µa 49 4 4 4 4 C µa C =1000 ( V CAL 50 00000000 15 15 15 15 0 00000000 24 E 29 V V CAL = E 29 V V 51 11111111 15 15 15 15 0 11111111 24 E 0 V V = E 0 V V 52 00000000 15 15 15 15 0 11111111 K2 24 E 1 V V = E 1 V V 5 11111111 15 15 15 15 0 00000000 K2 24 E 2 V V = E 2 V NL 1 54 10000000 15 15 15 15 0 10000000 24 E V ( E V % CAL NL 1 = NL 2 55 01000000 15 15 15 15 0 01000000 24 E 4 V NL 56 00100000 15 15 15 15 0 00100000 24 E 5 V NL 4 57 00010000 15 15 15 15 0 00010000 24 E 6 V NL 5 58 00001000 15 15 15 15 0 00001000 24 E 7 V See footnotes at end of table. (128 NL 2 = (64 NL = (2 NL 4 = (16 NL 5 = (8 V CAL ( E4 VCAL V CAL ( E5 VCAL V CAL ( E6 VCAL V CAL ( E7 VCAL V CAL % % % %

15 Subgroup 1 T A = 25 C TABLE. Group A inspection for device types 01 and 02. Continued. Symbol 88 Test Energized relays method No. 18 9 V 10 V 11 V 12 V 1 V 14 V 15 V 162 No. Value Unit Min Max Min Max NL 6 59 00000100 15 15 15 15 0 00000100 24 E 8 V ( E V % 8 CAL NL 6 = NL 7 60 00000010 15 15 15 15 0 00000010 24 E 9 V NL 8 61 00000001 15 15 15 15 0 00000001 24 E 40 V NL 1 NL 2 NL NL 4 NL 5 NL 6 See footnotes at end of table. 62 01111111 15 15 15 15 0 10000000 24 E 41 V 6 10111111 15 15 15 15 0 01000000 24 E 42 V 64 11011111 15 15 15 15 0 00100000 24 E 4 V 65 11101111 15 15 15 15 0 00010000 24 E 44 V 66 11110111 15 15 15 15 0 00001000 24 E 45 V 67 11111011 15 15 15 15 0 00000100 24 E 46 V (4 NL 7 = (2 NL 8 = (1 NL 1 = (128 NL 2 = (64 NL = (2 NL 4 = (16 NL 5 = (8 NL 6 = (4 V CAL ( E9 VCAL V CAL ( E40 VCAL V CAL ( E41 V V ( E42 V V ( E4 V V ( E44 V V ( E45 V V ( E46 V V % % % % % % % %

16 TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized method No. relays 18 162 No. Value Unit Min Max Min Max 9 V 10 V 11 V 12 V 1 V 14 V 15 V 1 68 11111101 15 15 15 15 0 00000010 24 E NL 47 V 7 ( E V % 47 T A = 25 C NL 7 = (2 V 10 NL 69 11111110 15 15 15 15 0 00000001 24 E 8 48 V ( E V % 48 NL 8 = (1 V 10 70 = NL i NL K. (i, k, bits having positive errors 71 1 1 = NL i NL k. (i, k, bits having positive errors 72 = NL m NL n. (m, n, bits having negative errors 0.19 0 0.11 0 % 7 0.19 0 0.11 0 % 1 1 = NL m NL n. (m, n, bits having negative errors 74 = 0.05 0.05 0.0 0.0 % Σ NL 75 NL 76 NL 77 Σ NL = NL = NL = Σ NL Σ NL 0.05 0.05 0.0 0.0 % MLM8510/G NL 78 NL = Σ NL NL 79 NL = Σ NL ( 01 a 80 10000000 15 15 15 15 0 10000000 24 E 49 V ( 01 b 81 01111111 15 15 15 15 0 01111111 24 E 50 V 128 ( 01 a = X 0.01(E49 127 ( 01 b = X 0.01(E50 ma ma ( 01 82 ( 01 = [( 01 a ( 01 b] x 10 0 16 0 16 µa See footnotes at end of table.

TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized method No. relays 18 162 No. Value Unit Min Max Min Max 9 V 10 V 11 V 12 V 1 V 14 V 15 V 1 ( 02 a 8 01000000 15 15 15 15 0 01000000 24 E 51 V 64 ma T A = 25 C ( 02 a = X 0.01(E51 ( 02 b 84 00111111 15 15 15 15 0 00111111 24 E 52 V 6 ma ( 02 b = X 0.01(E52 ( 02 85 ( 02 = [( 02 a ( 02 b] x 10 0 16 0 16 µa ( 0 a 86 00100000 15 15 15 15 0 00100000 24 E 5 V 2 ma ( 0 a = X 0.01(E5 ( 0 b 87 00011111 15 15 15 15 0 00011111 24 E 54 V 1 ( 0 b = X 0.01(E54 ma ( 0 88 ( 0 = [( 0 a ( 0 b] x 10 0 16 0 16 µa ( 04 a 89 00010000 15 15 15 15 0 00010000 24 E 55 V 16 ma ( 04 a = X 0.01(E55 ( 04 b 90 00001111 15 15 15 15 0 00001111 24 E 56 V 15 ( 04 b = X 0.01(E56 ma 17 ( 04 91 ( 04 = [( 04 a ( 04 b] x 10 0 16 0 16 µa ( 05 a 92 00001000 15 15 15 15 0 00001000 24 E 57 V 8 ma ( 05 a = X 0.01(E57 ( 05 b 9 00000111 15 15 15 15 0 00000111 24 E 58 V 7 ma ( 05 b = X 0.01(E58 ( 05 94 ( 05 = [( 05 a ( 05 b] x 10 0 16 0 16 µa ( 06 a 95 00000100 15 15 15 15 0 00000100 24 E 59 V 4 ma ( 06 a = X 0.01(E59 ( 06 b 96 00000011 15 15 15 15 0 00000011 24 E 60 V ma ( 06 b = X 0.01(E60 ( 06 97 ( 06 = [( 06 a ( 06 b] x 10 0 16 0 16 µa ( 07 a 98 00000010 15 15 15 15 0 00000010 24 E 61 V 2 ma ( 07 a = X 0.01(E61 ( 07 b 99 00000001 15 15 15 15 0 00000001 24 E 62 V 1 ( 07 b = X 0.01(E62 ma ( 07 100 ( 07 = [( 07 a ( 07 b] x 10 0 16 0 16 µa ( 08 b 101 00000000 15 15 15 15 0 00000000 24 E 6 V ( 08 b = 0.01(E 6 ma ( 08 102 ( 08 = [( 07 b ( 08 b] x 10 0 16 0 16 µa 10 = 8 8 4 4 µa See footnotes at end of table.

18 Subgroup Symbol 88 method Test No. TABLE. Group A inspection for device types 01 and 02 Continued. Energized relays No. Value Unit Min Max Min Max 18 162 9 V 10 V 11 V 12 V 1 V 14 V 15 V 2 CC 005 104 11111111 15 15 15 15 0 11 20 ma CC = 20 0.4.8 0.4.8 ma T A = 125 C CC 105 11111111 15 15 15 15 0 12 21 ma CC = 21 7.8 0.8 7.8 0.8 106 1/ 11111111 15 15 15 15 0 11111111 24 E 64 V = 1.992 0.01E 64 1.94 2.04 1.984 2 ma 107 00000000 15 15 15 15 0 11111111 K2 24 E 65 V 1.94 2.04 1.984 2 = 1.992 0.01E 65 ZS 108 00000000 15 15 15 15 0 K4 24 E 66 V ZS = 10E 66 2 2 1 1 µa 109 11111111 15 15 15 15 0 K2, K4 24 E ZS 67 V ZS = 10E 67 2 2 1 1 P SS 1 110 11111111 5.5 18 15 15 0 11111111 24 E 68 V P SS 1 = 10(E 68E 69 4 4 4 4 µa 111 11111111 4.5 18 15 15 0 11111111 24 E 69 V 4 4 4 4 PSS 1 112 00000000 5.5 18 15 15 0 11111111 K2 24 E 70 V PSS 1 = 10(E 70E 71 4 4 4 4 µa 11 00000000 4.5 18 15 15 0 11111111 K2 24 E 71 V 4 4 4 4 P SS 2 114 11111111 18 18 15 15 0 11111111 24 E 72 V P SS 2 = 10(E 72E 7 8 8 8 8 µa 115 11111111 12 18 15 15 0 11111111 24 E 7 V 8 8 8 8 PSS 2 116 00000000 18 18 15 15 0 11111111 K2 24 E 74 V PSS 2 = 10(E 74E 75 8 8 8 8 µa 117 00000000 12 18 15 15 0 11111111 K2 24 E 75 V 8 8 8 8 P SS 1 118 11111111 18 12 15 15 0 11111111 24 E 76 V P SS 1= 10(E 76E 72 8 8 8 8 µa PSS 1 119 00000000 18 12 15 15 0 11111111 K2 24 E 77 V PSS 1 = 10(E 77E 74 8 8 8 8 µa P SS 2 120 11111111 18 5.5 15 15 0 11111111 K5 24 E 78 V P SS 2= 10(E 78E 79 2 2 2 2 µa 121 11111111 18 4.5 15 15 0 11111111 K5 24 E 79 V 2 2 2 2 PSS 2 122 00000000 18 5.5 15 15 0 11111111 K2, K5 24 E 80 V PSS 2 = 10(E 80E 81 2 2 2 2 µa 12 00000000 18 4.5 15 15 0 11111111 K2, K5 24 E 81 V 2 2 2 2 R 1 124 11111111 15 15 10 0 5 0 K1, K4 26 E 82 V R 1 = 0.2E 82 2.1 2.1 ma R1 125 00000000 15 15 10 0 5 0 K1, K2, K4 26 E 8 V 2.1 2.1 R1 = 0.2E 8 R 2 126 11111111 25 15 12 0 5 0 K1, K4 26 E 84 V R 2 = 0.2E 84 4.2 4.2 ma R2 127 00000000 25 15 12 0 5 0 K1, K2, K4 26 E 85 V R2 = 0.2E 85 4.2 4.2 REF 128 00000000 0 15 15 15 15 0 K 10 22 A REF = 22 X 10 6 0 0 µa H1 129 2/ 10000000 0 15 15 15 15 0 1 2 A H1 = 2 X 10 6 0.05 10 0.05 10 µa H2 10 2/ 01000000 0 15 15 15 15 0 2 24 A H2 = 24 X 10 6 0.05 10 0.05 10 µa H 11 2/ 00100000 0 15 15 15 15 0 25 A H = 25 X 10 6 0.05 10 0.05 10 µa H4 12 2/ 00010000 0 15 15 15 15 0 4 26 A H4 = 26 X 10 6 0.05 10 0.05 10 µa H5 1 2/ 00001000 0 15 15 15 15 0 5 27 A H5 = 27 X 10 6 0.05 10 0.05 10 µa H6 14 2/ 00000100 0 15 15 15 15 0 6 28 A H6 = 28 X 10 6 0.05 10 0.05 10 µa H7 15 2/ 00000010 0 15 15 15 15 0 7 29 A H7 = 29 X 10 6 0.05 10 0.05 10 µa H8 16 2/ 00000001 0 15 15 15 15 0 8 0 A H8 = 0 X 10 6 0.05 10 0.05 10 µa L1 17 2/ 01111111 0 15 15 15 15 0 1 1 A L1 = 1 X 10 6 10 10 µa L2 18 2/ 10111111 0 15 15 15 15 0 2 2 A L2 = 2 X 10 6 10 10 µa L 19 2/ 11011111 0 15 15 15 15 0 A L = X 10 6 10 10 µa L4 140 2/ 11101111 0 15 15 15 15 0 4 4 A L4 = 4 X 10 6 10 10 µa L5 141 2/ 11110111 0 15 15 15 15 0 5 5 A L5 = 5 X 10 6 10 10 µa L6 142 2/ 11111011 15 15 15 15 0 6 6 A L6 = 6 X 10 6 10 10 µa L7 14 2/ 11111101 15 15 15 15 0 7 7 A L7 = 7 X 10 6 10 10 µa L8 144 2/ 11111110 15 15 15 15 0 8 8 A L8 = 8 X 10 6 10 10 µa See footnotes at end of table.

19 TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized method No. 18 162 relays No. Value Unit Min Max Min Max 9 V 10 V 11 V 12 V 1 V 14 V 15 V 2 V CAL1 145 15 15 0 0 18 00000000 K 24 E 86 V V CAL1 = E 86 V T A = 125 C 146 11111111 15 15 0 0 18 11111111 24 E 87 V = 1.9920.01(E 87 E 86 1.90 2.08 1.94 2.04 ma 147 00000000 15 15 0 0 18 11111111 K2 24 E 88 V = 1.9920.01(E 88 E 86 1.90 2.08 1.94 2.04 ma V CAL2 148 15 15 15 15 10 00000000 K 24 E 89 V V CAL2 = E 89 V 149 11111111 15 15 15 15 10 11111111 24 E 90 V = 1.9920.01(E 90 E 89 1.90 2.08 1.94 2.04 ma 150 00000000 15 15 15 15 10 11111111 K2 24 E 91 V = 1.9920.01(E 91 E 89 1.90 2.08 1.94 2.04 ma C 151 C = 1000( 4 4 4 4 µa 152 4 4 4 4 C µa C =1000 ( V CAL 15 00000000 15 15 15 15 0 00000000 24 E 92 V V CAL = E 92 V V 154 11111111 15 15 15 15 0 11111111 24 E 9 V V = E 9 V V 155 00000000 15 15 15 15 0 11111111 K2 24 E 94 V V = E 94 V V 156 11111111 15 15 15 15 0 00000000 K2 24 E 95 V V = E 95 V NL 1 157 10000000 15 15 15 15 0 10000000 24 E 96 V ( E V % 96 CAL NL 1 = NL 2 158 01000000 15 15 15 15 0 01000000 24 E 97 V NL 159 00100000 15 15 15 15 0 00100000 24 E 98 V NL 4 160 00010000 15 15 15 15 0 00010000 24 E 99 V NL 5 161 00001000 15 15 15 15 0 00001000 24 E 100 V See footnotes at end of table. (128 NL 2 = (64 NL = (2 NL 4 = (16 NL 5 = (8 V CAL ( E97 VCAL V CAL ( E98 VCAL V CAL ( E99 VCAL V CAL ( E100 VCAL V CAL % % % %

20 TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized relays method No. 18 9 V 10 V 11 V 12 V 1 V 14 V 15 V 162 No. Value Unit Min Max Min Max 2 NL 6 162 00000100 15 15 15 15 0 00000100 24 E 101 V ( E V % 101 CAL T A = 125 C NL 6 = NL 7 16 00000010 15 15 15 15 0 00000010 24 E 102 V NL 8 164 00000001 15 15 15 15 0 00000001 24 E 10 V NL 1 NL 2 NL NL 4 NL 5 NL 6 See footnotes at end of table. 165 01111111 15 15 15 15 0 10000000 24 E 104 V 166 10111111 15 15 15 15 0 01000000 24 E 105 V 167 11011111 15 15 15 15 0 00100000 24 E 106 V 168 11101111 15 15 15 15 0 00010000 24 E 107 V 169 11110111 15 15 15 15 0 00001000 24 E 108 V 170 11111011 15 15 15 15 0 00000100 24 E 109 V (4 NL 7 = (2 NL 8 = (1 NL 1 = (128 NL 2 = (64 NL = (2 NL 4 = (16 NL 5 = (8 NL 6 = (4 V CAL ( E102 VCAL V CAL ( E10 VCAL V CAL ( E104 V V ( E105 V V ( E106 V V ( E107 V V ( E108 V V ( E109 V V % % % % % % % %

21 TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized method No. relays 18 162 No. Value Unit Min Max Min Max 9 V 10 V 11 V 12 V 1 V 14 V 15 V 2 171 11111101 15 15 15 15 0 00000010 24 E NL 110 V 7 ( E V % 110 T A = 125 C NL 7 = (2 V 10 NL 172 11111110 15 15 15 15 0 00000001 24 E 8 111 V ( E V % 111 NL 8 = (1 V 10 17 = NL i NL K. (i, k, bits having positive errors 174 1 1 = NL i NL k. (i, k, bits having positive errors 175 = NL m NL n. (m, n, bits having negative errors 0.19 0 0.11 0 % 176 0.19 0 0.11 0 % 1 1 = NL m NL n. (m, n, bits having negative errors 177 = 0.05 0.05 0.0 0.0 % Σ NL 178 Σ NL = 0.05 0.05 0.0 0.0 % NL 179 NL = Σ NL NL 180 NL = Σ NL NL 181 NL = Σ NL NL 182 NL = Σ NL ( 01 a 18 10000000 15 15 15 15 0 10000000 24 E 112 V ( 01 b 184 01111111 15 15 15 15 0 01111111 24 E 11 V 128 ( 01 a = X 0.01(E112 127 ( 01 b = X 0.01(E11 ma ma ( 01 185 ( 01 = [( 01 a ( 01 b] x 10 0 16 0 16 µa See footnotes at end of table.

TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized method No. relays 18 162 No. Value Unit Min Max Min Max 9 V 10 V 11 V 12 V 1 V 14 V 15 V 2 ( 02 a 186 01000000 15 15 15 15 0 01000000 24 E 114 V 64 ma T A = 125 C ( 02 a = X 0.01(E114 ( 02 b 187 00111111 15 15 15 15 0 00111111 24 E 115 V 6 ( 02 b = X 0.01(E115 ma ( 02 188 ( 02 = [( 02 a ( 02 b] x 10 0 16 0 16 µa ( 0 a 189 00100000 15 15 15 15 0 00100000 24 E 116 V 2 ma ( 0 a = X 0.01(E116 ( 0 b 190 00011111 15 15 15 15 0 00011111 24 E 117 V 1 ( 0 b = X 0.01(E117 ma 22 ( 0 191 ( 0 = [( 0 a ( 0 b] x 10 0 16 0 16 µa ( 04 a 192 00010000 15 15 15 15 0 00010000 24 E 118 V 16 ma ( 04 a = X 0.01(E118 ( 04 b 19 00001111 15 15 15 15 0 00001111 24 E 119 V 15 ma ( 04 b = X 0.01(E119 ( 04 194 ( 04 = [( 04 a ( 04 b] x 10 0 16 0 16 µa ( 05 a 195 00001000 15 15 15 15 0 00001000 24 E 120 V 8 ma ( 05 a = X 0.01(E120 ( 05 b 196 00000111 15 15 15 15 0 00000111 24 E 121 V 7 ma ( 05 b = X 0.01(E121 ( 05 197 ( 05 = [( 05 a ( 05 b] x 10 0 16 0 16 µa ( 06 a 198 00000100 15 15 15 15 0 00000100 24 E 122 V 4 ma ( 06 a = X 0.01(E122 ( 06 b 199 00000011 15 15 15 15 0 00000011 24 E 12 V ( 06 b = X 0.01(E12 ma ( 06 200 ( 06 = [( 06 a ( 06 b] x 10 0 16 0 16 µa ( 07 a 201 00000010 15 15 15 15 0 00000010 24 E 124 V 2 ma ( 07 a = X 0.01(E124 ( 07 b 202 00000001 15 15 15 15 0 00000001 24 E 125 V 1 ( 07 b = X 0.01(E125 ma ( 07 20 ( 07 = [( 07 a ( 07 b] x 10 0 16 0 16 µa ( 08 b 204 00000000 15 15 15 15 0 00000000 24 E 126 V 1 ma ( 08 b = X 0.01(E126 ( 08 205 ( 08 = [( 07 b ( 08 b] x 10 0 16 0 16 µa 206 = 8 8 4 4 µa See footnotes at end of table.

2 Subgroup Symbol 88 method Test No. TABLE. Group A inspection for device types 01 and 02 Continued. Energized relays No. Value Unit Min Max Min Max 18 162 9 V 10 V 11 V 12 V 1 V 14 V 15 V CC 005 207 11111111 15 15 15 15 0 11 9 ma CC = 9 0.4.8 0.4.8 ma T A = 55 C CC 208 11111111 15 15 15 15 0 12 40 ma CC = 40 7.8 0.8 7.8 0.8 209 1/ 11111111 15 15 15 15 0 11111111 24 E 127 V = 1.9920.01E 127 1.94 2.04 1.984 2 ma 210 00000000 15 15 15 15 0 11111111 K2 24 E 128 V 1.94 2.04 1.984 2 = 1.9920.01E 128 ZS 211 00000000 15 15 15 15 0 K4 24 E 129 V ZS = 10E 129 2 2 1 1 µa 212 11111111 15 15 15 15 0 K2, K4 24 E ZS 10 V ZS = 10E 10 2 2 1 1 P SS 1 21 11111111 5.5 18 15 15 0 11111111 24 E 11 V P SS 1 = 10(E 11E 12 4 4 4 4 µa 214 11111111 4.5 18 15 15 0 11111111 24 E 12 V 4 4 4 4 PSS 1 215 00000000 5.5 18 15 15 0 11111111 K2 24 E 1 V PSS 1 = 10(E 1E 14 4 4 4 4 µa 216 00000000 4.5 18 15 15 0 11111111 K2 24 E 14 V 4 4 4 4 P SS 2 217 11111111 18 18 15 15 0 11111111 24 E 15 V P SS 2 = 10(E 15E 16 8 8 8 8 µa 218 11111111 12 18 15 15 0 11111111 24 E 16 V 8 8 8 8 PSS 2 219 00000000 18 18 15 15 0 11111111 K2 24 E 17 V PSS 2 = 10(E 17E 18 8 8 8 8 µa 220 00000000 12 18 15 15 0 11111111 K2 24 E 18 V 8 8 8 8 P SS 1 221 11111111 18 12 15 15 0 11111111 24 E 19 V P SS 1= 10(E 19E 15 8 8 8 8 µa PSS 1 222 00000000 18 12 15 15 0 11111111 K2 24 E 140 V PSS 1 = 10(E 140E 17 8 8 8 8 µa P SS 2 22 11111111 18 5.5 15 15 0 11111111 K5 24 E 141 V P SS 2= 10(E 141E 142 2 2 2 2 µa 224 11111111 18 4.5 15 15 0 11111111 K5 24 E 142 V 2 2 2 2 PSS 2 225 00000000 18 5.5 15 15 0 11111111 K2, K5 24 E 14 V PSS 2 = 10(E 14E 144 2 2 2 2 µa 226 00000000 18 4.5 15 15 0 11111111 K2, K5 24 E 144 V 2 2 2 2 R 1 227 11111111 15 15 10 0 5 0 K1, K4 26 E 145 V R 1 = 0.2E 145 2.1 2.1 ma R1 228 00000000 15 15 10 0 5 0 K1, K2, K4 26 E 146 V 2.1 2.1 R1 = 0.2E 146 R 2 229 11111111 25 15 12 0 5 0 K1, K4 26 E 147 V R 2 = 0.2E 147 4.2 4.2 ma R2 20 00000000 25 15 12 0 5 0 K1, K2, K4 26 E 148 V R2 = 0.2E 148 4.2 4.2 REF 21 00000000 0 15 15 15 15 0 K 10 41 A REF = 41 X 10 6 0 0 µa H1 22 2/ 10000000 15 15 15 15 0 1 42 A H1 = 42X 10 6 0.05 10 0.05 10 µa H2 2 2/ 01000000 15 15 15 15 0 2 4 A H2 = 4X 10 6 0.05 10 0.05 10 µa H 24 2/ 00100000 15 15 15 15 0 44 A H = 44X 10 6 0.05 10 0.05 10 µa H4 25 2/ 00010000 15 15 15 15 0 4 45 A H4 = 45X 10 6 0.05 10 0.05 10 µa H5 26 2/ 00001000 15 15 15 15 0 5 46 A H5 = 46X 10 6 0.05 10 0.05 10 µa H6 27 2/ 00000100 15 15 15 15 0 6 47 A H6 = 47X 10 6 0.05 10 0.05 10 µa H7 28 2/ 00000010 15 15 15 15 0 7 48 A H7 = 48 X 10 6 0.05 10 0.05 10 µa H8 29 2/ 00000001 15 15 15 15 0 8 49 A H8 = 49 X 10 6 0.05 10 0.05 10 µa L1 240 2/ 01111111 15 15 15 15 0 1 50 A L1 = 50 X 10 6 10 10 µa L2 241 2/ 10111111 15 15 15 15 0 2 51 A L2 = 51 X 10 6 10 10 µa L 242 2/ 11011111 15 15 15 15 0 52 A L = 52 X 10 6 10 10 µa L4 24 2/ 11101111 15 15 15 15 0 4 5 A L4 = 5 X 10 6 10 10 µa L5 244 2/ 11110111 15 15 15 15 0 5 54 A L5 = 54 X 10 6 10 10 µa L6 245 2/ 11111011 15 15 15 15 0 6 55 A L6 = 55 X 10 6 10 10 µa L7 246 2/ 11111101 15 15 15 15 0 7 56 A L7 = 56 X 10 6 10 10 µa L8 247 2/ 11111110 15 15 15 15 0 8 57 A L8 = 57 X 10 6 10 10 µa See footnotes at end of table.

24 Subgroup T A = 55 C TABLE. Group A inspection for device types 01 and 02. Continued. Symbol 88 Test Energized method No. 18 11 12 1 162 relays No. Value Unit Min Max Min Max 9 V 10 V 14 V 15 V V V V V CAL1 248 15 15 0 0 18 00000000 K 24 E 149 V V CAL1 = E 149 V 249 11111111 15 15 0 0 18 11111111 24 E 150 V =1.9920.01(E 150 E 149 1.90 2.08 1.94 2.04 ma 250 00000000 15 15 0 0 18 11111111 K2 24 E 151 V =1.9920.01(E 151 1.90 2.08 1.94 2.04 ma V CAL2 251 15 15 15 15 10 00000000 K 24 E 152 V V CAL2 = E 152 V 252 11111111 15 15 15 15 10 11111111 24 E 15 V = 1.9920.01(E 15 E 152 1.90 2.08 1.94 2.04 ma 25 00000000 15 15 15 15 10 11111111 K2 24 E 154 V = 1.9920.01(E 154 1.90 2.08 1.94 2.04 ma C 254 C = 1000( 8 8 8 8 µa 8 8 8 8 C µa E 149 E 152 C =1000 ( V CAL 256 00000000 15 15 15 15 0 00000000 24 E 155 V V CAL = E 155 V V 257 11111111 15 15 15 15 0 11111111 24 E 156 V V = E 156 V V 258 00000000 15 15 15 15 0 11111111 K2 24 E 157 V V = E 157 V V 259 11111111 15 15 15 15 0 00000000 K2 24 E 158 V V = E 158 V NL 1 260 10000000 15 15 15 15 0 10000000 24 E 159 V ( E V % 159 CAL NL 1 = NL 2 261 01000000 15 15 15 15 0 01000000 24 E 160 V NL 262 00100000 15 15 15 15 0 00100000 24 E 161 V NL 4 26 00010000 15 15 15 15 0 00010000 24 E 162 V NL 5 264 00001000 15 15 15 15 0 00001000 24 E 16 V See footnotes at end of table. (128 NL 2 = (64 NL = (2 NL 4 = (16 NL 5 = (8 V CAL ( E160 VCAL V CAL ( E161 VCAL V CAL ( E162 VCAL V CAL ( E16 VCAL V CAL % % % %

25 TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized relays method No. 18 9 V 10 V 11 V 12 V 1 V 14 V 15 V 162 No. Value Unit Min Max Min Max NL 6 265 00000100 15 15 15 15 0 00000100 24 E 164 V ( E V % 164 CAL T A = 55 C NL 6 = NL 7 266 00000010 15 15 15 15 0 00000010 24 E 165 V NL 8 267 00000001 15 15 15 15 0 00000001 24 E 166 V NL 1 NL 2 NL NL 4 NL 5 NL 6 See footnotes at end of table. 268 01111111 15 15 15 15 0 10000000 24 E 167 V 269 10111111 15 15 15 15 0 01000000 24 E 168 V 270 11011111 15 15 15 15 0 00100000 24 E 169 V 271 11101111 15 15 15 15 0 00010000 24 E 170 V 272 11110111 15 15 15 15 0 00001000 24 E 171 V 27 11111011 15 15 15 15 0 00000100 24 E 172 V (4 NL 7 = (2 NL 8 = (1 NL 1 = (128 NL 2 = (64 NL = (2 NL 4 = (16 NL 5 = (8 NL 6 = (4 V CAL ( E165 VCAL V CAL ( E166 VCAL V CAL ( E167 V V ( E168 V V ( E169 V V ( E170 V V ( E171 V V ( E172 V V % % % % % % % %

26 TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized method No. relays 18 162 No. Value Unit Min Max Min Max 9 V 10 V 11 V 12 V 1 V 14 V 15 V 274 11111101 15 15 15 15 0 00000010 24 E NL 17 V 7 ( E V % 17 T A = 55 C NL 7 = (2 V 10 NL 275 11111110 15 15 15 15 0 00000001 24 E 8 174 V ( E V % 174 NL 8 = (1 V 10 276 = NL i NL K. (i, k, bits having positive errors 277 1 1 = NL i NL k. (i, k, bits having positive errors 278 = NL m NL n. (m, n, bits having negative errors 0.19 0 0.11 0 % 279 0.19 0 0.11 0 % 1 1 = NL m NL n. (m, n, bits having negative errors 280 = 0.05 0.05 0.0 0.0 % Σ NL 281 Σ NL = 0.05 0.05 0.0 0.0 % NL 282 NL = Σ NL NL 28 NL = Σ NL NL 284 NL = Σ NL NL 285 NL = Σ NL ( 01 a 286 10000000 15 15 15 15 0 10000000 24 E 175 V ( 01 b 287 01111111 15 15 15 15 0 01111111 24 E 176 V 128 ( 01 a = X 0.01(E175 127 ( 01 b = X 0.01(E176 ma ma ( 01 288 ( 01 = [( 01 a ( 01 b] x 10 0 16 0 16 µa See footnotes at end of table.

TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized method No. relays 18 162 No. Value Unit Min Max Min Max 9 V 10 V 11 V 12 V 1 V 14 V 15 V ( 02 a 289 01000000 15 15 15 15 0 01000000 24 E 177 V 64 ma T A = 55 C ( 02 a = X 0.01(E177 ( 02 b 290 00111111 15 15 15 15 0 00111111 24 E 178 V 6 ma ( 02 b = X 0.01(E178 ( 02 291 ( 02 = [( 02 a ( 02 b] x 10 0 16 0 16 µa ( 0 a 292 00100000 15 15 15 15 0 00100000 24 E 179 V 2 ma ( 0 a = X 0.01(E179 ( 0 b 29 00011111 15 15 15 15 0 00011111 24 E 180 V 1 ( 0 b = X 0.01(E180 ma 27 ( 0 294 ( 0 = [( 0 a ( 0 b] x 10 0 16 0 16 µa ( 04 a 295 00010000 15 15 15 15 0 00010000 24 E 181 V 16 ma ( 04 a = X 0.01(E181 ( 04 b 296 00001111 15 15 15 15 0 00001111 24 E 182 V 15 ma ( 04 b = X 0.01(E182 ( 04 297 ( 04 = [( 04 a ( 04 b] x 10 0 16 0 16 µa ( 05 a 298 00001000 15 15 15 15 0 00001000 24 E 18 V 8 ma ( 05 a = X 0.01(E18 ( 05 b 299 00000111 15 15 15 15 0 00000111 24 E 184 V 7 ma ( 05 b = X 0.01(E184 ( 05 00 ( 05 = [( 05 a ( 05 b] x 10 0 16 0 16 µa ( 06 a 01 00000100 15 15 15 15 0 00000100 24 E 185 V 4 ma ( 06 a = X 0.01(E185 ( 06 b 02 00000011 15 15 15 15 0 00000011 24 E 186 V ( 06 b = X 0.01(E186 ma ( 06 0 ( 06 = [( 06 a ( 06 b] x 10 0 16 0 16 µa ( 07 a 04 00000010 15 15 15 15 0 00000010 24 E 187 V 2 ma ( 07 a = X 0.01(E187 ( 07 b 05 00000001 15 15 15 15 0 00000001 24 E 188 V 1 ( 07 b = X 0.01(E188 ma ( 07 06 ( 07 = [( 07 a ( 07 b] x 10 0 16 0 16 µa ( 08 b 07 00000000 15 15 15 15 0 00000000 24 E 189 V 1 ma ( 08 b = X 0.01(E189 ( 08 08 ( 08 = [( 07 b ( 08 b] x 10 0 16 0 16 µa 09 = 8 8 4 4 µa See footnotes at end of table.

28 TABLE. Group A inspection for device types 01 and 02. Continued. Subgroup Symbol 88 Test Energized method No. relays 18 162 No. Value Unit Min Max Min Max 9 V 10 V 11 V 12 V 1 V 14 V 15 V 9 TC( 10 ( E1 E64 50 50 50 50 T A = 25 C TC( = X 10 4 PPM/ C E1 TC( 11 ( E1 E127 50 50 50 50 TC( = X 10 4 PPM/ C 0.8E1 TC( 12 ( E2 E65 50 50 50 50 PPM/ C TC( = X 10 4 E2 TC( 1 ( E2 E128 50 50 50 50 TC( = X 10 4 PPM/ C 0.8E2 t PHL 14 See figure. V L = 2.7 V, V OUT hightolow transition, 6 60 6 60 ns S1OFF N lowtohigh t PLH 15 See figure. V L = 0.7 V, V OUT lowtohigh transition, 6 60 6 60 ns S1OFF N hightolow 10 t PHL 16 See figure. V L = 2.7 V, V OUT hightolow transition, 6 60 6 60 ns T A = 125 C S1OFF N lowtohigh t PLH 17 See figure. V L = 0.7 V, V OUT lowtohigh transition, 6 60 6 60 ns S1OFF N hightolow 11 t PHL 18 See figure. V L = 2.7 V, V OUT hightolow transition, 6 60 6 60 ns T A = 55 C S1OFF N lowtohigh t PLH 19 See figure. V L = 0.7 V, V OUT lowtohigh transition, 6 60 6 60 ns S1OFF N hightolow 12 do 20 See figure 4. V N lowtohigh transition, do 1 1.5 1.5 ma T A = 25 C dt V L = 5 Vdc = dt t µ sec t SHL 21 See figure. V L = 2.7 V, V OUT hightolow transition, 10 15 10 15 ns S1OFF N lowtohigh t SLH 22 See figure. V L = 0.7 V, V OUT lowtohigh transition, 10 15 10 15 ns S1OFF N hightolow NOTES: 1/ E The measurement of and can be made directly as a voltage measurement at pin 26 ( = pin 26 ma 5000 provided that measurement accuracy is ±0.1% or better. f the measurement is made in accordance with table, the reference D/A converter must be calibrated for a full scale current of 2.0 ma ±0.1%. 2/ For tests 26, 12916, and 2229, the logic input voltage shall be 18 V. For tests 441, 17144, and 240247, the logic input voltage shall be 10.0 V.

TABLE V. Group C end point electrical parameters. T A = 25 C; ±V CC = ±15 V Test Symbol Device type 01 Device type 02 no. Min Max Delta Units Min Max Delta Units 1.94 2.04 0.01 ma 1.984 2.000 0.005 ma 4 1.94 2.04 0.01 ma 1.984 2.000 0.005 ma 5 ZS 2.0 2.0 0.5 µa 1.0 1.0 0. µa 6 ZS 2.0 2.0 0.5 µa 1.0 1.0 0. µa 4.4.1 Group A inspection. Group A inspection shall be in accordance with table of MLPRF855 and as follows: a. Tests shall be as specified in table herein. b. Subgroups 4, 5, 6, 7, and 8 shall be omitted. c. Subgroup 12 shall be added to group A inspection for all classes and it shall consist of the conditions and limits as specified in table. The sample size series number shall be 5 for all classes (accept on 0. 4.4.2 Group B inspection. Group B inspection shall be in accordance with table of MLPRF855. 4.4. Group C inspection. Group C inspection shall be in accordance with table V of MLPRF855 and as follows: a. End point electrical parameters shall be as specified in table herein. b. The steadystate life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MLPRF855. The burnin test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB in accordance with MLPRF855 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of 88. 4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MLPRF855. End point electrical parameters shall be as specified in table herein. 4.5 Methods of inspection. Methods of inspection shall be specified and as follows. 4.5.1 Voltage and current. All voltage values given except the input offset voltage (or differential voltage are referenced to the external zero reference level of the supply voltage. Currents given are conventional current and positive when flowing into the referenced terminal. 5. PACKAGNG 5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2. When packaging of materiel is to be performed by DoD or inhouse contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the nventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CDROM products, or by contacting the responsible packaging activity. 29

6. NOTES (This section contains information of a general or explanatory nature that may be helpful, but is not mandatory. 6.1 ntended use. Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment. 6.2 Acquisition requirements. Acquisition documents should specify the following: a. Title, number, and date of the specification. b. PN and compliance identifier, if applicable (see 1.2. c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable. d. Requirements for certificate of compliance, if applicable. e. Requirements for notification of change of product or process to acquiring activity in addition to notification of the qualifying activity, if applicable. f. Requirements for failure analysis (including required test condition of 88, method 500, corrective action and reporting of results, if applicable. g. Requirements for product assurance options. h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government. i. Requirements for "JAN" marking. j. Packaging requirements (see 5.1. 6. Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML855 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. nformation pertaining to qualification of products may be obtained from DSCCVQ, 990 E. Broad Street, Columbus, Ohio 4121199. 6.4 Superseding information. The requirements of MLM8510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML system provided by MLPRF855. Previous references to MLM8510 in this document have been replaced by appropriate references to MLPRF855. All technical requirements now consist of this specification and MLPRF855. The MLM8510 specification sheet number and PN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists. 6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MLPRF855 and 11. 6.6 Logistic support. Lead materials and finishes (see. are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2, lead material and finish A (see.4. Longer length leads and lead forming should not affect the part number. 0

6.7 Substitutability. The crossreference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed genericindustry type. Genericindustry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MLM 8510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of genericindustry types for MLM8510 types or as a waiver of any of the provisions of MLPRF855. Military device type Genericindustry type 01 DAC08 02 DAC08A 6.8 Changes from previous issue. Marginal notations are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes. Custodians: Preparing activity: Army CR DLA CC Navy EC Air Force 85 Project 5962201100 NASA NA DLA CC Review activities: Army M, SM Navy AS, CG, MC, SH Air Force 0, 19, 99 NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSST Online database at https://assist.daps.dla.mil. 1