Probability, Statistics, and Reliability for Engineers and Scientists SIMULATION

Similar documents
Simulation and Probability Distribution

RELIABILITY ASSESSMENT

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

First Year Examination Department of Statistics, University of Florida

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Topic 23 - Randomized Complete Block Designs (RCBD)

Chapter 11: Simple Linear Regression and Correlation

System in Weibull Distribution

Uncertainty as the Overlap of Alternate Conditional Distributions

A benchmark study on intelligent sampling techniques in Monte Carlo simulation

FUZZY FINITE ELEMENT METHOD

Composite Hypotheses testing

Basic Statistical Analysis and Yield Calculations

Lecture 3: Probability Distributions

A Linear Response Surface based on SVM for Structural Reliability Analysis

Chapter 12 Analysis of Covariance

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

ADAPTIVE IMAGE FILTERING

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability

Fuzzy Threshold Values in the Robust Design of Controllers for Probabilistic Uncertain Systems

Global Sensitivity. Tuesday 20 th February, 2018

Probability and Random Variable Primer

Chapter 3 Describing Data Using Numerical Measures

( ) ( ) ( ) ( ) STOCHASTIC SIMULATION FOR BLOCKED DATA. Monte Carlo simulation Rejection sampling Importance sampling Markov chain Monte Carlo

Statistical Evaluation of WATFLOOD

Experimental Study on Ultimate Strength of Flexural-Failure-Type RC Beams under Impact Loading

Equivalent Standard Deviation to Convert High-reliability Model to Low-reliability Model for Efficiency of Samplingbased

Adaptive multi-point sequential sampling methodology for highly nonlinear automotive crashworthiness design problems

Distributions /06. G.Serazzi 05/06 Dimensionamento degli Impianti Informatici distrib - 1

Engineering Risk Benefit Analysis

MECHANICS OF MATERIALS

Modeling and Simulation NETW 707

AN ADAPTIVE IMPORTANCE SAMPLING-BASED ALGORITHM USING THE FIRST-ORDER METHOD FOR STRUCTURAL RELIABILITY

Topic- 11 The Analysis of Variance

Cokriging Partial Grades - Application to Block Modeling of Copper Deposits

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

: 5: ) A

U-Pb Geochronology Practical: Background

Lecture 8 Modal Analysis

Research Article Green s Theorem for Sign Data

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

/04/$ IEEE. 2

Lecture 12: Classification

Computing MLE Bias Empirically

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

LAB 4: Modulus of elasticity

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

Chapter 4: Regression With One Regressor

9.2 Seismic Loads Using ASCE Standard 7-93

Some basic statistics and curve fitting techniques

CHAPTER 4d. ROOTS OF EQUATIONS

Absorbing Markov Chain Models to Determine Optimum Process Target Levels in Production Systems with Rework and Scrapping

Lecture 3 Stat102, Spring 2007

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Lecture 4 Hypothesis Testing

Boostrapaggregating (Bagging)

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

Chapter 5 Multilevel Models

Old Dominion University Physics 420 Spring 2010

Queueing Networks II Network Performance

Estimation: Part 2. Chapter GREG estimation

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A strong wind prediction model for the railway operation based on the onsite measurement and the numerical simulation

A Network Intrusion Detection Method Based on Improved K-means Algorithm

Stochastic Structural Dynamics

Sketching Sampled Data Streams

A Hybrid Variational Iteration Method for Blasius Equation

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

Quantifying Uncertainty

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Random Partitions of Samples

Statistics Chapter 4

Doubly weighted moving least squares and its application to structural reliability analysis

Simulation and Random Number Generation

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Introduction to Analysis of Variance (ANOVA) Part 1

NON LINEAR ANALYSIS OF STRUCTURES ACCORDING TO NEW EUROPEAN DESIGN CODE

Probability Theory (revisited)

Markov Chain Monte Carlo Lecture 6

Available online at Procedia Engineering 2 (2010) Procedia Engineering 4 (2010) ISAB-2010

Testing for seasonal unit roots in heterogeneous panels

An Application of Fuzzy Hypotheses Testing in Radar Detection

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Modeling and Simulation of a Hexapod Machine Tool for the Dynamic Stability Analysis of Milling Processes. C. Henninger, P.

A Particle Filter Algorithm based on Mixing of Prior probability density and UKF as Generate Importance Function

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

Dimension Reduction and Visualization of the Histogram Data

Strong Markov property: Same assertion holds for stopping times τ.

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

Transcription:

CHATER robablty, Statstcs, and Relablty or Engneers and Scentsts Second Edton SIULATIO A. J. Clark School o Engneerng Department o Cvl and Envronmental Engneerng 7b robablty and Statstcs or Cvl Engneers Department o Cvl and Envronmental Engneerng Unversty o aryland, College ark CHAA HALL/CRC CHATER 7b. SIULATIO Slde o. Smulaton ethods Smulaton s the process conductng experments on a model. A model s a representaton or the real system or the real component or the purpose o studyng the perormance. Hgh cost. Dculty (mpossblty).

CHATER 7b. SIULATIO Slde o. Smulaton ethods onte Carlo technques are technques or testng engneerng systems by mtatng ther real behavor. the accuracy o the smulaton estmator ncreases as the smulaton cycles ncrease. CHATER 7b. SIULATIO Slde o. 3 Smulaton ethods The perormance uncton s dened as Z = R L = g( X, X, X 3, K, X n ) X,, X, X 3, K X n n = random varables I I I Z > 0 Z < 0 Z = 0 survval. alure. lmt state.

CHATER 7b. SIULATIO Slde o. 4 Smulaton ethods The relablty o each component n the system s the probablty that the strength o the component exceeds the appled loadngs on the same component. The probablty o alure o the component s the probablty that the strength o the component s less than the appled loadngs on the component. CHATER 7b. SIULATIO Slde o. 5 Smulaton ethods The onte Carlo Smulaton ethods: Drect onte Carlo smulaton ance reducton technques Improve the smulaton accuracy: reduce the varance o the estmated probablty o alure, Improve the smulaton ecency: reduce the number o smulaton cycles 3

CHATER 7b. SIULATIO Slde o. 6 Smulaton ethods Steps or smulatons based varance reducton technques: Select g(x) tmes Compute () COV() Generate (u) Draw sample (R.V.) Evaluate I[g(x)] Estmate CHATER 7b. SIULATIO Slde o. 7 Smulaton ethods In the smulaton technques, compute: The estmated probablty o alure. The varance o the estmated probablty o alure. The coecent o varaton o the estmated probablty o alure. The computatonal tme (CU). σ The relatve ecency rato = σ T T 4

CHATER 7b. SIULATIO Slde o. 8 Smulaton ethods The VRT s are classed based on ther common characterstcs:. The mportance samplng category: ore samples are taken rom the regon o nterest.. The correlated samplng category: Lnear correlaton among the randomly generated varables. 3. The condtonal expectaton category: Condtonng on one or more o the generated random varables. 4. The general technques category: Indvdual characterstcs. CHATER 7b. SIULATIO Slde o. 9 Smulaton ethods Table. Classcaton o ance Reducton Technques. Importance samplng category: Importance samplng technque. Adaptve samplng technque. Strated samplng technque. oststrated samplng technque. Latn hypercube samplng technque. Updated Latn hypercube samplng technque. Sphercal samplng technque. Truncated samplng technque. Correlated samplng category: Antthetc ate technque. Common Random umbers technque. Control ate technque. Rotaton Samplng technque. Condtonal expectaton category: Condtonal expectaton technque. Generalzed condtonal expectaton technque. Adaptve hybrd condtonal expectaton technque. General technques category: Response surace technque. Adaptve response surace technque. Russan roulette technque. Russan roulette and splttng technque. Jackkne technque. 5

CHATER 7b. SIULATIO Slde o. 0 VRT: Drect onte Carlo Technque (DC) Draw samples o the basc random varables based on ther probablstc characterstcs and eedng them n the perormance uncton. = ( ) ( ) = ( ) ( ) COV = ( X ) = g( X, X, ) Z = g, K X n CHATER 7b. SIULATIO Slde o. VRT: Drect onte Carlo Technque (DC) Smulaton steps or DC:. Select a perormance uncton and denty ts random varables and ther probablstc characterstcs.. Generate random numbers ( u) and then the random varables values by usng the nverse transormaton method. 3. Evaluate the perormance uncton (lmt state uncton), g( X ), add to the alure counter,( I(). ), g < 0 and add 0 g 0. 4. Repeat steps to 3 tmes. 5. Determne the number o alures,, based on the counter ( I) value. 6. Compute and = ( ) ( ) = 7. Compute ( ) ( ) COV = 6

CHATER 7b. SIULATIO Slde o. Example (DC) w oment alure mode o a steel beam subjected to unormly dstrbute loadng. Z = F y S L Where F y S Random able ean Value COV Dstrbuton Type 90 a 0.5 ormal Yeld stress ( F y ) Secton odulus (S) Load moment, ( ) = materal yeld stress. = elastc secton modulus. = moment eect due to appled loadng. 8.9x0-4 m 3 0.050 ormal.3x0 5 -m 0.00 ormal CHATER 7b. SIULATIO Slde o. 3 Example (DC) DC_5000 Cycles 0.00 0.35 0.090 0.30 0.080 0.070 0.5 robablty o Falure 0.060 0.050 0.040 0.030 COV () 0.0 0.5 0.0 Coecent o aton () 0.00 0.00 0.05 0.00 0 500 000 500 000 500 3000 3500 4000 4500 5000 5500 Smulaton Cycles 7

CHATER 7b. SIULATIO Slde o. 4 VRT: Importance Samplng Technque (IS) The smulaton samples are concentrated n the alure regon. The random varables are generated accordng to selected probablty dstrbutons wth mean values closer to the desgn pont. X ( X ) = X ( X ) dx = hx ( X ) dx h ( X ) D D X ( ) = = ( = ( ) ( X) X I[ g( X) 0] = hx ( X) ) ( ) COV = ( ) CHATER 7b. SIULATIO Slde o. 5 VRT: Importance Samplng Technque (IS) Smulaton steps or IS:. Select a perormance uncton and denty ts random varables and ther probablstc characterstcs.. Select the mportance densty uncton, h X x, and dene the orgnal densty uncton, X ( x). 3. Generate random numbers ( u) and then the random varables values by usng the nverse transormaton method. 4. Evaluate the perormance uncton (lmt state uncton), g( X ), add to the alure counter,( I(). ), g < 0 and add 0 g 0. 5. Repeat steps 3 to 4 tmes. 6. Compute X ( X ) ( ) = I[ g( X ) 0] hx ( X ) ( ) = = ( ) 7. Compute ( ) ( ) COV = ( ) 8

CHATER 7b. SIULATIO Slde o. 6 Example (IS) Z = F y S w IS_5000 Cycles L 0.40 0.40 0.35 robablty o Falure 0.0 0.00 0.080 0.060 0.040 0.00 COV () 0.30 0.5 0.0 0.5 0.0 0.05 Coecent o aton ( ) 0.00 0 500 000 500 000 500 3000 3500 4000 4500 5000 5500 Smulaton Cycles CHATER 7b. SIULATIO Slde o. 7 VRT: Condtonal Expectaton Technque (CE) Randomly generatng all the basc random varables except one varable. Select the control varable X k wth the hghest varablty. [ g ( X : =,, K, n k) ] = FX k k ; = ( = ( ) = = ( ) ( ) COV = ( ) ) 9

CHATER 7b. SIULATIO Slde o. 8 Example (CE) Z = F y S w CE_5000 Cycles L 0.00.60E-0 robablty o Falure 0.090 0.080 0.070 0.060 0.050 0.040 0.030 0.00 0.00.40E-0.0E-0.00E-0 8.00E-0 6.00E-0 4.00E-0.00E-0 Coecent o aton ( ) COV () 0.00E+00 0 500 000 500 000 500 3000 3500 4000 4500 5000 5500 Smulaton Cycles CHATER 7b. SIULATIO Slde o. 9 VRT: Generalzed Condtonal Expectaton Technque (GCE) The number o control varables are consdered more than one. = F µ S Fy S µ σ Fy + σ = = ( ) = = ( ( ) ) ( ) COV = ( ) 0

CHATER 7b. SIULATIO Slde o. 0 Example (GCE) Z = F y S GCE_5000 Cycles L w 0.00 5 0.090 0.080 5 4 robablty o Falure 0.070 0.060 0.050 0.040 0.030 4 3 3 Coecent o aton ( ) 0.00 COV () 0.00 0 0 000 000 3000 4000 5000 6000 Smulaton Cycles CHATER 7b. SIULATIO Slde o. VRT: Antthetc ate Technque (AV) egatve correlaton between derent cycles o smulaton s nduced n order to decrease the varance o the estmated mean value. u and -u are used. = () + ( ) () ( ) () ( ) ( ) = [ ( ) ( ) (, )] + Cov + 4 ( ) COV = ( )

CHATER 7b. SIULATIO Slde o. Example (AV) Z = F y S AV_5000 Cycles L w 0.00 0.030 0.090 0.080 0.05 robablty o Falure 0.070 0.060 0.050 0.040 0.030 0.00 0.05 0.00 Coecent o aton ( ) 0.00 0.00 COV () 0.005 0 500 000 500 000 500 3000 3500 4000 4500 5000 5500 Smulaton Cycles CHATER 7b. SIULATIO Slde o. 3 VRT: Strated Samplng Technque (SS) The alure doman s dvded nto several dsjont subdomans. ore samples are then taken rom the most mportant subdomans. = 5 = ( ) ( ) COV = = = 5 = I [ g( X ) < 0] σ ( )

CHATER 7b. SIULATIO Slde o. 4 Example (SS) Z = F y S SS_5000 Cycles L w 0.00 0.400 robablty o Falure 0.80 0.60 0.40 0.0 0.00 0.080 0.060 0.040 0.350 0.300 0.50 0.00 0.50 0.00 Coecent o aton ( ) 0.050 0.00 COV () 0 500 000 500 000 500 3000 3500 4000 4500 5000 5500 Smulaton Cycles CHATER 7b. SIULATIO Slde o. 5 VRT: Control ate Technque (CV) Takes advantage o correlaton between certan varables. Another random varable wth known mean s selected to adjust the. Generate an ntal run to estmate the Cov( g( X ), g o ( X )) adjustment constant, a = ( g o ( X )) [ I [ g ( x ) < 0] a( I ( g o ( x ) < 0) )] + aµ c = = [ ] = ( g( X )) + a g o ( X ) acov g X, ( ) COV = ( ) ( ) ( ( ) g ( X )) o 3

CHATER 7b. SIULATIO Slde o. 6 Example (CV) Z = F y S CV_5000 Cycles L w 0.03 robablty o Falure 0.40 0.0 0.00 0.080 0.060 0.040 0.00 COV () 0.0 0.0 0.00 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.00 0.00 Coecent o aton ( ) 0 500 000 500 000 500 3000 3500 4000 4500 5000 5500 Smulaton Cycles CHATER 7b. SIULATIO Slde o. 7 VRT: Russan Roulette Technque (RR) Some smulaton cycles are klled (ceased to exst) by chance wth a certan probablty. The survval probablty s determned and the the survval weght s then adjusted as w = ( J n s the Russan roulette counter or survved smulaton cycles. ( ) = = I[ g( X ) 0]. J. w ( ) = = n ( ) COV = ( ) ( ) survval ) 4

CHATER 7b. SIULATIO Slde o. 8 Example (RR) Z = F y S RR_5000 Cycles L w 0.0 0.30 0.00 0.5 robablty o Falure 0.080 0.060 0.040 COV () 0.0 0.5 0.0 Coecent o aton ( ) 0.00 0.05 0.00 0 500 000 500 000 500 3000 3500 4000 4500 5000 5500 Smulaton Cycles CHATER 7b. SIULATIO Slde o. 9 VRT: Russan Roulette & Splttng Technque (RR&S) The klled samples n the Russan Roulette are compensated n the splttng process n ths technque. re-determne the number o splts, k. Wght the samples as ( / k). = = I[ g( X ) 0]. J n where J n ( = Russan roulette counter ) = = ( ( ( ) ) ) COV = ( ) 5

CHATER 7b. SIULATIO Slde o. 30 Example (RR&S) Z = F y S RR&S_5000 Cycles L w 0.0 0.30 0.00 0.5 robablty o Falure 0.080 0.060 0.040 0.0 0.5 0.0 Coecent o aton ( ) COV () 0.00 0.05 0.00 0 500 000 500 000 500 3000 3500 4000 4500 5000 5500 Smulaton Cycles CHATER 7b. SIULATIO Slde o. 3 Example (Results or All VRT s) VRT 000 3000 5000 COV() Tme COV() Tme COV() S.D. VAR Tme Relatve Ecency Rato DC 0.0750 0..7 0.0747 0.0643 6.0 0.0768 4.90E-0 3.77E-03.4E-05 98.0 CE 0.0798 5. 0.083 3 63.4 0.0834.09E-04.75E-05 3.05E-0 05.5 4360 GCE 0.088.8 0.08 38.8 0.088 6.04E-05 5.00E-06.50E- 66.7 83689 IS 0.077 0.00 3.0 0.0957 0.065 94.0 0.0986 4.77E-0 4.70E-03.E-05 55.9 0.4 CV 0.094 0.0037 8.8 0.096 0.008 0.7 0.00.E-03.4E-04 4.60E-08 98.7 5 SS 0.0770 0.033 5.9 0.0760 0.0074 48.0 0.0858 8.3E-03 7.3E-04 5.08E-07 80. 34 AV 0.09 0.0030 40. 0.083 0.003 37.3 0.084 8.4E-04 6.94E-05 4.8E-09 47.6 65 RR 0.0936 0.00 9. 0.0944 7 56.4 0.0968 5.5E-0 5.08E-03.58E-05 93.7 RR&S 0.0935 0.00 3. 0.0898 7 69.3 0.0880 5.9E-0 4.57E-03.08E-05 4.7 AS 0.080 0.080 0.080 6

CHATER 7b. SIULATIO Slde o. 3 Example (Results or All VRT s) 5000 Smulaton Cycles Estmated probablty o alure 0.300 0.50 0.00 0.50 0.00 AS (0 08) DC CE GCE IS CV SS AV RR RR&S AS 0.050 0 000 000 3000 4000 5000 6000 umber o smulaton cycles CHATER 7b. SIULATIO Slde o. 33 Example (Results or All VRT s) 5000 Smulaton Cycles ance ( ) 5.00E-04 4.50E-04 4.00E-04 3.50E-04 3.00E-04.50E-04.00E-04 DC CE GCE IS CV SS AV RR RR&S.50E-04.00E-04 5.00E-05 0.00E+00 0 000 000 3000 4000 5000 6000 umber o Smulaton Cycles 7

CHATER 7b. SIULATIO Slde o. 34 Example (Results or All VRT s) 5000 Smulaton Cycles Coecent o aton ( ) 5.00E-0 4.50E-0 4.00E-0 3.50E-0 3.00E-0.50E-0.00E-0.50E-0.00E-0 DC CE GCE IS CV SS AV RR RR&S 5.00E-0 AV SS CE 0.00E+00 CV 0 000 000 3000 4000 5000 6000 umber o smulaton cycles CHATER 7b. SIULATIO Slde o. 35 Example (Results or All VRT s) 5000 Smulaton Cycles 0.00 DC (500'000 cycles) = 0.083 Estmated probablty o alure 0.0800 0.0600 0.0400 0 DC CE GCE IS CV SS AV RR RR&S AS Seres 0.0768 0.0834 0.088 0.0986 0.00 0.0858 0.084 0.0968 0.0880 0.080 Technques 8

CHATER 7b. SIULATIO Slde o. 36 Example (Results or All VRT s) 5000 Smulaton Cycles 0.0090 0.0080 0.0070 COV( ) 0.0060 0.0050 0.0040 DC CE GCE IS CV SS AV RR RR&S 0.0030 0 DC CE GCE IS CV SS AV RR RR&S Seres 0.0490 0.0477 0.00 0.0083 8 5 5 Techques CHATER 7b. SIULATIO Slde o. 37 Example (Results or All VRT s) 5000 Smulaton Cycles 300 50 Tme (seconds) 00 50 00 50 0 DC CE GCE IS CV SS AV RR RR&S Seres 98.0 05.5 66.7 55.9 98.7 80. 47.6 93.7 4.7 Technques 9

CHATER 7b. SIULATIO Slde o. 38 Example (Results or All VRT s) 5000 Smulaton Cycles 0000 9000 8000 Relatve Ecency Rato 7000 6000 5000 4000 3000 DC CE GCE IS CV SS AV RR RR&S 000 000 0 DC CE GCE IS CV SS AV RR RR&S Seres 4360 83689 0.4 5 34 65 Technques 0