Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

Similar documents
Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

State of the art cold atom gyroscope without dead times

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Precision atom interferometry in a 10 meter tower

Travaux en gravimétrie au SYRTE

Atom interferometry applications in gravimetry

Hybrid Atom-Optical Interferometry for Gravitational Wave Detection and Geophysics

Towards compact transportable atom-interferometric inertial sensors

Atom Interferometric Gravity Wave Detectors. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

Gravitational tests using simultaneous atom interferometers

Cold atom gyroscope with 1 nrad.s -1 rotation stability

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Advanced accelerometer/gradiometer concepts based on atom interferometry

Atomic Quantum Sensors and Fundamental Tests

Atom interferometry in microgravity: the ICE project

Tests of fundamental physics using atom interferometry

Absolute gravity measurements with a cold atom gravimeter

Atom Interferometry and Precision Tests in Gravitational Physics

Characterization of an Atom Interferometer Gravimeter with Classical Sensors for the Use in Geodesy and Geophysics

Compensation of gravity gradients and rotations in precision atom interferometry

Large Momentum Beamsplitter using Bloch Oscillations

Fundamental Physics with Atomic Interferometry

Cold Atom Navigation Sensors. Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich

Atom-Based Test of the Equivalence Principle

arxiv: v1 [physics.ins-det] 25 May 2017

RDECOM. Optimal pulse schemes for high-precision atom interferometry U.S.ARMY. Michael Goerz 1, Paul Kunz 1, Mark Kasevich 2, Vladimir Malinovsky 1

Quantum superposition at the half-metre scale

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

Looking For Dark Energy On Earth: A New Experiment Using Atom Interferometry That Galileo Would Understand

Lecture 2:Matter. Wave Interferometry

Point source atom interferometry with a cloud of finite size

Atom Interferometry. Abstract

arxiv: v2 [gr-qc] 6 Jan 2009

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN

arxiv: v1 [physics.atom-ph] 26 Feb 2014

arxiv: v1 [physics.atom-ph] 17 Dec 2015

Atom Interferometry II. F. Pereira Dos Santos

Interferometry and precision measurements with Bose-condensed atoms

Gravimètre Quantique Absolu : une utilisation opérationnelle des atomes froids pour la mesure de gravité. Dr. Jean Lautier-Gaud Journée CNFGG

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Atom Interferometry I. F. Pereira Dos Santos

New Searches for Subgravitational Forces

An Overview of Advanced LIGO Interferometry

arxiv: v3 [physics.atom-ph] 16 Oct 2015

Bloch oscillations of ultracold-atoms and Determination of the fine structure constant

Atom Quantum Sensors on ground and in space

NanoKelvin Quantum Engineering

Cold atom interferometers for inertial measurements. Arnaud Landragin

A quantum trampoline for ultra-cold atoms

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

HOLGER MÜLLER BIOGRAPHY. Research Area(s): Atomic, Molecular and Optical Physics ASSOCIATE PROFESSOR. Office: 301C LeConte

PRINCIPLES OF GRAVITATIONAL WAVES DETECTION THROUGH ATOM INTERFEROMETRY

An Atom Interferometer inside a Hollow-core Photonic Crystal Fiber

arxiv: v1 [physics.atom-ph] 19 Jun 2014

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Einstein-Podolsky-Rosen entanglement t of massive mirrors

Pioneer anomaly: Implications for LISA?

High Accuracy Strontium Ion Optical Clock

Forca-G: A trapped atom interferometer for the measurement of short range forces

Development of ground based laser interferometers for the detection of gravitational waves

0.5 atoms improve the clock signal of 10,000 atoms

Characterization and limits of a cold atom Sagnac interferometer

UNIVERSITY OF SOUTHAMPTON

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Frequency Tunable Atomic Magnetometer based on an Atom Interferometer

Light Sources and Interferometer Topologies - Introduction -

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo

QND for advanced GW detectors

High-visibility large-area atom interferometry

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Increasing atomic clock precision with and without entanglement

Atom Interferometry. Prof. Mark Kasevich Dept. of Physics and Applied Physics

(Noise) correlations in optical lattices

Quantum Memory with Atomic Ensembles

Analysis of atom-interferometer clocks

Prospects for a superradiant laser

arxiv: v1 [quant-ph] 6 Jul 2012

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

arxiv:physics/ v1 [physics.atom-ph] 14 Jun 2006

The physics of cold atoms from fundamental problems to time measurement and quantum technologies. Michèle Leduc

Atom interferometry test of short range gravity : recent progress in the ForCa-G experiment

UK National Quantum Technology Hub in Sensors and Metrology

Testing General Relativity with Atom Interferometry

Les Houches 2009: Metastable Helium Atom Laser

Mapping the absolute magnetic field and evaluating the quadratic Zeeman effect induced systematic error in an atom interferometer gravimeter

Squeezed Light for Gravitational Wave Interferometers

LETTER. Precision measurement of the Newtonian gravitational constant using cold atoms

Christian J. Bordé. Bruxelles, mai 2018

Quantum enhanced magnetometer and squeezed state of light tunable filter

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

Gauss Modes. Paul Fulda

Optical Lattice Clock with Neutral Mercury

arxiv:physics/ v2 [physics.atom-ph] 12 Dec 2005

Exact phase shifts for atom interferometry

Quantum correlations and atomic speckle

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

The Space Atom Interferometer project: status and prospects

Transcription:

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters Fiodor Sorrentino INFN Genova 1

Outline AI sensors, state of the art performance Main noise sources Potential improvements Technology readiness of AI sensors for field use F. Sorrentino 2

Atom interferometry path I Initial state ψ i amplitude A I path II Final state ψ f Interference of de Broglie amplitudes amplitude A II Light-pulse beam splitters + fluorescence detection Output phase selectively sensitive to different effects (inertial, gravitational, external fields, laser phase/frequency, etc) via choice of quantum states F. Sorrentino 3

AI & low frequency GW AI inertial sensors feature very good long term stability and control over systematic effects might provide complementary technologies for <Hz GW detectors Gravity gradiometers measurement/correction of NN Strain meters free fall: vibration isolation without suspensions quantum interaction of light with test mass no radiation pressure noise vertical orientation Rotation sensors F. Sorrentino 4

Current performance Gravimeters resolution: 3x10-9 g in 1 second (SYRTE) averaging down to 2x10-10 g after 30 min (SYRTE) accuracy: 10-9 10-10 g, limited by tidal models A. Peters, K.Y. Chung and S. Chu, Nature 400, 849 (1999) H. Müller et al., Phys. Rev. Lett 100, 031101 (2008) M. Hauth et el., Appl. Phys. B 113, 49 (2013) P. Gillot et al., Metrologia 51, L15 (2014) Gravity gradiometers differential acceleration sensitivity: 5x10-9 g in1 s 5x10-11 g after 10 4 s F. Sorrentino et al., Phys. Rev. A 89, 023607 (2014) Rotation sensors sensitivity: 6x10-10 rad/s/ Hz scale factor stability <5 ppm bias stability <70 µdeg/h T. L. Gustavson, A. Landragin and M.A. Kasevich, Class. Quantum Grav. 17, 2385 (2000) D. S. Durfee, Y. K. Shaham, M.A. Kasevich, Phys. Rev. Lett. 97, 240801 (2006) F. Sorrentino 5

Sensitivity limits Quantum noise Acceleration noise Laser wavefront Atomic motion Laser phase and frequency noise Aliasing External fields Other technical noise sources NN F. Sorrentino 6

Quantum projection noise Phase di erence between the paths: = k e [z(0) 2z(T )+z(1t )] + e k e = k 1 k 2 with z(t) = gt 2 /2+v 0 t + z 0 & e =0! = k e gt 2 Final population: N a = N/2(1 + cos[ ]) T = 150 ms 2 = 10 6 g S/N=1000 Sensitivity 10 9 g/shot F. Sorrentino 7

Acceleration noise T=5 ms resol. = 2.3 10 5 g/shot = k e gt 2 T=50 ms resol. = 1.0 10 6 g/shot T=150 ms resol. = 3.2 10 8 g/shot up to 140 db CMRR with 1 m separation G. T. Foster et al., Opt. Lett 27, 951 (2002) F. Sorrentino 8

Atomic motion AI phase is affected by residual atomic motion Velocity spread due to finite temperature Shot to shot jitter in initial position and mean velocity Atomic motion couples with laser wavefront distribution Coriolis acceleration & higher order inertial effects gravitational and magnetic gradients Coupled constraints on atomic temperature, launching velocity, and wavefront jitter Limits are particularly stringent for very long baseline (space GW detectors) For ground applications, nk temperatures and lambda/100 wavefront errors would be ok F. Sorrentino 9

Laser frequency noise Simultaneous AI sensors (gradiometer, strain meter) sharing the same atom optics provide excellent CMRR for phase noise of laser field However, for long baseline the differential measurement is affected by common mode laser frequency noise due to high propagation delay Requirements on laser frequency noise are dramatically released if the beam splitters are driven by one-photon transitions (e.g. Sr clock transition @ 689 nm) N. Yu and M. Tinto, Gen Relativ Gravit (2011) 43:1943 (2011) P. W. Graham et al., PRL 171102 (2013) F. Sorrentino 10

Bandwidth & aliasing Sensitivity ~T 2 Bandwidth ~T -1 Highly sensitive gravimeters detect earthquakes T~50 ms rep rate ~ 5 Hz Improving T without loosing bandwidth interleaved interferometers main limit: Doppler separation of different channels see e.g. I. Dutta et al., PRL 116,183003 (2016) S. Merlet et al., Metrologia 46 (2009) 87 94. F. Sorrentino 11

Technical noise sources magnetic fields stray light photon shot noise tilt noise [1] G. Lamporesi et al., Phys. Rev. Lett 100, 050801 (2008) [2] F. Sorrentino et al., New J. Phys. 12, 095009 (2010) [3] F. Sorrentino et al., Phys. Rev. A 89, 023607 (2014) F. Sorrentino 12

Potential improvements Large momentum transfer splitters (increase nk) Large scale AI (increase T) High flux atomic sources (reduce quantum noise) Choice of atomic species Interferometer topology Squeezing F. Sorrentino 13

Large momentum transfer H. Müller et al., PRL 102, 240403 (2009) S.-W. Chiow et al., PRL 107, 130403 (2011) G. D. McDonald et al., PRA 88, 053620 (2013) F. Sorrentino 14

Long interaction time Microgravity: in principle T>10 s Increasing T on Earth trapped atoms (Sr) up to 15000 coherent photon recoils decoherence time >500 s G. Ferrari et al., PRL 97, 060402 (2006) V. V. Ivanov et al., PRL 100, 043602 (2008) F. Sorrentino et al., Phys. Rev. A 79, 013409 (2009) M. Tarallo et al., PRA 86, 033615 (2012) free fall requires large vertical size requires very low temperatures (~nk): good for LMT splitters 10 m atomic fountains already operating: Stanford, Wuhan T. Kovachy et al., Nature 528, 530 (2015) next future: Hannover, Firenze expected differential acceleration noise ~10-13 g/shot F. Sorrentino 15

Multiple samples Use three atomic clouds to measure the vertical derivative of vertical gravity gradient Use three atomic clouds to measure the vertical derivative of vertical gravity gradient G. Rosi et al., Phys. Rev. Lett. 114, 013001 (2015) Scalable to arbitrary large number of samples Simultaneous, correlated AI can improve g measurements as well F. Sorrentino et al., Appl. Phys. Lett. 101, 114104 (2012) Multiple, correlated AIs to mitigate NN W. Chaibi et al, Phys. Rev. D 93, 021101 (2016) F. Sorrentino See talk by S. Pelisson 16

Atomic species Most sensitive AI have been realised with alkali atoms (Rb, Cs) Simple laser cooling Splitter based on Raman transitions between hyperfine states -> simple detection of AI output ports Some interferometric schemes would work better with other species (e.g. Sr) low sensitivity to stray fields fast cooling to sub-µk temperatures intercombination lines allow single-photon splitters to reduce the effect of laser frequency noise with long T F. Sorrentino 17

Squeezing L. Pezzé et al., to be published F. Sorrentino 18

Summary Differential acceleration sensitivity of a ~10 m size vertical gradiometer interaction time T n photon recoils 10 6 atoms at QPN n=30, T=1.5 s -> 6x10-13 g n=100, T=3 s -> 4x10-14 g Vertical strainmeter made of two samples with separation L F. Sorrentino 19

Technology readiness Commercial atomic gravimeters & gradiometers MuQuans (France) AOSense (USA) AtomSensors (Italy) Prototypes for microgravity I.C.E. (CNES) QUANTUS/MAIUS (DLR) S.A.I. (ESA) G. Tino et al., Precision Gravity Tests with Atom Interferometry in Space, Nuclear F. Sorrentino Physics B 243, 203 (2013) 20

Thank you F. Sorrentino 21