A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

Similar documents
2 nd International HICUM user s meeting

HICUM Parameter Extraction Methodology for a Single Transistor Geometry

About Modeling the Reverse Early Effect in HICUM Level 0

A new transit time extraction algorithm based on matrix deembedding techniques

HICUM release status and development update L2 and L0

Regional Approach Methods for SiGe HBT compact modeling

Accurate transit time determination and. transfer current parameter extraction

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

Status of HICUM/L2 Model

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

Breakdown mechanisms in advanced SiGe HBTs: scaling and TCAD calibration

Working Group Bipolar (Tr..)

Digital Integrated CircuitDesign

Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31

Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation

Investigation of New Bipolar Geometry Scaling Laws

Chapter 2 - DC Biasing - BJTs

Chapter 2. - DC Biasing - BJTs

Methodology for Bipolar Model Parameter Extraction. Tzung-Yin Lee and Michael Schröter February 5, TYL/MS 2/5/99, Page 1/34

Device Physics: The Bipolar Transistor

Semiconductor Device Simulation

Non-standard geometry scaling effects

Bipolar junction transistor operation and modeling

TCAD setup for an advanced SiGe HBT technology applied to the HS, MV and HV transistor versions

Didier CELI, 22 nd Bipolar Arbeitskreis, Würzburg, October 2009

Bipolar Junction Transistor (BJT) - Introduction

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

VBIC. SPICE Gummel-Poon. (Bipolar Junction Transistor, BJT) Gummel Poon. BJT (parasitic transistor) (avalance mutliplication) (self-heating)

Transistor Characteristics and A simple BJT Current Mirror

figure shows a pnp transistor biased to operate in the active mode

University of Pittsburgh

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

The Devices. Jan M. Rabaey

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

Spring Semester 2012 Final Exam

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 2007

EE105 - Fall 2006 Microelectronic Devices and Circuits

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

Chapter 13 Small-Signal Modeling and Linear Amplification

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

Runtime Analysis of 4 VA HiCuM Versions with and without Internal Solver

TEMPERATURE DEPENDENCE SIMULATION OF THE EMISSION COEFFICIENT VIA EMITTER CAPACITANCE

Mextram 504. Jeroen Paasschens Willy Kloosterman Philips Research Laboratories, Eindhoven. c Philips Electronics N.V. 1999

MEXTRAM (level 504) the Philips model for bipolar transistors

BEOL-investigation on selfheating and SOA of SiGe HBT

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

6.012 Electronic Devices and Circuits

Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

Charge-Storage Elements: Base-Charging Capacitance C b

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

3D SELF HEATING MODELING FOR ELECTRO- THERMAL CHARACTERISATION OF SiGe HBTs

Junction Bipolar Transistor. Characteristics Models Datasheet

Schottky Rectifiers Zheng Yang (ERF 3017,

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

13. Bipolar transistors

Thermal Capacitance cth its Determination and Influence on Transistor and Circuit Performance

6.012 Electronic Devices and Circuits

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Metal-oxide-semiconductor field effect transistors (2 lectures)

Transistor's self-und mutual heating and its impact on circuit performance

At point G V = = = = = = RB B B. IN RB f

Forward-Active Terminal Currents

DC and AC modeling of minority carriers currents in ICs substrate

6.012 Electronic Devices and Circuits

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

ECE-305: Spring 2018 Final Exam Review

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

HICUM/L2 version 2.2: Summary of extensions and changes

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

6.012 Electronic Devices and Circuits Spring 2005

1 Introduction -1- C continuous (smooth) modeling

CMOS Logic Gates. University of Connecticut 181

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

THERMAL EFFECTS ON ANALOG INTEGRATED CIRCUIT DESIGN MD MAHBUB HOSSAIN. Presented to the Faculty of the Graduate School of

BIPOLAR JUNCTION TRANSISTOR MODELING

(e V BC/V T. α F I SE = α R I SC = I S (3)

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D)

Silicon Diffused Darlington Power Transistor

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

Linear Phase-Noise Model

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

Silicon Diffused Power Transistor

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Hot-carrier reliability of 20V MOS transistors in 0.13 µm CMOS technology

IRGP30B60KD-EP V CES = 600V I C = 30A, T C =100 C. t sc > 10µs, T J =150 C. V CE(on) typ. = 1.95V. Absolute Maximum Ratings. Thermal Resistance

Half-circuit incremental analysis techniques

Session 6: Solid State Physics. Diode

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

CMOS Logic Gates. University of Connecticut 172

Transcription:

A Novel Method for Transit Time Parameter Extraction Taking into Account the Coupling Between DC and AC Characteristics Dominique BEGE and Didier CELI STMicroelectronics, 850, rue jean Monnet F-38926 Cedex HICUM user s meeting September 30, 2001 Minneapolis, MN 1

Outline ˆ Introduction ˆ Extraction issues Classic extraction strategy DC-AC coupling through main characteristics ˆ A novel extraction strategy Static parameters correction Improvements on current gain and output characteristics ˆ Conclusion ˆ eferences 2

Introduction 7KH#$LP#I#WKLV#SUHVHQWDWLQ#LV To present a single device extraction strategy of the main HICUM model parameters. Î Main parameters are: #DC parameters used for the modelling of the transfer current #AC parameters like transit time parameters modelling both the DC and AC behaviour of the transistor proposed a new extraction strategy to solve this coupling between AC & DC parameters To present the results obtained using measurement on NPN transistor fabricated within a 0.25 µm SiGe BiCMOS technology of STMicroelectronics To present critical points we have encountered with this method 3

Classic Extraction Strategy [1] Depletion capacitances & series resistances 1 1 ----------- = f ---- 2πf I T c Characteristic Transfer current parameters c 10, Q p0, h jci assuming h jei =1 transit time at low bias τ 0, τ 0h, τ bvl critical current ICK ci0, Vlim, Vces, Vpt Base current parameters I EIS, I BEIS m EI =2, m BEI =1 transit time at high current τ Ef0, gτe, ahc, τ hcs 4

f T and Transit time 8e+10 3e-11 7e+10 2.5e-11 6e+10 5e+10 2e-11 V BC ft [Hz] 4e+10 tf [s] 1.5e-11 V BC 3e+10 1e-11 2e+10 1e+10 5e-12 0 0.0001 0.001 0.01 0.1 I C [A] 0 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 I C [A] V BC = -1.5, -1, -0.5, -0.25, 0, 0.25, 0.5 V ˆ The inaccuracy on cx and on the split of depletion capacitance, specially the Base-Emitter capacitance, affect strongly the fit of the f T peak and its low injection behaviour. ˆ Transit time extraction method have been tested from simulated data, the extracted set of parameters corresponds with the initial one validation of the proposed method. 5

Gain and Output Characteristics BETA(IC) name :NN111A128 IC(VCE) name :NN111A128 1.40e+02 1.20e+02 breakdown parameter not yet extracted 2.00e-02 BETA Meas. and Simu. 1.00e+02 8.00e+01 6.00e+01 4.00e+01 IC (A) Meas. and Simu. 1.50e-02 1.00e-02 5.00e-03 2.00e+01 0.00e+00 wrong estimation of Q p0 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 IC (A) VBC (V) V BC = 5.00E-01,-1.00E+00 =-1.5, -1, -0.5, -0.25, 0, step 0.25, = 0.5-5.00E-01 [V] 0.00e+00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VCE (V) IB I B = (A) 8e-6, = 8.00E-06, 1.6e-5, 3.2e-5, 3.20E-04 8e-5, 1.6e-4, step = 3.2e-4 6.24E-05 [A] ˆ The lack of accuracy on the onset of high injection effect comes from the inadequate evaluation of the effective knee current I Keff which can be approximated in this region by the ratio: Q p0 I Keff = --------- τ f0 Inadequate Q p0 gives a wrong value for I Keff, τ f0 coming from f T curves. 6

Transfer current parameters extraction issue ˆ The classic transfer current extraction must be review, specially the assumption h jei =1. c ˆ 10 Q p0 h jci This direct extraction provides the ratios --------, --------- and -------- which allow to define the saturation h jei h jei h jei c 10 h jei c 10 current I s = -------- --------- = --------- I s is independent of h jei. h jei Q p0 Q p0 V BC =0V I C (V BE ) characteristic V BEi c 10 ------------ V BCi exp exp ------------ V T V T I T = ------------------------------------------------------------------------------------- Q p0 + h jei Q + h JEi jci Q + Q JCi FT V BE =0.7V I C (V BC ) characteristic from V BEi exp ------------ c V 10 T Q p0 Q JEi = -------- --------------------------- --------- h jei I T h jei from Q p0 h jci --------- + Q + -------- Q h jei JEi h JCi jei = VBEi VBCi ------------- ------------- c VT VT 10 e e -------- ------------------------------------- h jei I T gives c 10 -------- = r1 h jei & Q p0 --------- = r2 h jei gives h jci -------- = r3 h jei 7

Static Correction from Transit time parameters tf0 = 2.039E-12 s V BC = 0.000E+00 BETA(IC) name :NN111A128 2.5e-11 1.60e+02 2e-11 1.40e+02 1/(2* /Symbol=p*f T ) [s] 1 ----------- [s] 2πf T 1.5e-11 1e-11 BETA Meas. and Simu. 1.20e+02 1.00e+02 8.00e+01 6.00e+01 20 50% 5e-12 4.00e+01 2.00e+01 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1/I C [A-1] 0.00e+00 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 IC (A) VBC (V) = 0.00E+00 τ 0 Q p0 = I Keff τ 0 I Keff h jei new = Q p0 --------- r2 c 10 new = h jei new r1 h jci new = h jei new r3 8

Forward current gain and output characteristics BETA(IC) name :NN111A128 IC(VCE) name :NN111A128 1.20e+02 1.00e+02 2.00e-02 BETA Meas. and Simu. 8.00e+01 6.00e+01 4.00e+01 IC (A) Meas. and Simu. 1.50e-02 1.00e-02 2.00e+01 Better estimation of Q p0 5.00e-03 1e-07 1e-06 1e-05 0.0001 0.001 0.01 IC (A) VBC (V) V= BC 5.00E-01,-1.00E+00 =-1.5, -1, -0.5, -0.25, 0, step 0.25, = 0.5-5.00E-01 [V] 0.00e+00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VCE (V) IB I B (A) = 8e-6, = 1.00E-07, 1.6e-5, 3.2e-5, 3.20E-04 8e-5, step 1.6e-4, = 3.2e-4 5.33E-05 [A] Avalanche breakdown parameters are not extracted. The fit in the circle range is better than the previous comparisons shown in slide 6 The I Keff current is arbitrary determined. The value of h jei can be discussed (physical point of view : h jei =3.5). 9

New proposed extraction strategy Depletion capacitances & series resistances Base current parameters [1] I EIS, I BEIS m EI =2, m BEI =1 Transfer current ratio c 10 ---------, Q h p0 jci ----------,--------- h jei h h jei jei Transit time at low bias [1], [2] τ 0, τ 0h, τ bvl Effective knee current from β(i C ) fall off critical current ICK [1], [2] ci0, Vlim, Vces, Vpt transit time at high current from [1], [2] τ Ef0, g τe, a hc, τ hcs NO Transfer current parameters c 10, Q p0, h jei, h jci ICH I C (V CE ) fit YES END 10

Conclusion We propose an improved extraction strategy to solve the coupling between DC and AC parameters (c 10, Q p0, h jei, h jci,τ 0,...) by estimating Q p0 at high density of currents from the τ 0 value and defining an effective knee current I Keff. A more accurate method to define the effective knee current must be developed. Criterium to be found in order to avoid extraction loops between f T and output characteristics. The physical meaning of h jei can be discussed but the following extraction strategy gives a suitable fit between theory and measurements for DC & AC characteristics. These comparisons could be certainly improved by a best evaluation of the serie resistance (cx) and of the split of the depletion capacitances. The scalability of the extracted parameters need to be verified. 11

EFEENCE [1] D. Berger, D. Céli, N. Gambetta, T. Burdeau: HICUM Parameters Extraction Methods, HICUM workshop, June 14/15 2001, Dresden. [2] B. Ardouin, et al.: Transit Time Parameters Extraction for the HICUM Bipolar Compact Model, Proceedings of the Bipolar Circuits and Technology Meeting, Minneapolis, 2001. 12