Gas Transport in Aluminosilicate Nanotubes by Diffusion NMR

Similar documents
PULSED FIELD GRADIENT NMR STUDY OF SORBATE TRANSPORT IN CARBON MOLECULAR SIEVES AND SBA-16 MATERIALS

Monte Carlo Simulation of Long-Range Self-Diffusion in Model Porous Membranes and Catalysts

PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES

Suppression of Static Magnetic Field in Diffusion Measurements of Heterogeneous Materials

SELF-DIFFUSION OF CARBON DIOXIDE IN SAMARIA/ALUMINA AEROGEL CATALYST USING HIGH FIELD NMR DIFFUSOMETRY

Supporting Information for

Vapor contribution to the time dependence of the effective diffusion coefficient in partially filled porous glasses

NMR of liquid 3 Не in clay pores at 1.5 K

materials ISSN

Heterogeneity of Polyelectrolyte Diffusion in Polyelectrolyte-Protein Coacervates: A 1 H Pulsed Field Gradient NMR Study

SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence.

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni

Light irradiation experiments with coumarin [1]

Supplementary Information. Profiling Formulated Monoclonal Antibodies by 1 H NMR Spectroscopy

'H NMR Techniques in Studies of Transport of Paramagnetic Ions in Multicellular Systems

Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti- Perovskite Solid Electrolytes

Linear Dependence of Water Proton Transverse Relaxation Rate on Shear Modulus in Hydrogels

Supplementary Figure 1. Schematic layout of set-up for operando NMR studies.

ELECTRONIC SUPPLEMENTARY INFORMATION

SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Observation of Extreme Phase Transition Temperatures of Water Confined Inside Isolated Carbon Nanotubes

compound Cs 2 Cu 2 Mo 3 O 12

PFG-NMR ON DOUBLE EMULSIONS: A DETAILED LOOK INTO MOLECULAR PROCESSES

Electronic Supporting Information

Solution-processable graphene nanomeshes with controlled

On Accurate Measurements of Diffusion Coefficients by PGSE NMR Methods (Version 2) Kikuko Hayamizu

On the Origin of High Ionic Conductivity in Na-doped SrSiO 3

Quantitative Solid-State NMR Study on Ligand Surface Interaction in

Pore Length Scales and Pore Surface Relaxivity of Sandstone Determined by Internal Magnetic Fields Modulation at 2 MHz NMR

Molecular self-diff usion in active carbons

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

PII S X(98) FLOW AND TRANSPORT STUDIES IN (NON)CONSOLIDATED POROUS (BIO)SYSTEMS CONSISTING OF SOLID OR POROUS BEADS BY PFG NMR

Suspended Long-Lived NMR Echo in Solids

Introduction to Relaxation Theory James Keeler

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi

Apparative Methoden in der Physikalischen Chemie DIFFUSION MEASUREMENTS BY NUCLEAR MAGNETIC RESONANCE (NMR) 1 Introduction.

Biochemistry. Biochemical Techniques HPLC

Supporting Information

Self-diffusion in single-file zeolite membranes is Fickian at long times

A fast method for the measurement of long spin lattice relaxation times by single scan inversion recovery experiment

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction

PII S X(98) DEPHASING OF HAHN ECHO IN ROCKS BY DIFFUSION IN SUSCEPTIBILITY- INDUCED FIELD INHOMOGENEITIES

NMR, the vector model and the relaxation

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Supporting Information

Experiment and Simulation on NMR and Electrical Measurements on Liège Chalk

3-D Imaging of separator pore structure and Li + diffusion behavior

SUPPLEMENTARY INFORMATION

Photo-responsive MOFs: Light-induced switching of porous single crystals containing photochromic diarylethene

NMR Studies of 3 He Impurities in 4 He in the Proposed Supersolid Phase

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30

Chemistry Assignment #2 and TM Magnetism Handout. Determination of Unpaired Electrons in TM Complexes

High resolution NMR of water absorbed in single-wall carbon nanotubes

ICRH Experiments on the Spherical Tokamak Globus-M

SUPPORTING INFORMATION

A Versatile Resolving Agent for Diffusion. Edited Separation of Enantiomers, Complex. Mixtures and Constitutional Isomers

Supramolecular Control over Diels-Alder Reactivity by Encapsulation and Competitive Displacement

Rate Constants from Uncorrelated Single-Molecule Data

Supporting Information

Advanced Topics and Diffusion MRI

Biophysical Chemistry: NMR Spectroscopy

Complex Promoted by Electron-Deficient Alkenes. Brian V. Popp and Shannon S. Stahl*

Supporting Information

Supporting Information

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass

Characterization of partially reduced graphene oxide as room

Diffusion of propylene adsorbed in Na-Y and Na-ZSM5 zeolites: Neutron scattering and FTIR studies

Modern Physics Laboratory Beta Spectroscopy Experiment

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi

Electronic supplementary information

specified quantity of a solvent at a given temperature. To deconvolute the value from the

for investigating Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig

SUPPLEMENTARY INFORMATION

Supplementary Information

Insights on Interfacial Structure, Dynamics and. Proton Transfer from Ultrafast Vibrational Sum. Frequency Generation Spectroscopy of the

Supporting Information

A new view of diffusion in nanoporous materials

How does this work? How does this method differ from ordinary MRI?

Chemistry 605 (Reich)

Chapter 8 Magnetic Resonance

Fluorescence Visual Gel-separation of Dansylated BSA-protected Gold-Nanoclusters

Asian Journal of Chemistry; Vol. 25, No. 4 (2013),

Supplementary information

Acetylene hydrochlorination over 13X zeolite. catalyst at high temperature

The Aggregation Behaviour of Polyisoprene Pluronic Graft Copolymers in Selective Solvents

Supplementary Information. (Communication Ref.: B802671H)

Cross Polarization 53 53

Nuclear Magnetic Resonance (NMR)

NMR SATELLITES AS A PROBE FOR CHEMICAL

V27: RF Spectroscopy

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar

The Basics of Magnetic Resonance Imaging

Zero-field slow magnetic relaxation in a uranium(iii) complex with a radical ligand

PHY 481/581. Some classical/quantum physics for the nanometer length scale.

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Journal of the Korean Magnetic Resonance Society 2003, 7, Kwangju, , KOREA Received September 29, 2003

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009

Magnetization Gradients, k-space and Molecular Diffusion. Magnetic field gradients, magnetization gratings and k-space

Transcription:

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Gas Transport in Aluminosilicate Nanotubes by Diffusion NMR Muslim Dvoyashkin,3, Ryan Wood, Clifford R. Bowers, Ipek Yucelen, Sankar Nair, Aakanksha Katihar 3, Sergey Vasenkov 3 Department of Chemistry, University of Florida, USA Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, USA 3 Department of Chemical Engineering, University of Florida, USA Corresponding authors: Sergey Vasenkov and Clifford R. Bowers University of Florida Gainesville, FL 36 E-Mail: svasenkov@che.ufl.edu, russ@ufl.edu Abstract Diffusion of tetrafluoromethane in aluminosilicate nanotubes was studied by means of 3 C pulsed field gradient (PFG) NMR at 97 K. The measured data allow the estimation of the diffusivity of tetrafluoromethane inside the nanotubes as well as the diffusivity for these molecules undergoing fast exchange between many nanotubes. The results support the assumption about the one-dimensional nature of the tetrafluoromethane diffusion inside nanotubes. Key words: PFG NMR, 3 C NMR, nanotubes, diffusion. Introduction Information about diffusion of confined molecular species inside nanotube channels has high relevance due to potential applications of nanotube systems as sensors, catalysts, and membranes. Studies of transport in one-dimensional channels are also of high interest because of the possibility of an observation of the unique single-file type of diffusion []. In this contribution, we demonstrate the potential of 3 C pulsed field gradient (PFG) NMR at high magnetic field and high magnetic field gradients for investigations of transport of adsorbed gas molecules in novel aluminosilicate nanotubes.. Experimental Single-walled aluminosilicate nanotubes were synthesized according to the protocol given in references [, 3]. Tetraethoxysilane and Aluminum-tri-sec-butoxide mixture (:) was added dropwise to aqueous solution of 0.05M HClO 4 at 5 C. After 8 hours of vigorous stirring, the solution temperature was increased to and kept constant at 95 C

Fig. : SEM images of aluminosilicate SWNT bundles. The white scale bars represent 0 µm (left) and µm (right). for 4 days. At the end of 4 days, the nanotubes were first precipitated by addition of a 30 wt % ammonia solution, the resulting gel was then centrifuged and 0 N HCl was added dropwise to re-disperse the nanotubes. Nanotube dispersion solution then dialyzed against de-ionized water for 4 days using a 5 kilodalton membrane to obtain a pure nanotube dispersion. Nanotube powder samples were prepared by freeze-drying pure nanotube dispersion solution at -50 C for 5 days. These nanotubes exhibit uniform channels having an outer diameter of around. nm and inner diameter.0 nm. Fig. shows selected SEM images of the studied nanotube sample. The images show that nanotubes are packed into bundles revealing sandwich-like structures with sizes ranging from half a micrometer to a few tens of micrometers. The aluminosilicate nanotube samples have been prepared using the following procedure. Around 50 mg of the nanotubes was placed into a 5 mm NMR tube with a medium wall thickness. The sample was activated under high vacuum (0-4 mbar) at 453 K. Following the sample activation, a fixed amount of 3 C-labelled CF 4 was cryogenically transferred into the NMR tube containing the sample. After loading, the tube was flame sealed and separated from the vacuum system. The resulting gas pressure inside the tube is estimated to be around 8 bar after equilibration at 98 K. Diffusion measurements were performed using a 7.6 T Bruker BioSpin NMR spectrometer operating at a 3 C resonance frequency of 88.6 MHz. The spectrometer is equipped with the Diff60 probe and Great-60 gradient amplifier (Bruker BioSpin) capable of producing magnetic field gradients with the maximum amplitude of 30 T/m. Diffusion studies were performed using the stimulated echo sequence with the longitudinal eddy current delay (PGSTE LED) [4]. Diffusion data were obtained from PFG NMR attenuation curves, i.e. the dependence of the PFG NMR signal intensity on the amplitude of the magnetic field gradient. The signal intensity was obtained by integrating the area under the single line of the 3 C NMR spectrum of tetrafluoromethane. 3 C PFG NMR was employed instead of the more traditional H PFG NMR to take

advantage of the longer 3 C T relaxation times that are typically observed for guest molecules confined in nanopores. Proton T NMR relaxation times of molecules confined in nanopores tend to be very short due to intra-molecular and inter-molecular dipoledipole interactions that are not completely averaged out by molecular motion as well as magnetic susceptibility effects. Such effects are reduced when using 3 C instead of H NMR detection. 3. Results and Discussion Fig. presents 3 C PFG NMR attenuation curves for diffusion of CF 4 in the nanotube sample at 98 K. The attenuation curves were obtained for three different effective diffusion times ( t eff ) 4, 8 and 6 ms. These curves do not contain any contributions from the CF 4 diffusion in the gas phase above the bed of nanotube bundles. The bulk gas phase contributions, which were determined in separate experiments performed on an NMR tube containing only CF 4 gas at a comparable pressure, were subtracted away from the measured attenuation curves. 0.8 long-range mode 4 ms 0.8 8 ms 0.6 6 ms 0.4 Ψ 0.6 intra-channel mode 0. 0.0 5.0x0 9.0x0 0.5x0 0 0.4 0.0.0x0 8 4.0x0 8 6.0x0 8 8.0x0 8 q t eff, s m - Fig. : Diffusion attenuations for tetrafluoromethane in aluminosilicate nanotubes obtained for different effective diffusion times. The dashed line represents the best fit result using Eq. (). The inset shows the diffusion data for t eff = 8 ms in the larger gradient range. The empty and filled circles in the insert show the attenuation curves measured for different delays between the first and second π/ pulses of the PGSTE LED sequence (τ =.7 and.3 ms). 3

In the case of unrestricted and isotropic diffusion PFG NMR attenuation curves are expected to follow a mono-exponential behaviour, viz. ψ ( q, t ) = exp( q t D), is eff eff where D is the self-diffusion coefficient, q = γgδ, γ is the gyromagnetic ratio for 3 C, δ denotes the duration of an applied gradient pulse with amplitude g, and t is the eff effective diffusion time. The attenuation curves in Fig. show significant deviations from such behaviour. CF 4 molecules are expected to be able to pass one another inside nanotubes because the collision diameter of CF 4 (0.466 nm [5]) is smaller than the largest effective radius of the nanotubes ( 0.5 nm). Hence, the intra-nanotube transport of CF 4 molecules is expected to obey the mechanism of normal, i.e. Fickian, diffusion. Due to the presence of many short ( µm) nanotubes (short as compared to the distances travelled by molecules during the observation time) and nanotube bundles in the studied sample, in addition to the intra-channel diffusion, we expect an ensemble of CF 4 molecules that diffuse according to the mechanism of the so-called long-range diffusion, i.e. diffusion leading to fast exchange [6] between the nanotube interiors and the surrounding gas phase between the nanotubes or nanotube bundles. Thus, the attenuation curve is expected to contain two terms: ψ ( q, t ) = p exp( q t D ) + p ψ ( q, t ), () ( ) tot eff eff intra eff where p represents the fraction of molecules performing long-range diffusion with diffusivity p is the fraction of adsorbed molecules never leaving the D, and ( ) tubes during the observation time. For intra-channel diffusion within one-dimensional channels, which are randomly oriented, the attenuation function ψ ( q, t ), according to [7], can be expressed in the following form: ψ q t intra (, eff ) exp( ) intra eff ( ( ) ) q t ( D D ) erf q t D D = π q td, () where D and D are the diffusivities along the directions parallel and perpendicular to the channel axis, respectively. It was found that Eq. can be used to obtain good fits to all of the experimental data (see dashed line in Fig. ). The corresponding best fit parameters for all 3 diffusion times used were found to be the same within the experimental uncertainty ( D =.7 0-9 m s -, D =.0 0-3 m s -, r D teff D =. 0-7 m s -, and p =0.6). Using the Einstein relation [8], =, the corresponding limiting values of the root mean square displacements for diffusion inside the nanotubes are estimated to be approximately 4 µm for 4 ms and 8 µm for 6 ms. These results are consistent with the observation of many sufficiently large (>0 µm) nanotube bundles in the studied sample (Fig. ), where molecules can cover distances of up to 8 µm without leaving a nanotube channel. Our data indicate that, within the experimental uncertainty, the intra-channel diffusivity remains independent of diffusion time. Hence, we can conclude that this diffusivity value is not significantly 4

influenced by possible additional transport resistances at the channel margins. The observed independence of the value of p of diffusion time for the studied range of t eff 6 ms can be explained by the existence of a broad distribution of nanotube bundle lengths. As a result, there is a fraction of sufficiently short nanotubes contributing to the long-range diffusion, while for other (longer) nanotubes the diffusion can be described as purely intra-channel. Finally, the observed independence of the long-range diffusivity of diffusion time suggests that the conditions of fast exchange between the short nanotubes and the surrounding gas phase are fulfilled for all studied diffusion times. PFG NMR measurements for t eff > 6 ms were prevented by the decrease of the CF 4 signal due to T NMR relaxation. The diffusivity along the direction of the channels was found to be at least 4 orders of magnitude larger than that in the direction perpendicular to the channels, indicating that the density of defects that would allow diffusion of CF 4 molecules in the direction perpendicular to the channel direction is negligible. In order to ule out a possible influence of magnetic susceptibility effects on the measured diffusion data, additional PFG NMR measurements were performed for the same effective diffusion time (t eff = 8 ms) but with different values of the delays between the first and second π/ pulses of the PGSTE LED sequence (τ =.7 and.3 ms). The observed coincidence of the PFG NMR attenuation curves measured for different values of τ confirms that susceptibility effects are negligible under our measurement conditions [9]. 4. Conclusions 3 C PFG NMR at high field and high gradients was used to study diffusion of tetrafluoromethane in novel aluminosilicate nanotubes. The data provide evidence for D diffusion within non-intersecting channels. The measured PFG NMR diffusion data yielded the self-diffusion coefficient of CF 4 along the channel direction in the nanotube interior as well as the corresponding diffusivity of CF 4 molecules undergoing fast exchange between many nanotubes. Acknowledgements We are grateful to NSF (Award #095764) for the financial support of the reported NMR diffusion studies. NMR data were obtained at the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility in the McKnight Brain Institute of the University of Florida. 5

References [] K. Hahn, J. Karger, V. Kukla, Phys Rev Lett, 76 (996) 76-765. [] D.K. Kang, D. Y., J. Zang, C.W. Jones, S. Nair, J. Phys. Chem. C, 5 (0) 7676-7685. [3] G.I. Yucelen, R.P. Choudhury, A. Vyalikh, U. Scheler, H.W. Beckham, S. Nair, J. Am. Chem. Soc., 33 (0) 5397-54. [4] S.J. Gibbs, C.S. Johnson, J. Magn. Reson., 93 (99) 395-40. [5] F. delrio, J.E. Ramos, A. GilVillegas, I.A. McLure, J. Phys. Chem, 00 (996) 904-95. [6] J. Karger, Ann. Phys.-Berlin, 4 (969). [7] S. Naumov, R. Valiullin, R. Pitchumani, M.O. Coppens, J. Karger, Micropor. Mesopor. Mat., 0 (008) 37-40. [8] K. Hahn, J. Karger, J. Phys a-math. Gen., 8 (995) 306-3070. [9] S. Vasenkov, P. Galvosas, O. Geier, N. Nestle, F. Stallmach, J. Karger, J. Magn. Reson., 49 (00) 8-33. 6