The 18 September 2011, North Sikkim earthquake

Similar documents
Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Nepal earthquake of April 25, 2015

Earthquake Distribution in Northeast India from

(First Edition: prepared on 29/12/2003)

Chapter 2. Earthquake and Damage

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND

Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal

Revisiting State of Stress and Geodynamic Processes in Northeast India Himalaya and Its Adjoining Region

Earthquake processes of the Himalayan collision zone in eastern Nepal and the southern Tibetan Plateau

Magnitude 7.3 NEPAL. Tuesday, May 12, 2015 at 07:05:19 UTC

Magnitude 7.0 PAPUA, INDONESIA

National Seismological Centre: An Overview, Prospects and Challenges

DETECTION OF CRUSTAL DEFORMATION OF THE NORTHERN PAKISTAN EARTHQUAKE BY SATELLITE DATA. Submitted by Japan **

On the validity of time-predictable model for earthquake generation in north-east India

Magnitude 7.5 PALU, INDONESIA

Estimation of Peak Ground Acceleration for Delhi Region using Finsim, a Finite Fault Simulation Technique

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

POTENTIAL SEISMICITY OF YANGON REGION (GEOLOGICAL APPROACH)

AMPLIFICATION FROM ISOSEISMAL MAP AND SITE RESPONSE ANALYSIS

Geotechnical damage in rural areas caused by the 2015 Gorkha Nepal Earthquake

Magnitude 7.6 & 7.4 SOLOMON ISLANDS

Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake

Magnitude 7.1 PHILIPPINES

Paper presented in the Annual Meeting of Association of American Geographers, Las Vegas, USA, March 2009 ABSTRACT

Seismicity. Chapter 2 : Geographic Database Development 29

Mw 7.8, Southwest of Sumatra, Indonesia Wed, 2 March 2016 at 12:49:48 UTC M /03/03

Seismological Study of Earthquake Swarms in South-Eastern Puerto Rico

On the damage caused by the Chamoli earthquake of 29 March, 1999

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN

Downloaded from Downloaded from

Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

7.8M Earthquake in Nepal Situation Report No. 1

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results

Report on Disaster statistics of Nepal

ESTIMATION AND SPATIAL MAPPING OF SEISMICITY PARAMETERS IN WESTERN HIMALAYA, CENTRAL HIMALAYA AND INDO-GANGETIC PLAIN

Description of faults

Supporting Information for Interseismic Coupling on the Main Frontal Thrust

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone

Paleo and New Earthquakes and Evaluation of North Tabriz Fault Displacement in Relation to Recurrence Interval of Destructive Earthquakes

THE EFFECT OF THE LATEST SUMATRA EARTHQUAKE TO MALAYSIAN PENINSULAR

FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA

What is an Earthquake?

EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN

STUDY ON TSUNAMIGENIC EARTHQUAKE CRITERIA FOR THE INDONESIAN TSUNAMI EARLY WARNING SYSTEM

revised October 30, 2001 Carlos Mendoza

4. Geotechnical and Geological Aspects. 4.1 Geotechnical Aspects

ENGINEER S CERTIFICATION OF FAULT AREA DEMONSTRATION (40 CFR )

The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data

Earthquakes & Volcanoes

An eyewitness account of the Bhuj earthquake

Rudbar Lorestan Dam Design and local Faults

Preliminary Observations of the January 8, 2006 Kythira Island (South Western Greece) Earthquake (Mw 6.9).

Earthquakes down under: a rare but real hazard

DEFORMATION KINEMATICS OF TIBETAN PLATEAU DETERMINED FROM GPS OBSERVATIONS

Magnitude 7.1 SOUTH SANDWICH ISLANDS

Magnitude 7.0 PERU. This region of the Andes is a sparsely populated area, there were no immediate reports of injuries or damage.

Magnitude 7.2 OAXACA, MEXICO

Active tectonics of Himalayan Frontal Thrust and Seismic Hazard to Ganga Plain

SEISMIC VELOCITY STRUCTURE OF THE NORTHWESTERN & NORTHEASTERN HIMALAYA AND ITS IMPLICATIONS FOR EARTHQUAKE HAZARD ASSESSMENT

Earthquakes in Canada

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES

The seismotectonic significance of the seismic swarm in the Brabant Massif (Belgium)

Pre-earthquake activity in North-Iceland Ragnar Stefánsson 1, Gunnar B. Guðmundsson 2, and Þórunn Skaftadóttir 2

2014 Summer Training Courses on Slope Land Disaster Reduction Hydrotech Research Institute, National Taiwan University, Taiwan August 04-15, 2014

Teleseismic waveform modelling of the 2008 Leonidio event

PEAK GROUND HORIZONTAL ACCELERATION ATTENUATION RELATIONSHIP FOR LOW MAGNITUDES AT SHORT DISTANCES IN SOUTH INDIAN REGION

Deformation of Rocks. Orientation of Deformed Rocks

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building

Hazard and Vulnerability of Moderate Seismicity Regions

Earthquake maximum magnitude estimation considering regional seismotectonic parameters

RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION

Important Concepts. Earthquake hazards can be categorized as:

Study on the feature of surface rupture zone of the west of Kunlunshan pass earthquake ( M S 811) with high spatial resolution satellite images

NPTEL Online - IIT Kanpur. Course Name Geotechnical Earthquake Engineering. Department IIT Kanpur

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a

Magnitude 7.3 IRAQ. Early reports indicate that 140 have been killed with over 800 injuries reported. Sunday, November 12, 2017 at 18:18:17 UTC

Seismotectonic implications of strike slip earthquakes in the Darjiling Sikkim Himalaya

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES

Preparing Landslide Inventory Maps using Virtual Globes

Learning Objectives (LO) What we ll learn today:!

Tsunami waves swept away houses and cars in northern Japan and pushed ships aground.

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

USU 1360 TECTONICS / PROCESSES

Extending the magnitude range of seismic reservoir monitoring by Utilizing Hybrid Surface Downhole Seismic Networks

Global Death and Construction: Earthquakes on an Urban Planet

PADANG EARTHQUAKE, WEST SUMATRA ON MARCH 6, 2007

Comparison between predicted liquefaction induced settlement and ground damage observed from the Canterbury earthquake sequence

Project on Seismic Hazard & Vulnerability. areas, Bangladesh. Mohammad Ashraful Kamal (Geologist)

IV. ENVIRONMENTAL IMPACT ANALYSIS G. GEOLOGY AND SOILS

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

Contemporary Tectonics and Seismicity of the Teton and Southern Yellowstone Fault Systems- Phase I

Source Parameters and Scaling Relation for Local Earthquakes in the Garhwal and Kumaun Himalaya, India

PROBABILISTIC SEISMIC HAZARD ANALYSIS AND ESTIMATION OF SPECTRAL STRONG GROUND MOTION ON BED ROCK IN NORTH EAST INDIA

DEVELOPMENT OF TIME-AND-MAGNITUDE PREDICTABLE MODEL AND PREDICTION OF EARTHQUAKE HAZARD IN CENTRAL HIMALAYAS

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates.

Damage Pattern during Sikkim, India Earthquake of September 18, 2011

Transcription:

The 18 September 2011, North Sikkim earthquake Kusala Rajendran 1, *, C. P. Rajendran 1, N. Thulasiraman 1, Ronia Andrews 1 and Nima Sherpa 2 1 Centre for Earth Sciences, Indian Institute of Science, Bangalore 560 012, India 2 Department of Mines, Minerals and Geology, Gangtok 737 101, India The 18 September 2011, magnitude Mw 6.9 earthquake close to the Nepal Sikkim border caused significant damage due to ground shaking and caused several landslides. Observations from the post-earthquake surveys in the affected areas within Sikkim suggest that the poorly engineered, multistoried structures were relatively more impacted. Those located on alluvial terraces were also affected. The morphology of the region is prone to landslides and the possibility for their increased intensity during the forthcoming monsoon need to be considered seriously. From the seismotectonic perspective, the mid-crustal focal depth of the North Sikkim earthquake reflects the ongoing deformation of the subducting Indian plate. Keywords: Epicentre, focal depth, post-earthquake survey, seismotectonic setting. A MODERATE earthquake of magnitude Mw 6.9, which we hereafter refer to as the North Sikkim earthquake occurred in the evening (18 h 11 min, IST) of 18 September 2011, close to the Sikkim Nepal border. Bordered by Nepal, Bhutan and Tibet, the Sikkim region comprises a segment of relatively lower-level seismicity in the 2500 km-stretch of the active Himalayan belt (Figure 1 a). The largest historically known great earthquake in its vicinity is the 1934 Bihar Nepal border earthquake of M 8.3, located to the southwest of Sikkim, an event that caused intensity VIII damage in the Sikkim Himalaya (Figure 1 a) 1. The north Sikkim earthquake was felt in most parts of Sikkim and eastern Nepal; it killed more than 100 people and caused damage to buildings, roads and communication infrastructure, mostly due to the failure of the mobile telephone network towers. Several landslides and rock falls followed the earthquake, which increased the death toll and impaired rescue operations. The India Meteorological Department (IMD) reported the epicentre as 27.7 N and 88.2 E, located close to the northwestern terminus of a previously reported structure, the Tista lineament 2,3. The main event was followed by a few aftershocks, and three of these were of magnitude 4.2 (Table 1). Preliminary report of the IMD (http:// www.imd.gov.in) provided a centroid moment tensor (CMT) solution, which indicates reverse faulting at a *For correspondence. (e-mail: kusala@ceas.iisc.ernet.in) centroid moment depth of 10 km. An alternate solution by IMD suggests strike slip faulting at a moment tensor depth of 59 km. The IMD also reports that the 18 September event had a complex source and its focal mechanism needs further revisions. The National Earthquake Information Centre (NEIC)/ US Geological Survey (USGS) located the epicentre of the main event to the immediate west of the IMD location. There is some uncertainty regarding the depth as well as the location provided by these agencies and the Global CMT solutions. For example, the initial estimate of depth provided by USGS was 20 km, which has been revised as 50 km (preliminary determination of epicentres). However, the CMT solution by NEIC suggests a focal depth of 35 km, which is also the estimated hypocentral depth of the two larger aftershocks. The Global CMT solution suggests a depth of 47.4 km and an epicentre located to the southeast of the IMD and NEIC locations (Figure 1 b). Thus, the event seems to be a complex one as noted both by IMD and USGS, based on their initial models and the focal parameters would require further revisions. The National Geophysical Research Institute (NGRI) and the Indian Institute of Technology Kharagpur (IITKgh) have been monitoring the seismicity of Sikkim in the past using local seismic networks, which have now been resumed. Other national organizations (IMD, Geological Survey of India and the Wadia Institute of Himalayan Geology among them) are also involved in the postearthquake studies. These studies will provide a clearer picture of the aftershock activity and the source processes. This communication presents observations during our post-earthquake surveys conducted during 29 September 5 October 2011, in regions within Sikkim affected by the earthquake. Further, based on the data available for this region, we try to understand the seismotectonic setting and effects of this earthquake. The most significant earthquakes known to have occurred in the vicinity of the recent event are the M 7.7, 1833 and the M 6.6, 1988 events (Figure 1 a). A more recent one in this area is the M 5.3, 14 February 2006 earthquake, located southeast of the 2011 event, at a location where the Main Central Thrust (MCT) takes a peculiar overturned configuration (Figure 1 b). At the time of the 2006 earthquake, NGRI was operating a network of seven stations in Sikkim, and thus the source parameters of the main shock and aftershocks are quite well-constrained 3,4. Based on the CMT solution that suggested a thrust faulting mechanism sourced at 20 km depth on a near E W-oriented fault, with a dip of 27, Hazarika et al. 4 interpreted the mechanism of this earthquake as typical of the Main Himalayan Thrust (MHT) system. Further, they related the distribution of well-constrained aftershocks with the E W-oriented fault. Such earthquakes originate on the thrust faults associated with MHT, which accommodates the geological shortening, CURRENT SCIENCE, VOL. 101, NO. 11, 10 DECEMBER 2011 1475

Figure 1. a, Map showing the Main Himalayan Thrust (MHT) and the significant earthquakes (modified from Rajendran and Rajendran 9 ). The star shows the location of the 2011 North Sikkim earthquake. Square in dashed line is the area shown in (b). b, Area identified in (a) showing the major thrust faults (MHT, MBT and MCT) and the selected subset of micro earthquakes (M L 2.0 5.0) located by HIMNT 8. Right panel shows focal mechanism solutions for selected earthquakes. Location of the 2011 earthquake is shown by stars; IMD (purple) NEIC (red) and Global CMT (orange). Note the NW SE oriented cluster of deep crustal (> 50 km) earthquakes marked by the red dots. estimated as 21 ± 1.5 mm yr 1 on an average, over the Holocene 5. Later analysis of the data collected by the local network operated by NGRI suggested transverse tectonics rather than underthrusting in this region 4. Other studies based on relocation and re-evaluation of focal mechanism solutions 6, as well as analysis based on the Himalayan Nepal Tibet Seismic experiment (HIMNT) 7,8 have also 1476 suggested mid-to-deep crustal strike slip faulting as the dominant style of deformation in this region. The wellconstrained microearthquake data recorded by the close network of 29 seismic stations of HIMNT, located between 80 92 E and 26 30 N, have identified a cluster of earthquakes (M L 4.0) at sub-moho depths (> 60 km), trending in the WNW to ESE direction beneath the High Himalaya and Southern Tibetan Plateau (Figure 1 b). The CURRENT SCIENCE, VOL. 101, NO. 11, 10 DECEMBER 2011

Table 1. Epicentral parameters of the main shock and significant aftershocks Date Origin time Latitude ( N) Longitude ( E) Depth (km) Magnitude Source of data 18/09/2011 12 : 40 : 51.78 27.72 88.14 50 6.9 NEIC 18/09/2011 18 : 11 (IST) 27.70 88.20 10 6.8 IMD 18/09/2011 13 : 11 : 59.58* 27.48 88.50 35 4.8 NEIC 18/09/2011 13 : 11 : 59.00 27.60 88.50 5.0 IMD 18/09/2011 13 : 54 : 20.01* 27.28 88.30 35 4.7 NEIC 18/09/2011 13 : 54 : 17.00 27.50 88.40 4.5 IMD 18/09/2011 21 : 51 : 52.00 27.60 88.40 4.2 IMD 22/09/2011 16 : 44 : 43.00 27.60 88.40 3.9 IMD *Same event reported by different agencies. Figure 2. Map of Sikkim showing the approximate location of the epicentre and areas most affected by the earthquake and the subsequent landslides (dashed area). Sites discussed in the text are shown. focal depth estimates of the earthquakes located by HIMNT are based on a close network of stations and better velocity model derived from the experiment. We believe that the depth estimate of 47.4 km provided by the Global CMT for the 18 September earthquake may be more representative of the seismogenic source in this region. Thus, the North Sikkim earthquake, located at the southeastern edge of the NW SE-oriented cluster of earthquakes reported based on the data from the HIMNT network 7,8, may be considered as the largest event in this group of mid-to-deep crustal earthquakes. The focal mechanism solution for the main shock suggests dextral strike slip faulting, possibly along a NW SE oriented fault. This trend is consistent with the structural trend defined by the well-located microearthquakes as well as the fault plane inferred from well-constrained focal mechanisms 7,8. Another recent earthquake of magnitude 4.9 located to the southeast of the 2011 epicentre, also belongs to the category of mid-to-deep crustal, dextral strike slip faulting events originating on the NW SEoriented fault plane (Figure 1 b, bottom right panel). There is disparity in depth estimates between NEIC and Global CMT for this event too, as the former places it at 15 km and the latter at 42 km. Thus, there seems to be some discrepancy in the depth estimates for earthquakes in this region, probably due to the differences in the velocity models used. However, considering the consistency with the range of depth based on the HIMNT data, we consider that the 18 September earthquake occurred by right lateral strike slip faulting on a NW SE-oriented fault. The role of the morphologically conspicuous Tista lineament in generating these strike slip faulting earthquakes in this region as previously suggested 2, needs to be explored. The North Sikkim earthquake caused damage in a large area close to its epicentre as well as in Gangtok, the state s capital and several areas in south Sikkim. Regions in the immediate vicinity of the epicentre, located close to the Sikkim Nepal border are occupied by high mountains bordering southern Tibet and they are sparsely populated. Accessibility to these regions was further restricted due to the landslides and rock falls that blocked the roads and mountain passes. Locations where significant damages were observed are shown in Figure 2. Sites closest to the epicentre that we could access by road are located in the village of Chungthang, about 50 km southeast of the epicentre. Several buildings, mostly multistoried, were damaged here, and the Moonlight School, a five-storied building in Chungthang town is prominent among them. While several new buildings here developed only minor cracks, it was mostly the older buildings that suffered maximum damage, and invariably the damage could be related either to poor construction and/or the location of the building on colluvial terraces. CURRENT SCIENCE, VOL. 101, NO. 11, 10 DECEMBER 2011 1477

Lachung, located about 60 km east of the epicentre also suffered severe damage, mostly from landslides and rock falls, and the village was not accessible by road during the time of our survey. The area of maximum damage, which covers this village, as shown in Figure 2, is based on inputs from aerial surveys conducted by the Land Revenue and Disaster Management Department, Government of Sikkim, which is also involved in rescue and relief operations. The construction activities related to the Tista River Hydel Power Project are in their final stages and the 14 km-long diversion tunnel has been completed. The interior of the tunnel, about 1.2 km below the surface at some locations, showed no evidence of shaking by way of any displacement or freshly developed cracks. The nearby colony of the hydel power project workers, popularly known as the Urja Colony, was severely affected. Many of the rubble masonry houses here, most of them about 50 years old, collapsed, typically by failure of the wall. More recent constructions, mostly single and threestoried, RCC structures in the area suffered only minor damages. The nearest town, Mangan, was not seriously affected by this earthquake (see Figure 2 for location). Here the buildings did not suffer any notable damage, except for a few poorly engineered structures. The only notable damage was at the Rumgom Gumpa (the monastery at Rumgom), established in 1852; the rubble-wood structure collapsed at its roof level (Figure 3). A wall poster at the monastery documents that it was damaged twice in the past, once in 1913 (reason not known) and later in 1983, due to a flood. It is not clear how this monastery located at a higher elevation could have been affected by a flood. From the severity of damage to this two-storied structure, we infer that it may not have experienced similar shaking since its existence for more than 150 years. As for the structural damage, a notable aspect is the severity of damage to buildings located on the river terraces, where the basement is mostly composed of colluvium. A typical case is the minor damage to the well-engineered RCC buildings in the campus of the Sikkim Manipal Institute of Technology at Rangpo, located ~ 70 km south of the earthquake source (see Figure 2 for location). Some of the buildings in this large complex are located on the colluvial deposits of the river terrace, which might have amplified the shaking intensity. While most of the damage to structures was in the form of minor cracks or peeling of wall plaster, there was some minor structural damage to the pagoda, an ornamental structure that adorns the roof of the college building. We also noted that almost every multi-storied building that was damaged, particularly in the capital city of Gangtok, had more than three storeys. Another critical aspect is the quality of construction. We noted instances wherein two five-storied buildings under construction in the outskirts of Gangtok collapsed completely, whereas the adjoining building remained unscathed. A few new buildings at the hilltop monastery at Rumtek, south of Gangtok, were also affected, with some significant structural damage (see Figure 2 for location). The morphology of Sikkim is prone to landslides and the earthquake was followed by numerous landslides and rock falls in the epicentral area (Figure 4). The severe rains that occurred in the days following the earthquake also contributed to the density and severity of landslides. No evidence of surface faulting was noted; a few instances of fissures and pavement failures were reported. We noted similar failures on the road leading to the Rumtek monastery and also at one location in the Urja Colony. We used the pre- and post-earthquake landslide inventory map prepared by National Remote Sensing Centre (NRSC, http://bhuvan.nrsc.gov.in/bhuvan/pdf/sikkim_ earthquake.pdf), to understand the spatial density of landslides. The available cloud-free data over Sikkim obtained on 29 and 30 September 2011 from Cartosat-1 and Cartosat-2B, covering an area of about 2000 sq. km, were used for the study. About 350 new landslides were observed in the post-earthquake satellite imageries 1478 Figure 3. Collapsed monastery at Rumgom near Mangan. Figure 4. An areal view of landslides along the road to Chungthang. CURRENT SCIENCE, VOL. 101, NO. 11, 10 DECEMBER 2011

the depth range 60 100 km in regions to the immediate northwest of the North Sikkim earthquake. Retaining a parallelism with the shallower (< 20 km) southern band of epicentres and confined to a narrow region on the southern flanks of Tibet, these earthquakes appear to originate on the leading edge of the Indian plate (Figure 1 b). Further analysis of the data is required to understand the source characteristics and relation to the seismogenic structures. Figure 5. Distribution of co-seismically generated landslides within an area of 2000 sq. km in Sikkim from satellite data (source: NRSC, http://bhuvan.nrsc.gov.in/bhuvan/pdf/sikkim_earthquake.pdf). (Figure 5). The spatial distribution of landslides provides useful guidelines for vulnerability assessment and planning for mitigation strategies. A more detailed analysis using imageries from adjoining areas will provide a complete inventory of landslides triggered by the earthquake. The post-earthquake scenario raises additional threats for increased landslides during the next monsoon. Disaster mitigation efforts need to be directed towards the identification of vulnerable regions, with emphasis on preventive steps as well as for planning relocation of settlements wherever necessary. From the seismotectonic point of view, the north Sikkim earthquake is quite different from the shallow thrust earthquakes that originate on the major thrust faults, associated with MHT, or the crustal ramps and splay faults associated with these thrusts. For example, the 1991 Uttarkashi and 1999 Chamoli earthquakes are believed to have originated at the base of the crustal ramps or on the gentle slopes of the decollment 9. Located further north of MCT, the North Sikkim earthquake is different from the typical Himalayan plate boundary earthquakes. Sourced at about 50 km depth, followed by two mid-crustal aftershocks, this earthquake may have occurred either on the overriding Eurasian plate or the subducting Indian plate, as also suggested by the preliminary report of the USGS (http://earthquake.usgs.gov/ earthquakes). Where the North Sikkim earthquake originated, the Moho depth is between 50 and 60 km, and the projection of MHT 7 is at a depth of about 30 km. Data from HIMNT suggest the occurrence of earthquakes in 1. Dunn, J. A., Auden, J. B., Ghosh, A. M. N. and Roy, S. C., The Bihar Nepal earthquake of 1934. Geol. Surv. India Mem., 1939, 73, 280. 2. De, R. and Kayal, J. R., Seismotectonic model of the Sikkim Himalaya: constraint from microearthquake surveys. Bull. Seismol. Soc. Am., 2003, 93, 1395 1400. 3. Raju, P. S., Rao, N. P., Singh, A. and Ravi Kumar, M., The 14 February 2006 Sikkim earthquake of magnitude 5.3. Curr. Sci., 2007, 93, 848 850. 4. Hazarika, P., Ravi Kumar, M., Srijayanthi, G., Raju, P. S., Rao, P. N. and Srinagesh, D., Transverse tectonics in the Sikkim Himalaya: evidence from seismicity and focal mechanism data. Bull. Seismol. Soc. Am., 2010, 100, 1816 1822. 5. Lavé, J. and Abouac, J. P., Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of Central Nepal. J. Geophys. Res. B, 2000, 105(3), 5735 5770. 6. Drukpa, D., Velasco, A. A. and Doser, D. I., Seismicity in the Kingdom of Bhutan (1937 2003): evidence for crustal transcurrent deformation. J. Geophys. Res., 2006, 111, B06301; doi:10.1029/ 2004JB003087. 7. de la Torre, T. L., Monsalve, G., Sheehan, A. F., Sapkota, S. and Wu, F., Earthquake processes of the Himalayan collision zone in eastern Nepal and the southern Tibetan Plateau. Geophys. J. Int., 2007, 171, 718 738. 8. Monsalve, G., Sheehan, A., Schulte-Pelkum, V., Rajaure, S., Pandey, M. R. and Wu, F., Seismicity and one-dimensional velocity structure of the Himalayan collision zone: earthquakes in the crust and upper mantle. J. Geophys. Res., 2006, 111, B10301; doi:10.1029/ 2005JB004062. 9. Rajendran, K. and Rajendran, C. P., Revisiting the earthquake sources in the Himalaya: Perspectives on past seismicity. Tectonophysics, 2011, 504, 75 78. ACKNOWLEDGEMENTS. The authors from IISc, Bangalore thank the Seismology Division of the Ministry of Earth Sciences (MoES), New Delhi, for supporting a project to study the earthquakes in the Himalaya. We also thank the MoES for funding the infrastructure development project at the Centre for Earth Sciences, IISc, that supports earthquake and satellite data analysis. The HIMNT team provided the microseismicity data. Mr Gompu Lepcha (Department of Mines, Minerals and Geology, Gangtok) helped with logistics for fieldwork. Received 16 October 2011; revised accepted 14 November 2011 CURRENT SCIENCE, VOL. 101, NO. 11, 10 DECEMBER 2011 1479