grams g g g g Regolith Breccia

Similar documents
15009 Single Drive Tube Station 6

14041, and Regolith Breccia 166.3, and 65.2 grams

72320 Partially Shadowed Soil (portion frozen) grams. boulder # 2 station 2 South Massif

grams grams Poikilitic Impact Melt Breccia

14315 Unusual Regolith Breccia 115 grams

,1,2,3,4,9, Impact Melt Breccia 65.4 grams

15556 Vesicular Olivine-normative Basalt grams

DRAFT Coarse-fines 569 grams

grams grams Regolith Breccia

15595 and Vuggy Vitrophyric Pigeonite Basalt and grams

grams grams Double Drive tube 61 cm

65055 Basaltic Impact Melt grams

61015 Dimict Breccia 1789 grams

72335 Impact melt Breccia grams

grams grams Crystalline matrix Breccia

14049 Regolith Breccia grams

62255 Anorthosite with melt 1239 grams

74235 Vitrophric Basalt 59 grams

67016 Feldspathic Fragmental Breccia 4262 grams

79035 Soil breccia 2806 grams

60016 Ancient Regolith Breccia 4307 grams

DRAFT Cataclastic Dunite grams

DRAFT Regolith Breccia 155 grams

76215 Vesicular Micropoikilitic Impact Melt Breccia 644 grams

12013 Breccia with granite 82.3 grams

12052 Pigeonite Basalt 1866 grams

Element Cube Project (x2)

IV. Governador Valadares clinopyroxenite, 158 grams find

12042 Soil 255 grams

15016 Vesicular Olivine-normative Basalt grams

65015 Poikilitic Impact Melt Breccia 1802 grams

10020 Ilmenite Basalt (low K) 425 grams

Ilmenite Basalt grams

70035 Ilmenite Basalt 5765 grams

February 20, Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Job Number: S0CHG688. Dear Joe:

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

The Periodic Table of Elements

Radiometric Dating (tap anywhere)

Geological Assessment Report

Revised Impact Melt Rock with Shocked/Melted Anorthosite Cap 11,745 grams

Chapter 3: Stoichiometry

Chemical Composition of Lunar Meteorites and the Lunar Crust

7) Applications of Nuclear Radiation in Science and Technique (1) Analytical applications (Radiometric titration)

Summary of test results for Daya Bay rock samples. by Patrick Dobson Celia Tiemi Onishi Seiji Nakagawa

Nucleus. Electron Cloud

CHEM 10113, Quiz 5 October 26, 2011

GEOCHEMISTRY OF YAMAT , AND LUNAR METEORITES. Mail Code SN2, NASA Johnson Space Center, Houston, TX 77058, U.S. A.

Circle the letters only. NO ANSWERS in the Columns!

(C) Pavel Sedach and Prep101 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

Last 4 Digits of USC ID:

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

[ ]:543.4(075.8) 35.20: ,..,..,.., : /... ;. 2-. ISBN , - [ ]:543.4(075.8) 35.20:34.

Earth Materials I Crystal Structures

Metallurgical Chemistry. An Audio Course for Students

Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m

Circle the letters only. NO ANSWERS in the Columns! (3 points each)

8. Relax and do well.

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

12032 Soil 310 grams

Atoms and the Periodic Table

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Solutions and Ions. Pure Substances

Chemistry 431 Practice Final Exam Fall Hours

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

Guide to the Extended Step-Pyramid Periodic Table

Worked Example of Batch Melting: Rb and Sr

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1 MEMO. Analytical Chemistry CMY 283

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

CHEM 130 Exp. 8: Molecular Models

GSA DATA REPOSITORY

THE COMPOSITION OF THE CHASSIGNY METEORITE

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr

PERIODIC TABLE OF THE ELEMENTS

HANDOUT SET GENERAL CHEMISTRY I

PHYSICAL SCIENCES GRADE : 10

8. Relax and do well.

Made the FIRST periodic table

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION

Instructions. 1. Do not open the exam until you are told to start.

JSC-1: A NEW LUNAR SOIL SIMULANT

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Composition of the Earth and its reservoirs: Geochemical observables

7. Relax and do well.

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017

What monitoring techniques are appropriate and effective for detecting CO2 migration in groundwater: isotope-based monitoring Philippe Négrel

60025 Ferroan Anorthosite 1836 grams

HANDOUT SET GENERAL CHEMISTRY II

Upper Limit in Mendeleev s Periodic Table

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

Figure of rare earth elemental abundances removed due to copyright restrictions.

Chemistry 1 First Lecture Exam Fall Abbasi Khajo Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman

CHEM 108 (Spring-2008) Exam. 3 (105 pts)

Supplementary material

If anything confuses you or is not clear, raise your hand and ask!

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Transcription:

15306 134.2 grams 15315 35.6 g 15324 32.3 g 15325 57.8 g 15330 57.8 g Regolith Breccia Figure 1a,b: Photo of dust-covered 15306. Sample is 7 cm across. S71-43064 and 067. Introduction 15306 is a regolith breccia collected as part of a large soil (15300) and rake sample (15310) at Spur Crater. 15315, 15324, 15325 and 15330 are additional large soil breccias from the same rake sample, and there are many smaller fragments from the same sample (Butler 1972; Ryder and Sherman 1989). They all contain green glass spheres, distinctive of the soil and breccias samples at Spur Crater. Figure 2: Photo of 15315. Cube is 1 cm. S72-53914. Petrography 15306 was selected by Fruland (1985) as one of the regolith breccias for the study by Simon et al. (1986) and McKay et al. (1989). The other samples in this group show the variability among regolith breccias. Figure 4: Photo of 15325. Sample is 4 cm. S76-26843. Figure 3: Photo of 15324. Scale is cm. S71-49640

Figure 5: Photo of 15330. Cube is one cm. S76-26379 Figure 7: Map of station 7, Apollo 15 15306 Figure 6: Location of rake sample at Spur Crater on lower slope of Apennine Front. Thin section photomicrographs of these samples can be found in the catalog by Ryder (1985). Best and Minkin (1972) reported on glass composition in 15306. McKay et al. (1989) found 15306 to be subporous with density = 2.34 gm/cm3. They also reported a high percentage of mare basalt.

Dowty et al. (1973) and Hlava et al. (1973) found that 15315 had a high proportion of mafic green glass. 15324 is friable and full of glass (figure 3). FeO 25 20 15 15306 Apollo soils A15 breccias 15325 had a glass coating on one side (figure 4). 10 15330 (figure 5) had micrometeorite pits on all sides and was coherent. Warren and Wasson (1980) studied two clasts from 15306. One was pristine and Ta-rich (Warren 1993). Mineral compositions are given in figure 11. Chemistry Simon et al. (1986), Taylor et al. (1973), and Wanke et al. (1976) reported analyses for these soil breccias. They are not as enriched in REE as other regolith breccias from this site (figure 9). 5 0 0 5 10 15 20 25 30 35 Al2O3 Figure 8: Compostion of 15306 in comparison to that of Apollo 15 breccias and Apollo soils. Figure 9: Normalized rare-earth-element diagram for 15306 and selected Apllo 15 soils, for comparison. Mode for 15306 (Simon et al. 1986) Matrix <20 micron 56.9 % 20-90 micron 90-1000 micron Mare basalt - 1.6 % Plutonic Rx. 0.1 1.2 Feld. CMB - 0.4 Feld. Basalt - KREEP basalt - Granulitic/Poik. 0.2 1.0 Reg Bx. 0.9 0.9 Agglutinate 1.6 2.9 Pyroxene 4.0 0.5 Olivine 1.2 0.2 Plagioclase 5.1 1.3 Opaque 0.1 Glass 10.9 8.6 Mineralogical Mode for 15306 (McKay et al. 1989) 20-500 micron 500-1000 micron Mare Basalt 0 % 44 % KREEP basalt 0 0 Plutonic 2 0 Breccias 3.3 4.4 Olivine 10.3 0 Pyroxene 8.3 0 Plagioclase 17.6 0 Opaques 0 0 Glass 23.9 51.1 Agglutinates 4.7 0

Table 1. Chemical composition of 15306. 15306 15306 15306 15306 15324 15325 15330 reference Simon86 Ganapathy Warren80 Taylor73 Wanke77 weight matrix rhyolite clast23 clast27 SiO2 % 47.3 45.8 (e) TiO2 1.2 (a) 1.8 0.43 (e) Al2O3 15.9 (a) 18 27.8 (e) FeO 12.7 (a) 8.9 4.6 (e) MnO 0.165 (a) (e) MgO 12.2 (a) 12.9 4.6 (e) CaO 11.3 (a) 10 16 (e) Na2O 0.43 (a) 0.43 0.5 (e) K2O 0.14 (a) 0.05 0.2 (e) P2O5 S % sum Sc ppm 24.1 (a) 16.3 8.8 (a) 36 (c ) 23.3 25.4 (d) V 90 (a) (a) 130 (c ) 77 87 (d) Cr 2326 (a) 2790 642 (a) 2500 (c ) Co 47.1 (a) 29 17 (a) 48 (c ) 36 47 (d) Ni 260 (a) 26 29 (a) 248 (c ) 180 300 (d) Cu (a) 11 (c ) 11 (d) Zn 2.7 (b) 0.45 1.52 (a) 42 (d) Ga 2.7 3.3 (a) 5 (c ) 5 (d) Ge ppb 39 (b) 89 27 (a) 790 (d) As 24 (d) Se 50 (b) 0.48 (d) Rb 114 (b) 2.6 (c ) 2.8 (d) Sr 110 (a) 140 110 (d) Y 138 118 (d) Zr 150 (a) 480 290 (a) 200 (c ) 96 57 (d) Nb 15 (c ) 405 196 (d) Mo 29 12 (d) Ru Rh Pd ppb Ag ppb 0.92 (b) Cd ppb 10 (b) In ppb 17 (b) 4 2.6 (a) Sn ppb 0.19 (c ) Sb ppb 11.8 (b) Te ppb 23 (b) Cs ppm 4.53 (b) 0.1 (c ) 0.13 (d) Ba 130 (a) 420 1640 (a) 160 (c ) 290 136 (d) La 13 (a) 21.4 16 (a) 13.6 (c ) 29.5 13.5 (d) Ce 32 (a) 53 39 (a) 31 (c ) 81.1 35.7 (d) Pr 4.4 (c ) 4.9 (d) Nd 23 (a) 34 23 (a) 18.3 (c ) 24 (d) Sm 6.05 (a) 9.18 6.93 (a) 5.7 (c ) 12.6 6.36 (d) Eu 1.1 (a) 1.05 1.24 (a) 1.07 (c ) 1.45 1.06 (d) Gd 7.2 (c ) 7.63 (d) Tb 1.35 (a) 2 1.5 (a) 1.09 (c ) 2.71 1.35 (d) Dy 8.5 (a) 6.8 (c ) 18 8.02 (d) Ho 2 (a) 1.64 (c ) 1.8 (d) Er 4.7 (c ) 5.45 (d) Tm 0.73 (a) 0.73 (c ) Yb 4.6 (a) 7.7 5.7 (a) 4.4 (c ) 9.76 5.01 (d) Lu 0.66 (a) 1.13 0.81 (a) 0.68 (c ) 1.32 0.68 (d) Hf 4.17 (a) 10.7 5.5 (a) 3.5 (c ) 10 4.72 (d) Ta 0.54 (a) 2.5 0.66 (a) 1.27 0.65 (d) W ppb 0.13 (c ) 250 (d) Re ppb 0.28 (b) 0.063 (a) 1.2 (d) Os ppb Ir ppb 3.6 (b) 0.61 1.54 (a) Pt ppb Au ppb 2.2 (b) 0.36 0.21 (a) 2.9 (d) Th ppm 2.15 (a) 7.22 (b) 4.4 3.3 (a) 1.79 (c ) 4.68 2.2 (d) U ppm 0.6 (a) 1.6 0.81 (a) 0.43 (c ) 0.58 (d) technique: (a) INAA, (b) RNAA, (c ) SSMS, (d) various, (e) fused bead

Figure 10: Photo of interior of 15306. Scale unknown. S71-52426. CMeyer 15306 134.2 grams 107 g 0 4g 1 4 5 7.7 g,7,7 1.3 g 5,8 9 1.1 g 1 0.5 g,6 8 3 1 4 9 7 5.08 g 6 0.06 g 7 8 2 0 C Meyer 15315 35.6 grams 1 16 g 2 12 g 1.5 g,9 0 2.7 g 6 Figure 11: Mineral composition of a high Ta clast in 15306 (Warren and Wasson 1980).

C Meyer 15324 32.2 grams CMeyer 15325 57.8 grams 21.4 g 5g 0.5 g 0.7 g 55 g 1.2 g,8,9 0 CMeyer 15330 57.8 grams 47.3 g 5g 0.7 g 1.9 g,7 0.9 g References for 15306 Best J.B. and Minkin J.A. (1972) Apollo 15 glasses of impact origin. In The Apollo 15 Lunar Samples, 34-39. Lunar Planetary Institute, Houston. Butler P. (1971) Lunar Sample Catalog, Apollo 15. Curators Office, MSC 03209 Dowty E., Conrad G.H., Green J.A., Hlava P.F., Keil K., Moore R.B., Nehru C.E. and Prinz M. (1973a) Catalog of Apollo 15 rake samples from stations 2 (St. George), 7 (Spur Crater) and 9a (Hadley Rille). Inst. Meteoritics Spec. Publ. No 11, 51-73. Univ. New Mex. ABQ. Fruland R.M. (1983) Regolith Breccia Workbook. Curatorial Branch Publication # 66. JSC 19045. Ganapathy R., Morgan J.W., Krahenbuhl U. and Anders E. (1973) Ancient meteoritic components in lunar highland rocks: Clues from trace elements in Apollo 15 and 16 samples. Proc. 4 th Lunar Sci. Conf. 1239-1261. Hlava P.F., Green J.A., Prinz M., Keil K., Dowty E. and Bunch T.E. (1973) Apollo 15 rake samples, microbreccias and non-mare rocks: Bulk rock, mineral and glass electron microprobe analyses. Inst. Meteoritics Spec. Publ. No 11, 51-73. Univ. New Mex. ABQ LSPET (1972a) The Apollo 15 lunar samples: A preliminary description. Science 175, 363-375. LSPET (1972b) Preliminary examination of lunar samples. Apollo 15 Preliminary Science Report. NASA SP-289, 6-1 6-28. Ryder G. (1985) Catalog of Apollo 15 Rocks (three volumes). Curatoial Branch Pub. # 72, JSC#20787 Ryder G. and Sherman S.B. (1989) The Apollo 15 Coarse Fines. Curators Office #81, JSC#24035,8,9 Simon S.B., Papike J.J., Grosselin D.C. and Laul J.C. (1986) Petrology of the Apollo 15 regolith breccias. Geochim. Cosmochim. Acta 50, 2675-2691. Swann G.A., Hait M.H., Schaber G.C., Freeman V.L., Ulrich G.E., Wolfe E.W., Reed V.S. and Sutton R.L. (1971b) Preliminary description of Apollo 15 sample environments. U.S.G.S. Interagency report: 36. pp219 with maps Swann G.A., Bailey N.G., Batson R.M., Freeman V.L., Hait M.H., Head J.W., Holt H.E., Howard K.A., Irwin J.B., Larson K.B., Muehlberger W.R., Reed V.S., Rennilson J.J., Schaber G.G., Scott D.R., Silver L.T., Sutton R.L., Ulrich G.E., Wilshire H.G. and Wolfe E.W. (1972) 5. Preliminary Geologic Investigation of the Apollo 15 landing site. In Apollo 15 Preliminary Science Rpt. NASA SP-289. pages 5-1-112. Taylor S.R., Gorton M.P., Muir P., Nance W., Rudowski R. and Ware N. (1973b) Lunar highlands composition: Apennine Front. Proc. 4 th Lunar Sci. Conf. 1445-1459. Warren P.H. (1993) A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am. Mineral. 78, 360-376. Warren P.H. and Wasson J.T. (1980a) Further foraging of pristine nonmare rocks: Correlations between geochemistry and longitude. Proc. 11 th Lunar Planet. Sci. Conf. 431-470. Wänke H., Baddenhausen H., Blum K., Cendales M., Dreibus G., Hofmeister H., Kruse H., Jagoutz E., Palme C., Spettel B., Thacker R. and Vilcsek E. (1977a) On the chemistry of lunar samples and achondrites. Primary matter in the lunar highlands: A re-evaluation. Proc. 8 th Lunar Sci. Conf. 2191-2213.