Pulsation of AGB stars in the Small Magellanic Cloud cluster NGC 419

Similar documents
Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars

Results of the OGLE-II and OGLE-III surveys

Red giant variables: OGLE II and MACHO

arxiv: v1 [astro-ph.sr] 13 Apr 2018

Lab Exercises for Low Mass Stars

1. The AGB dust budget in nearby galaxies

Devika kamath Institute of Astronomy, KU. Leuven, Belgium

arxiv:astro-ph/ v1 17 Nov 2005

arxiv: v1 [astro-ph.sr] 29 Jan 2009

Mass loss of Mira stars associated with a star formation eld in the M16 and M17 region

Stellar Evolution & issues related to the post Turn-Off evolution

Mass-Loss Rates and Luminosities of Evolved Stars in the Magellanic Clouds

THE 2MASS COLOR-MAGNITUDE DIAGRAM OF THE GLOBULAR CLUSTER LYNG8Å7 1

Lab Exercises for Low Mass Stars

The Giant Branches of Open and Globular Clusters in the Infrared as Metallicity Indicators: A Comparison with Theory

The Star Clusters of the Magellanic Clouds

2 Princeton University Observatory, Princeton, NJ , USA

Chapter 8: Simple Stellar Populations

arxiv: v1 [astro-ph.sr] 28 Jun 2017

Spectroscopy of Long-Period Variables in M33

dell Osservatorio 3, I Padova, Italy I Padova, Italy 98195, USA Wien, Austria 1. Introduction

Comparing the Period-Luminosity relationships in variable stars

Classical Methods for Determining Stellar Masses, Temperatures, and Radii

2MASS observations of spectroscopically identified extragalactic C stars

Do the Large Magellanic Cloud and the Milky Way Globular Clusters Share a Common Origin?

Dust formation in Asymptotic Giant Branch stars Ambra Nanni SISSA, Trieste (IT)

arxiv: v1 [astro-ph.sr] 1 Jul 2012

The Infrared Properties and Period-Luminosity Relations of Red Supergiant Stars in the Magellanic Clouds

arxiv:astro-ph/ v1 22 Sep 2006

Stellar Populations in the Local Group

arxiv: v1 [astro-ph.co] 31 Mar 2011

Near-IR photometry of asymptotic giant branch stars in the dwarf elliptical galaxy NGC 185,

Simple Stellar Populations

TNG photometry of the open cluster NGC 6939

Reddening map of the Large Magellanic Cloud bar region. A. Subramaniam

Light curve solutions of eclipsing binaries in SMC

Mira variables They have very regular light curves, with amplitude V > 2.5 m, and periods Π > 100 days.

arxiv:astro-ph/ v1 6 Jun 2002

Photometric Observations of the δ Scuti Star UV Trianguli and its Evolutionary Status

From theory to observations

The role of AGB stars in stellar populations

A New Analysis in the Field of the Open Cluster Collinder 223

The tip of the red giant branch and distance of the Magellanic Clouds: results from the DENIS survey

Using the HR Diagram to Measure the Star Formation Histories of Galaxies. Tammy Smecker-Hane University of California, Irvine

Lithium abundances and metallicities: trends from metal-poor and AGB/RGB stars

arxiv:astro-ph/ v1 5 Jan 1996

Evolution and nucleosynthesis of AGB stars

The Ṁass- loss of Red Supergiants

A photometric study of the intermediate age open cluster King 5

Can rotation explain the multiple main-sequence turn-offs of Magellanic Cloud star clusters?

Using broad-band photometry to examine the nature of long secondary periods in red giants

A CCD BV I color-magnitude study of the metal-rich globular cluster NGC 5927,

Introduction to nucleosynthesis in asymptotic giant branch stars

Calibrating the role of TP-AGB stars in the cosmic matter cycle

arxiv:astro-ph/ v1 10 Oct 2005

arxiv: v1 [astro-ph.sr] 17 Oct 2012

Observing Miras as tracers of the inner part of the Milky Way

Data analysis: CMD and SED

Light Curve Analysis of GSC and GSC

Synthetic photometry for carbon rich giants

The Local Group of Galaxies

Recent Researches concerning Semi-Regular Variables

SUPPLEMENTARY INFORMATION

The first phases of life of stars in Globular Clusters: an example of the problems of modern stellar structure computation

Oxygen in AGB stars and the relevance of planetary nebulae to mapping oxygen in the Universe

Determining dust mass-loss rates

arxiv:astro-ph/ v1 26 Nov 2004

Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova

Black holes in dormant X-ray transients

Fundamental stellar parameters

HR Diagram, Star Clusters, and Stellar Evolution

et al. 1996; Hansen 2005; Kalirai et al ML is a free parameter with a huge astrophysical impact

arxiv: v1 [astro-ph.ga] 24 Mar 2015

AGB evolution in the early globular clusters

arxiv:astro-ph/ v2 7 Apr 1999

Stellar Populations with JWST: the Beginning and the End

Spitzer Infrared Spectrograph (IRS) Observations of Large Magellanic Cloud Planetary Nebula SMP 83

Characterisation of the open cluster M67

New perspectives on red supergiants

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

Chapter 7: From theory to observations

The Hertzsprung-Russell Diagram

Evolution Beyond the Red Giants

From theory to observations

Radial Velocities of T Dwarfs with FIRE

dsph in Local Group July 2014 Vienna

Lecture 12. November 20, 2018 Lab 6

Galactic Globular Clusters: the stellar laboratory

Probing stellar evolution with open star clusters

Radio Nebulae around Luminous Blue Variable Stars

Evolutionary models and age determinations Alessandro Bressan International School for Advanced Studies (SISSA) Trieste

PoS(NIC XI)013. Nucleosynthesis and chemical evolution of intermediate-mass stars: results from planetary nebulae

arxiv: v1 [astro-ph.sr] 10 Feb 2015

arxiv:astro-ph/ v1 8 Oct 2002

The pulsation modes, masses and evolution of luminous red giants

Globular Cluster Ages and Strömgren CCD Photometry

Jason Kalirai (STScI)

Pulsation in Herbig stars: an idea of Francesco and its realization

Igor Soszyński. Warsaw University Astronomical Observatory

ASTR STELLAR PULSATION COMPONENT. Peter Wood Research School of Astronomy & Astrophysics

Transcription:

Mem. S.A.It. Vol. 81, 1078 c SAIt 2010 Memorie della Pulsation of AGB stars in the Small Magellanic Cloud cluster NGC 419 D. Kamath 1, P. R. Wood 1, I. Soszyński 2, and T. Lebzelter 3 1 Research School of Astronomy & Astrophysics, Australian National University, Weston Creek, ACT 2611, Australia, e-mail: devika13@mso.anu.edu.au 2 Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland 3 Institute of Astronomy, University of Vienna, Tuerkenschanzstrasse 17, 1180 Vienna, Austria. Abstract. The Magellanic Clouds are excellent laboratories to study and test theories of the late stages of stellar evolution. Our understanding of the evolution of red giants, and mass loss from them, is limited owing to uncertainties in determining important stellar parameters such as the initial mass and metallicity. A powerful way to overcome this is to study red giants in clusters for which the age, and hence the initial mass of the red giants, can be obtained with accuracy. The initial metallicity can also be obtained by studying stars less extreme than the AGB stars. Here, we present preliminary results of a study of AGB stars in the cluster NGC 419 belonging to the Small Magellanic Cloud (SMC). Using the pulsation behaviour of AGB variables in this cluster, we derive their current masses and find that significant amounts of mass loss have occurred at the tip of the AGB. Key words. Stars: AGB and post-agb Stars: mass-loss Stars: variables: general Galaxies: Magellanic Clouds Globular clusters: NGC 419 1. Introduction The intermediate age SMC cluster NGC 419 is the only cluster in the SMC which is known to have AGB stars with extremely high massloss rates. The cluster contains one very red star detected first in the mid-ir (Tanabé et al. 1998) and one star first seen in the near- IR (Tanabé et al. 1997). Both these stars have dense, dusty circumstellar shells resulting from high mass-loss rates. The cluster also contains many carbon-rich AGB stars. Recent HST observations show that NGC 419 has a broad main-sequence turnoff which is interpreted as the result of multi- Send offprint requests to: D. Kamath ple star formation events or extended star formation (Glatt et al. 2008; Girardi et al. 2009; Rubele et al. 2010). The metallicity of NGC 419 is close to [Fe/H] = -0.7 (Kayser et al. 2009), corresponding to a metallicity of Z 0.004. Fits to the Hertzsprung-Russell diagrams yield ages of 1.2-1.8 Gyr (Glatt et al. 2008; Girardi et al. 2009; Rubele et al. 2010). We adopt an age of 1.4±0.2 Gyr. For this age, the isochrones of Girardi et al. (2000) with a metallicity of Z=0.004 yield an initial mass for stars currently at the beginning of the thermally pulsing asymptotic giant branch (TPAGB) of 1.82±0.15 M. As a result of mass loss prior to the TPAGB, the actual current mass is estimated to be 1.79±0.15 M

(according to the Girardi et al. (2000) evolutionary tracks which use a scaled Reimers mass-loss law). Kamath et al.: Pulsation of AGB stars in NGC 419 1079 2. Observational data The extreme mid-ir source and the near- IR source in NGC 419 were long ago assumed to be AGB stars with a large pulsation amplitude. Therefore, the cluster was monitored relatively sparsely in time over approximately 3000 days with the 2.3m telescope of the Australian National University at Siding Spring Observatory. The observations were taken using the near-ir Cryogenic Array Spectrometer/Imager (CASPIR) (McGregor et al. 1994). The observations were carried out using the filters J (1.28µm), H (1.68µm), K (2.22µm) and L (3.59µm). These observations were used to determine the periods of the mid- IR and near-ir sources. They also gave very good mean JHKL magnitudes for the other variable and non-variable AGB stars in the cluster. Most of the other AGB stars have relatively low amplitude variability. Unfortunately, this variability is far from regular and the near- IR observations are not adequate for determining periods. In order to derive periods for these stars, closely spaced (near-daily) observations are required in a bluer part of the spectrum where the amplitude is relatively large. We used data from the Optical Gravitational Lensing Experiment (OGLE II, Zebruń et al. 2001) supplemented with some OGLE III data. Finally, in order to obtain the complete spectra enery distribution, the Spitzer Space Telescope (SST) Survey of the SMC by Bolatto et al. (2007) was used to obtain photometric data in the bands at 3.6, 4.5, 5.8, 8 and 24 µm. 3. Light curves and pulsation periods In the OGLE data, sixteen stars were found to have significant variability. All the stars had semi-regular light curves and most showed multi-periodicity. The light curves were analysed using the phase dispersion minimization (PDM) task in IRAF. The values obtained were Fig. 1. K and L band light curves of the mid-ir variable in NGC 419. cross checked using the Period04 software, an extended version of Period98 by Sperl (1998). For the mid-ir source, the near-ir photometric observations (K and L bands) provided good light curves: the mid-ir source was not detected by the OGLE survey. Fig. 1 shows the K and L light curves of the mid-ir source, along with Fourier fits to them. 4. Linear pulsation models The first step in the modelling process was the construction of a fiducial giant branch for the non-variable AGB stars in the (M bol, log T e ff) plane. The averaged J and K magnitudes from the CASPIR observations were used to do this. An SMC distance modulus of 18.93 and a foreground reddening E(B-V) of 0.12 was adopted (Keller & Wood 2006). For the O-rich stars in the cluster K o and (J-K) o were converted to log(l/l ) and T eff, using the transforms in Houdashelt et al. (2000a,b). For the C-rich stars, the bolometric correction in Wood et al. (1983) was used while the ((J-K) o,t eff ) relation from Bessell et al. (1983) gave T eff. For the variable stars, the luminosity was obtained by integration under the spectral energy distribution, corrected for foreground extinction. For the large amplitude near-ir and mid-ir sources, the mid-ir spectral energy

1080 Kamath et al.: Pulsation of AGB stars in NGC 419 Fig. 2. The M bol vs log P diagram for the AGB variables in NGC 419. The open symbols denote the M stars and the closed symbols denote the C stars. distributions from the Spitzer observations of Groenewegen et al. (2007) were used. In order to correct for the fact that the mid-ir Spitzer observations were taken at only one pulsation phase, it was assumed that M bol and the L magnitude have the same amplitude of variation. Then the computed values of M bol at the time of Spitzer observation was corrected to the mean value using the difference between L at time of the Spitzer observation and the mean L. For the small amplitude variables in NGC 419, we constructed static and linear nonadiabatic pulsation models which are based on the pulsation codes described in Fox & Wood (1982) and updated by Keller & Wood (2006). At temperatures below log T = 3.75, we used Rosseland mean opacities computed using AESOPUS (Marigo & Aringer 2009). Some of the mixtures used had C/O > 1. The core mass, M c, was obtained from the L M c relation of Wood & Zarro (1983). To derive the mixing length and the stellar mass early in the TPAGB, we considered the least luminous variable, where C/O was assumed to be 0.31. Given the fiducial giant branch temperature at the M bol of this variable, along with the period of the variable, the mixing length and the stellar mass were adjusted until the model had the correct T eff and the cor-

rect P. The mixing length and the mass were then kept constant for all other linear models at different luminosities. We found that a mass of 1.87 M fit the observed periods best. Fig. 2 shows the preliminary (M bol, log P) diagram for the AGB variables in NGC 419. The reasonable fit of the models to the observed periods suggests than mass loss is relatively small for the small amplitude variables with log P < 2.5 days. A similar small amount of mass loss was found in the pulsation studies of AGB stars in the Large Magellanic Cloud cluster NGC 1846 (Lebzelter & Wood 2007). Kamath et al.: Pulsation of AGB stars in NGC 419 1081 5. Nonlinear pulsation models The above linear models are inappropriate for the large amplitude mid-ir and near-ir stars in the cluster (these are the two stars with log P > 2.5 days in Fig. 2). At large amplitude, long period variables can have very different linear and nonlinear periods (e.g. Lebzelter & Wood 2005). Fig. 3 shows a non-linear pulsation calculation for the mid-ir source in NGC 419. In order to reproduce the observed period, it was found that a mass of 1.6 M was required. This mass, compared to the mass of the small amplitude AGB stars, shows that 0.27 M have been recently lost in a superwind from this star. The mass must have been lost near M bol = 5.3. The star still has about 1 M to lose, which will take about 6 10 4 years if we use the mass-loss rate of 1.7 10 5 M /yr given by Groenewegen et al. (2007) for this star. 6. Future work We intend to continue this work and construct a nonlinear pulsation model for the near-ir source in NGC 419. Similar work will also be carried out for the LMC cluster NGC 1978. The accurate masses obtained from the pulsation models will be used to derive the massloss rates at different L and M values. The results will be used to constrain mass-loss rate formulae for AGB stars since all the parameters (M, L, P) normally used in these formulae are known for these stars. Fig. 3. A non-linear pulsation model for the mid-ir source in NGC 419. The top panel shows the surface luminosity as a function of time while the bottom panel shows the time variation of the radial position of various mass elements in the stellar envelope. Acknowledgements. TL received support from the Austrian Science Fund FWF under project number P20046-N16. References Bessell, M. S., Wood, P. R., & Evans, T. L. 1983, MNRAS, 202, 59 Bolatto, A. D., Simon, J. D., Stanimirović S., et al. 2007, ApJ, 655, 212 Fox, M. W., & Wood, P. R. 1982, ApJ, 259, 198 Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371 Girardi, L., Rubele, S., & Kerber, L. 2009, MNRAS, 394, L74 Glatt, K., Grebel, E. K., Sabbi, E., et al. 2008, AJ, 136, 1703 Groenewegen, M. A. T., Wood, P. R., Sloan, G. C., et al. 2007, MNRAS, 376, 313

1082 Kamath et al.: Pulsation of AGB stars in NGC 419 Houdashelt, M. L., Bell, R. A., Sweigart, A. V., & Wing, R. F. 2000a, AJ, 119, 1424 Houdashelt, M. L., Bell, R. A., & Sweigart, A. V. 2000b, AJ, 119, 1448 Kayser, A., Grebel, E. K., Harbeck, D. R., et al. 2009, Globular Clusters - Guides to Galaxies, Springer (Berlin/Heidelberg), 157 Keller, S. C., & Wood, P. R. 2006, ApJ, 642, 834 Lebzelter, T., & Wood, P. R. 2005, A&A, 441, 1117 Lebzelter, T., & Wood, P. R. 2007, A&A, 475, 643 Marigo, P., & Aringer, B. 2009, A&A, 508, 1539 McGregor, P., Hart, J., Hoadley, D.,& Bloxham, G., 1994, in Infrared Astronomy with Arrays, ed. I. McLean (Kluwer), 299 Rubele, S., Kerber, L., & Girardi, L. 2010, MNRAS, 403, 1156 Sperl, M. 1998, Communications in Asteroseismology, 111, 1 Tanabé, T., & Nishida, S. 1997, Astronomical Herald, 90, 214 Tanabé, T., Nishida, S., Nakada, Y., et al. 1998, Ap&SS, 245, 407 Wood, P. R., & Zarro, D. M. 1981, ApJ, 247, 247 Wood, P. R., Bessell, M. S., & Fox, M. W. 1983, ApJ, 272, 99 Zebruń, K., Soszyński, I., Wozniak, P. R., et al. 2001, Acta Astronomica, 51, 317