Some Transcendental Elements in Positive Characteristic

Similar documents
Frequency Response. Response of an LTI System to Eigenfunction

10.5 Linear Viscoelasticity and the Laplace Transform

2. The Laplace Transform

Consider a system of 2 simultaneous first order linear equations

A Simple Representation of the Weighted Non-Central Chi-Square Distribution

4.8 Huffman Codes. Wordle. Encoding Text. Encoding Text. Prefix Codes. Encoding Text

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8

FINITE GROUPS OCCURRING AS GROUPS OF INTEGER MATRICES

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions

Advanced Queueing Theory. M/G/1 Queueing Systems

The Mathematics of Harmonic Oscillators

The Variance-Covariance Matrix

Chapter 7 Stead St y- ate Errors

Problem 1: Consider the following stationary data generation process for a random variable y t. e t ~ N(0,1) i.i.d.

Homework: Introduction to Motion

EXERCISE - 01 CHECK YOUR GRASP

Exclusive Technology Feature. Current-Loop Control In Switching Converters Part 6: Slope Compensation. Slope Compensation. ISSUE: February 2012

Server breakdown and repair, Multiple vacation, Closedown, Balking and Stand-by server.

CHARACTERIZATION FROM EXPONENTIATED GAMMA DISTRIBUTION BASED ON RECORD VALUES

Neutron electric dipole moment on the lattice

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

ktmuwii INDEPENDENT IN Al.t THINCIS. NEUTRAL IN NOTHING* Sold at Cast. AI.GE" IS DKVI). Lowell's Bright Boy Stricken With Small Pox at Manila.

- Double consonant - Wordsearch 3

Conventional Hot-Wire Anemometer

Final Exam : Solutions

Ma/CS 6a Class 15: Flows and Bipartite Graphs

1 Input-Output Stability

Overview. Splay trees. Balanced binary search trees. Inge Li Gørtz. Self-adjusting BST (Sleator-Tarjan 1983).

innovations shocks white noise

Wave Superposition Principle

mml LOWELL. MICHIGAN, THURSDAY, JULY 7,1932 Turkey Dinner Sets Lowell Board of Trade Going Strong For Show Boat on the Flat

Charging of capacitor through inductor and resistor

Chapter 9 Transient Response

A Note on Estimability in Linear Models

Valuation and Analysis of Basket Credit Linked Notes with Issuer Default Risk

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

P a g e 5 1 of R e p o r t P B 4 / 0 9

V A. V-A ansatz for fundamental fermions

Overview. Splay trees. Balanced binary search trees. Inge Li Gørtz. Self-adjusting BST (Sleator-Tarjan 1983).

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year

Hiroaki Matsueda (Sendai National College of Tech.)

SIMEON BALL AND AART BLOKHUIS

S tu d y P la n n e d Leader9s Expulsion Protested

, k fftw ' et i 7. " W I T H M A. L I O E T O W A R 3 D JSrOKTE X l S T E O H A R I T Y F O R A L L. FIRE AT^ 10N1A, foerohlng * M».

Institute of Actuaries of India

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

Intro to QM due: February 8, 2019 Problem Set 12

CIVL 7/ D Boundary Value Problems - Quadrilateral Elements (Q8) 1/9

1 Finite Automata and Regular Expressions

Two-Dimensional Quantum Harmonic Oscillator

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

9. Simple Rules for Monetary Policy

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Wave Phenomena Physics 15c

Folding of Regular CW-Complexes

Fractal diffusion retrospective problems

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

rather basic, using double extensions of analytic and harmonic functions.

APPENDIX H CONSTANT VOLTAGE BEHIND TRANSIENT REACTANCE GENERATOR MODEL

Chapter 13 Laplace Transform Analysis

SSSf. 2 Were Killed' RepresentnUvesrl

Time to Recruitment for a Single Grade Manpower System with Two Thresholds, Different Epochs for Inter-Decisions and Exits Having Correlated Wastages

4D SIMPLICIAL QUANTUM GRAVITY

1. Quark mixing and CKM matrix

tcvrn Hl1 J M Hamilton P Eng Chief Geologist Kimberley Northing m Northing m I FEB 24 1QP Northing m Gold Commiuioner

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

The Hyperelastic material is examined in this section.

Problem analysis in MW frequency control of an Interconnected Power system using sampled data technique

EAcos θ, where θ is the angle between the electric field and

Response of MDOF systems

SYMMETRICAL COMPONENTS

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j)

T h e C S E T I P r o j e c t

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Chemistry 342 Spring, The Hydrogen Atom.

Oddn ENTRIES. Two New Buildings For County 4-H Fair

Chapter 8 Theories of Systems

Series of New Information Divergences, Properties and Corresponding Series of Metric Spaces

Reliability Equivalence of Independent Non-identical Parallel and Series Systems.

Chap.3 Laplace Transform

( r) E (r) Phasor. Function of space only. Fourier series Synthesis equations. Sinusoidal EM Waves. For complex periodic signals

On the Speed of Heat Wave. Mihály Makai

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

2 tel

OUTLINE FOR Chapter 2-2. Basic Laws

the output is Thus, the output lags in phase by θ( ωo) radians Rewriting the above equation we get

Double Slits in Space and Time

Vertical Sound Waves

Parts Manual. EPIC II Critical Care Bed REF 2031

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

The Matrix Exponential

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

A L A BA M A L A W R E V IE W

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Introduction to Inertial Dynamics

Elementary Differential Equations and Boundary Value Problems

Improved Exponential Estimator for Population Variance Using Two Auxiliary Variables

Midterm exam 2, April 7, 2009 (solutions)

Transcription:

R ESERCH RTICE Scnca 6 ( : 39-48 So Trancndna En n Pov Characrc Vchan aohaoo Kanna Kongaorn and Pachara Ubor Darn of ahac Kaar Unvry Bango 9 Thaand Rcvd S 999 ccd 7 Nov 999 BSTRCT Fv rancndna n n funcon fd of ov characrc ar conrucd bracng ho rvouy drvd by Wad durng 94-43 Th conrucon ru fro a carfu anay of h orgna wor of Wad and ndca ha h hod and aocad chnu worhy of condraon KEYWORDS: rancndna characrc INTRODUCTION Th udy of rancndnc n fd of nonzro characrc nown o bgn n 94 hrough h ar of Wad Snc hn varou aroach oo and ru g ou Brownaw Da and Hgouarch 4 Dn 5 78 o ahan Wad -6 Yu 7-3 hav bn nvgad Though h odrn ran of h ubc va h conc of Drnfd odu (Drnfd 6 donang h rn day rarch h od and caca da and aroach of Wad n 94 rov o b a drc and a vry owrfu chnu of abhng cran cfc rancndnc ru a vdncd n o rcn wor of Daa and Hgouarch 4 co anay of h wor of Wad -6 rva ha h da con of fr aung agbracy cond fndng ur hrd arang arora xron no h o-cad ngra and randr ar fourh ang ur and owr bound for h ngra and randr ar and ffh and fnay drvng a conradcon fro h ur and owr bound or h Th an obcv of h wor o ubana h bf by rovng fv hor gnrazng corrondng arr ru of Wad -6 bang on a carfu anay of h orgna hod of Wad nond abov Th foowng rnoogy and noaon ao 9 ar andard hroughou h nr ar F [x] h rng of oynoa ovr h ao (fn fd F of characrc wh bng r bng a owr of F (x h uon fd of F [x] dg or (or h nonarchdan vauaon (a norazd o ha x = dg x = F (x h coon of F (x (a wh rc o whch oorhc o F ((/x h fd of fora aurn r n /x F (x co h agbrac cour of F (x Ω h coon of F (x co For N [] = x - x [] = = = [][-][] F = F = [][-] [] I nown (Carz 3 ha h a coon u of a oynoa of dgr n F [x] and F h roduc of a onc oynoa of dgr n F [x] Th noon of ngray and dvby rfr o ho n h ngra doan F [x] W rcord hr auxary a whch w b ud n h roof of our an hor Th roof of h a can b found n Wad 3 a Evry oynoa n F [x] dvd a nar oynoa F [x] a Th xron [ ] a [ ] ar r [ ] [ ] whr > > r > ; ; > ar ngr ndndn of can b wrn a a u of r ha ar ngra or ar of h for P [ ] f [ ] fu b bu whr b > > b u < f - [ ] [ v] v b < v + and P a oynoa ndndn of Furhr f a ( = v hn b u n ( + + c and h rdu od [] of h = r ngra r of ar dgr han h dgr of h rdu od [] of h nuraor n h orgna xron

4 Scnca 6 ( THE FIRST IN THEORE Thor b a ov ngr and b a unc of n n F (x u ha ( ach P and ( F [x] ( P for nfny any ( dg P ( ( - - b whn uffcny arg and b ( (v hr ar ony fny any dnc rrducb facor conand n a (v hr a non-dcrang unc of ov ngr (d uch ha d d - whn uffcny arg and dg d = O( a Thn h r α := whnvr convrgn = F rancndna ovr F (x Proof Suo on h conrary ha α agbrac ovr F (x Thn a roo of an agbrac uaon wh coffcn fro F (x By a w can u h agbrac uaon n h for = whr F (x Drc ubuon yd = = F = = F (whr w dfn = f > or < = = F (whr w dfn h r wh ngav owr ndc o b = = F = = F += F whr D := += F F P D = F = F ( Fro (v b h roduc of a dnc rrducb facor aard n a h and b a uffcny arg ov ngr o b uaby chon ar Fro ( w g = I + R ( whr I := d F D = F R := d F D F W now ubdvd h roof no S W ca ha I ngra Each r of I ha h for d F D F F = F Snc F dvb by F d and F dvb by F d F P F ( = += dvb by hn I ngra S W ca ha dg R ( F Each r of R ha h for N := d F D whn Ung h dfnon of D w g dg D ax {dg + (dg P dg + (dg F += dg F } a := ax (dg Snc dg F = ung ( for uffcny arg and o ao w ha dg D a + ax { dg P - + ( (- - } a + ax { (-(-- -- b - - + } a + ax { ( / - c b' + c } whr b := n (b - ( c and c ar + ov conan ndndn of Thu dg N = d dg + dg D + (dg F - dg F d + a + {( / c b ' + c } + ( - whr = dg d + a + {( / ( + c b + c } + for uffcny arg + = a + d ' + ( / ( c b + c + 3 + 4 whr c 3 c 4 ar conan ndndn of - ( by ( and (v Conuny dg R - ( Fro ( and and w g I = R = whn uffcny arg S 3 W ca ha = I d D (od F F whn uffcny arg Fro h dfnon of I w hav I = d {D + D F - ++ D F F } (3 F

Scnca 6 ( 4 Fro h roof n w hav d D F [x] ( = F dvb by F and F /F F /F F /F - ar dvb by F /F - Thrfor (3 gv = I d arg D (od F F whn uffcny S 4 W ca ha D = whn uffcny arg Whn uffcny arg w hav F dg F - dg d D = { -(- }- d dg D { - (- - } c 5 a - {(- / c b ' + c } whr c 5 a ov conan fro (v and -a + {( - ( - / c 6 + c b ' } whr c 6 a ov conan a Thu fro 3 nc w g D = whn uffcny arg and o hr an ndx > a := ax (dg uch ha D = for a + S 5 W ca ha d+ = F D P d+ + (od[ ] F + Fro 4 and h dfnon of D + w hav = F F + d+ d D+ = F + +=+ F By hyoh (v d + dvb by + + F F and no ha ar a congrun o + F F + (od [] Th ca hu foow S 6 W ca ha for and []:= [] -] [] w hav + P d+ (od [] Procd by nducon on Th ca = 5 u h ca hod for = + - ( > Now by 4 = ( d D = F F + ( F P d += F := + Obrv ha F F + d ( = + T - + T - ++ T - ay (od[] and fro (v w g d -+ d whn uffcny arg Thrfor T - := + ( d d + F + F P d+ (od [-] + [] (od [] bcau [] [-] = [] Sary T - := + ( d d + F + F P d + (od ([- ] + [ -] + [ ] (od [ ] T - := + P + + ( ( d d + d + F F + (od [-] [-+] [] + [ ] (by (v (od []

4 Scnca 6 ( S 7 Fnay w now drv a drd conradcon Fro ( and 6 w ha for nfny any and uffcny arg dg P dg []- + dg + dg - d + dg ( - + + -+ a-c 7 + whr c 7 a ov conan ndndn of Thu whn uffcny arg dg P ( - + c 8 + whr c 8 a ov conan ndndn of > (-(- - b Th conradc ( un P = for a uffcny arg y h ony ohr oby n urn conradc ( Hnc α no agbrac ovr F (x THE SECOND IN THEORE Thor b a nonngav ngr and b a unc of n n F (x u ha ( ach P and ( F [x] ( P (od [] for nfny any ( dg P = o ( f ( / o( f = (v hr ar ony fny any dnc rrducb facor conand n a (v hr a nondcrang unc of nonngav ngr (d uch ha dg d = o ( f ( / o( f = Thn h r α := whnvr convrgn = [] rancndna ovr F (x Proof u o h conrary ha α agbrac ovr F (x Thn by a α a roo of an agbrac uaon of h ha = whr F [x] Drc ubuon yd a = + = [] uyng h uaon by d + whr by (v h roduc of a dnc rrducb facor aard n a h and an ngr o b chon uffcny arg and arang r w g an uaon of h ha = T + T + T 3 ( whr T := d T := d T 3 := d + + + + = P + = W T by nong ha [ + ] [] [ + ] + = + + [] + [ ] ( = + + + + ( [ + ] [] = = + + + + + + ( [ + ] + + = + + [ + ] Now u I = T + T whr T = T + T + + = + T := [ ] T := + d + + ( [ + ] [ + ] = + + + = = = + + + + d P (- --- [ + ] = P + d [ + ] + S W ca ha I ngra whn uffcny arg + For =nc and + [] ar ngra hn T ngra d

Scnca 6 ( 43 Snc - and d hn h fr u n T ngra wh h cond u ao ngra bcau for uffcny arg -- Thu I = T + T ngra whn uffcny arg Nx condr := T + T 3 S W ca ha dg ( Snc dg + + + [ + ] - ++ + = + + + - -c whr c a ov conan ndndn of and dg P d dg P + d dg o( by ( and (v hn dg T ( On h ohr hand whn + and uffcny arg w ary hav + d dg o( dg + -c [] whr c a ov conan ndndn of o dg T 3 ( Thu dg ( Fro ( w g I + = and by and w dduc ha I = = S 3 W now how ha I ; h gv a drd conradcon Wr I = T + T = T + E + E 3 whr T = E + E 3 + + = E := [ + ] E 3 := = = + d (- + [ + ] = + + + + d P [] W now fro ha E ngra and nc (od [-] o E Sary for E 3 Now fro T ngra and h r n T conan h facor + [] + Thu I (od[ ] f (od[ ] f = < + (od[ ] f = + [ ] + P [ ] + P d (od [ -] d + (od[ -] (od [ ] by ( and for uffcny arg Th how ha I and h roof co THE THIRD IN THEORE Thor 3 b a ov ngr and b a unc of n n F (x u ha ( ach P and ( F [x] ( P for nfny any ( dg P = o( ( (v hr ar ony fny any dnc rrducb facor conand n a (v hr a non-dcrang unc of nonngav ngr (d uch ha dg d = o( ( (v dg dg + for uffcny arg + Thn h r α 3 := whnvr convrgn rancndna ovr F = (x Proof uu on h conrary ha α 3 agbrac ovr F (x Thn by a α 3 a roo of an agbrac uaon of h ha = whr F [x] ( Whou o of gnray a > +3 r J r := = = ( + [] ( r K := J whr a ov ngr o b uaby chon

44 Scnca 6 ( and by (v b h roduc of a dnc rrducb facor aard n a h Subung for α 3 no ( and uyng by d K w g = I + + R whr I := d K + ( = := d K = + P + + R := d K = ( + ha n R h u ovr ar fro = S W ca ha I ngra ; no Snc d and K ( = (- ; = hn I ngra S W now anayz R Condr ach r n h u of R Th r wh = T := d K = P + + H( := K [ + ] = = ( + = (= [ ] [ ] - Thn ach r of T can b wrn a d P + H( ( = - ( Th r wh = - T - := d K - P + = + K [ + ] = = ( + Snc = (= + [ + ] [ + ] -+ hn ach r of T - of h for d P - + + + + H(- [ + ] = = ( + whr H(-:= [ + ] [ + ] (3 (= -+ Th r wh - ar of h for T - := d J = ( + P + + J J [ + ] = + = ( + Snc = {[ ( + ][ ( + ]} ( + ( = - hn ach r of T - of h for d P + ( + + ( + ( = + = ( + H( J -- (4 [ + ] whrh(:= {[ ( + ][ ( + ]} = ( + { [ ] }{ [ ] } = ( + = ( + {[ ( + ][ ( + ]} ( = - Fro a w ha ach of H( H(- and H( can b wrn a u of ngra r and of non-ngra r wh h ror gvn n h a Thu ach r of T of T - and of T - can b xrd a u of ngra r and of non-ngra r wh h ror nond n a I := I + u of ngra r fro R := + u of non-ngra r fro R Thu I + = S 3 W ca ha dg ( Snc := + u of non-ngra r fro R N b a r n Thn for + N := d P K J + + d P = + +

Scnca 6 ( 45 dg N dg + dg J + dg dg + d dg + dg P < + ((-++ + (- ++ + a - (+ -+ d + dg P whr a := ax dg := dg + + {- + c o( } + a + + + + + + co ( whr c and c ar ov conan ndndn of ( Snc R = T + T - + T - condr an arbrary r n h u of non-ngra r n R by a H( = can b wrn a a u of ngra r and non-ngra r of h for g P[ ( + g+ ] [ ( + ] NIH( := δ [ ( + ] [ ( + g+ ] [ ( + g] whr - g δ - ( = g and P ndndn of b : = ax dg P; h vau ndndn of P No ha dg NIH( axa whn ach = - g = δ = and o dg NIH( b+(-( (-++- ++ (-+ - (-++ =b- (-+ Thrfor by ( (3 and (4 dg ( non-ngra r n T d + + a + (dg P dg + dg NIH( = d + a + o( + b - d = a + b - o ( + ( (= - dg (non-ngra r n T - d + a + dg NIH(- + ( - - dg + - dg P + = d + a + b - - + - (- + - o( + = a + b - - d + ( o ( + ( dg (non-ngra r n T - d + a + dg NIH( + dg dg J -- - dg (-- + dg P (-+ < d + a + b - (-+ + + ( (--(-++ + (--(-++ - ( + + o( (-+ < a + b - (-+ d ( + o ( + ( + ( + 3 ( + ( Thu dg (ach r n h u of non-ngra r n R and o dg ( Fro I + = and 3 w concud ha I = = S 4 W drv a drd conradcon by howng ha I Snc I = I + u of ngra r fro R hn condr I := d J Obrv ha J + ( = (od[ ] ; ( ; for = = and for = = J (od[ ] for = ; = Thn ung [ + ] [] (od [] w g I d [] (od [] = = ( + Now condr ngra r fro R = T + T - + T - Th ngra r fro T ar of h for d H( ( = - Th ngra r fro T - ar of h for d - H(- (od [] ( = -+ P + + + +

46 Scnca 6 ( Th ngra r fro T - ar of h for d J ( P H( + ( + + ( + (od [] ( = - Thu ngra r fro R ngra r of h for d H( (od [] By ( and ( w hav P and P ar boh (od [] for uffcny arg Th oghr wh (v and (v y ha h rdu od [] of d n I and of d ar boh (od [] for uffcny arg Thu dg (rdu od [] of ngra r fro R = dg (rdu od [] of h ngra r of h for d P H( + + < dg( d + dg + dg (nuraor of H( od [] (by a = dg ( d + dg +dg ( [ ] = = ( + od [] = dg ( d + dg +dg ( [] od [] = = ( + dg( d + dg +dg ( [] = = ( + od [] (by (v = dg (rdu od [] of I Hnc for uffcny arg I (od [] whch yd I THE FOURTH IN THEORE Thor 4 F [x] dg > N > no a owr of Suo ha a unc of n n F (x wh h foowng ror ( ach P ( F [x] ( P for nfny any ( dg P = o( ( (v hr ar ony fny any dnc rrducb facor conand n a (v hr a nondcrang unc of nonngav ngr (d uch ha dg d = o( ( P Thn α 4 := whnvr convrgn = rrn an n rancndna ovr F (x Proof by (v b h roduc of a dnc rrducb facor of a b a ov ngr o b uaby chon ar and ( b a dcrang unc of ngr dfnd by - / < - (- og - < ( - og No ha whn = w hav / < and o = Whn < w hav - bcau no a owr of r whch yd - / < < - u on h conrary ha α 4 whn rrnd r convrgn agbrac ovr F (x Snc F (x an agbrac xnon of F (x hn α 4 agbrac ovr F (xand o a roo of a nar uaon of h for = F [x] Subung for by α 4 and uyng by d w g = I + whri := d := d = + S W ca ha I ngra Th rva bcau of (v (v and h dfnon of ( µ := n ( - - - = O( by h dfnon of ( Thrfor I = d + d = = + d

Scnca 6 ( 47 d (od µ for uffcny arg by ( and (v S W ca ha dg ( N b an arbrary r of Thn N := d ( ; + dg N = ( - dg + dg + d dg + (dg P - dg ( - - - g + a + o( + o( whr g = dg a = dg = dg o g o a + ( + g + ( ( bcau - + far han Thu dg ( Snc = I + hn Ca and oghr y ha I = = whch conradc h fac ha I (od µ for uffcny arg Th conradcon rov h hor THE FIFTH IN THEORE Thor 5 F [x] dg > N > Suo ha a unc of n n F (x wh h foowng ror ( ach P ( F [x] ( P for nfny any whch ar no congrun o (od ( dgp = o( - ( (v hr ar ony fny any dnc rrducb facor conand n a (v hr a nondcrang unc of nonngav ngr (d uch ha dg d = o( - ( P Thn α 5 := whnvr convrgn = rrn an n rancndna ovr F (x Proof by (v b h roduc of a dnc rrducb facor of a b a ov ngr no dvb by whch o b uaby chon ar u on h conrary ha α 5 whn rrnd r convrgn agbrac ovr F (x Snc F (x an agbrac xnon of F (x hn α 5 agbrac ovr F (x and o a roo of a nar uaon of h for = F [x] Subung for by α 5 and uyng by d I := := w g = I + whr d = d + and := a non-ncrang funcon of S W ca ha I ngra Snc h owr of aarng n I - - ( ( = and dg d d = d hn I ngra S W ca ha I whn uffcny arg and no dvb by µ := n ( - (- + Now := = η whr η - - ( = + Condr ach r n h dfnon of µ W ha - = (-η - ( - Thu µ = - ( - = Ο ( - ( bcau > Fro h dfnon of I w g I = d + + = = Obrv ha afr drbung h ur nd h ow owr of n ach u whn h brac na whn = rcvy If = h ow owr of - = n h fr u If = + h ow owr of - + ( + µ (by h dfnon of n h cond u

48 Scnca 6 ( If = h ow owr of - µ n h a u No ao ha n h fr u h owr of nx o h ow owr ( - = ( - µ Thrfor I d (od µ by ( ( (v and (v for nfny any no dvb by Th yd I whn uffcny argr and no dvb by S 3 W ca ha dg ( N b an arbrary r of Thn N = d ( = ; + and o dg N d + g + a + (dg P dg g whr g := dg a := ax dg := dg a + g + o( - + o( - - g o( - + g - g ( + o ( = o( - + g - g ( - η + - o( o ( - + g - g ( + o( o( - - g - o( { ( + owr r } ( Fro = I + and 3 w concud ha I = = whch conradc Hnc α 5 rancndna ovr F (x a o b rovd REFERENCES ou (996 rca ru on rancndnc aur n cran fd J Nubr Thory 59 389-97 Da W Brownaw (998 Trancndnc n ov characrc Coorary ah 37-3 3 Carz (935 On cran funcon conncd wh oynoa n a ao fd Du ah J 37-68 4 Daa and Hgouarch Y (99 Trancndnc of h vau of Carz za funcon by Wad hod J Nubr Thory 39 57-78 5 Dn (993 Théorè d Bar odu d Drnfd J Nubr Thory 43 3-5 6 Drnfd V (974 Ec odu ah USSR Sborn 3 56-9 7 J (973 Schndr hod n Fd of Characrc ah Cnr Ror ZW 7/73 rda 8 J (979 Trancndnc n Fd of Pov Characrc ah Cnr Trac Vo 9 ah Cn rda 9 o D (996 Bac Srucur of Funcon Fd rhc Srngr Brn D o (998 Ror on rancndncy n h hory of funcon fd c No n ah #383 Srngr Brn 59-6 d ahan B (995 Irraonay and rancndnc n ov characrc J Nubr Thory 54 93- Wad I (94 Cran uan rancndna ovr F( n x Du ah J 8 7-3Wad I (943 Cran uan rancndna ovr F( n xii Du ah J 587-94 4Wad I (944 Two y of funcon fd rancndna nubr Du ah J 755-8 5Wad I (946 Rar on h Carz ψ-funcon Du ah J 3 7-8 6Wad I (946 Trancndnc ror of h Carz ψ- funcon Du ah J 3 79-85 7Jng Yu (983 Trancndna nubr arng fro Drnfd odu ahaa 3 6-6 8Jng Yu (985 Trancndnc hory ovr funcon fd Du ah J 5 57-7 9Jng Yu (985 x xonna hor n fn characrc ah nn 7 9-8 Jng Yu (986 Trancndnc and Drnfd odu Invn ah 83 57-7 Jng Yu (989 Trancndnc and Drnfd odu: vra varab Du ah J 58 559-75 Jng Yu (99 On rod and ua-rod of Drnfd odu Cooo ah 74 35-45 3Jng Yu (99 Trancndnc and ca za vau n characrc nn ah 34-3