$IfNot ParametricTable= P_ratio_gas. P ratio,gas = 14; Raport comprimare compresor aer - Pressure ratio for gas compressor (2) $EndIf

Similar documents
Equations P $UnitSystem K kpa. F luid$ = Air (1) Input data for fluid. $If Fluid$= Air. C P = [kj/kg K] ; k = 1.

Equations P Se va nota cu y fractia din debitul masic care intra in turbina care e extrasa din turbina pentru preincalzitorul inchis

Equations. P v2

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

ME Thermodynamics I

MAE 11. Homework 8: Solutions 11/30/2018

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

ME Thermodynamics I

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

Availability and Irreversibility

Lecture 35: Vapor power systems, Rankine cycle

ME Thermodynamics I. Lecture Notes and Example Problems

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

Chapter 5. Mass and Energy Analysis of Control Volumes

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 26. Use of Regeneration in Vapor Power Cycles

1 st Law Analysis of Control Volume (open system) Chapter 6

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Lecture 38: Vapor-compression refrigeration systems

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Thermodynamics is the Science of Energy and Entropy

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz.

Readings for this homework assignment and upcoming lectures

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4.

ME Thermodynamics I

Previous lecture. Today lecture

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

III. Evaluating Properties. III. Evaluating Properties

ENT 254: Applied Thermodynamics

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

first law of ThermodyNamics

ME 201 Thermodynamics

Fundamentals of Thermodynamics. Chapter 8. Exergy

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

Introduction to Engineering thermodynamics 2 nd Edition, Sonntag and Borgnakke. Solution manual

Teaching schedule *15 18

UNIT I Basic concepts and Work & Heat Transfer

The First Law of Thermodynamics. By: Yidnekachew Messele

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

: 2017,, : 2017, < Part I > Zero exergy line < Part II > : h-s

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW:

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011.

Chapter 7. Entropy: A Measure of Disorder

In the next lecture...

Brown Hills College of Engineering & Technology

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037

Engineering Thermodynamics Solutions Manual

10 minutes reading time is allowed for this paper.

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles.

Thermodynamics ENGR360-MEP112 LECTURE 7

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh

Applied Thermodynamics. Gas Power Cycles

Chemical Engineering Thermodynamics Spring 2002

BME-A PREVIOUS YEAR QUESTIONS

FUNDAMENTALS OF THERMODYNAMICS

To receive full credit all work must be clearly provided. Please use units in all answers.

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity


Using the Entropy Rate Balance to Determine the Heat Transfer and Work in an Internally Reversible, Polytropic, Steady State Flow Process

ES 202 Fluid and Thermal Systems

1. (10) Calorically perfect ideal air at 300 K, 100 kpa, 1000 m/s, is brought to rest isentropically. Determine its final temperature.

Thermal Energy Final Exam Fall 2002

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM

Lecture 44: Review Thermodynamics I

Chapter 5: The First Law of Thermodynamics: Closed Systems

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ESO 201A Thermodynamics

T222 T194. c Dr. Md. Zahurul Haq (BUET) Gas Power Cycles ME 6101 (2017) 2 / 20 T225 T226

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe.

Exergy and the Dead State

Spring_#8. Thermodynamics. Youngsuk Nam

20 m neon m propane. g 20. Problems with solutions:

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k.

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

EVALUATION OF THE BEHAVIOUR OF STEAM EXPANDED IN A SET OF NOZZLES, IN A GIVEN TEMPERATURE

ENGR Thermodynamics

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m.

Isentropic Efficiency in Engineering Thermodynamics

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

ESO201A: Thermodynamics

Thermodynamics Lecture Series

ERRATA SHEET Thermodynamics: An Engineering Approach 8th Edition Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

Thermodynamics II. Week 9

Transcription:

P10-078 Equations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 598 Centrala cu cicluri combinate Se considera o centrala electrica cu ciclu combinat gaze-abur care are o putere neta de 450 MW. Raportul de comprimare al ciclului turbinei cu gaze este 14. Aerul intra în compresor la 300 K si în turbina la 1400 K. Gazele de ardere care ies din turbina cu gaze sunt folosite pentru a încalzi aburul la 8 MPa pâna la 400 C întrun schimbator de caldura. Gazele de ardere ies din schimbatorul de caldura la 460 K. Un preîncalzitor de apa de alimentare prin amestec (deschis) încorporat în ciclul cu abur functioneaza la o presiune de 0.6 MPa. Presiunea de condensare este de 20 kpa. Considerând toate procesele de comprimare si destindere ca fiind izoentropice, sa se determine (a) raportul dintre debitele masice de aer si abur, (b) fluxul necesar de caldura introdusa în camera de ardere, si (c) randamentul termic al ciclului combinat. Sa se studieze efectul raportului de comprimare al ciclului cu gaze daca acesta variaza de la 10 la 20 asupra raportului dintre debitele de gaze si abur si asupra randamentului termic al ciclului. Sa se reprezinte rezultatele în functie de raportul de comprimare al ciclului cu gaze, si sa se discute rezultatele. $UnitSystem K kpa Marimi de intrare: T 8 = 300 [K] ; P 8 = 14.7 [kpa] ; Gaze (aer la intrarea in compresor) - Gas compressor inlet (1) 1

$IfNot ParametricTable= P_ratio_gas P ratio,gas = 14; Raport comprimare compresor aer - Pressure ratio for gas compressor (2) $EndIf T 10 = 1400 [K] ; Intrare turbina cu gaze - Gas turbine inlet (3) T 12 = 460 [K] ; Gas exit temperature from Gas-to-steam heat exchanger (4) P 12 = P 8 ; Presiune iesire aer - Assumed air exit pressure (5) kw Ẇ net = 450 [MW] 1000 MW ; (6) $IfNot ParametricTable= eta η comp = 1.0; Eta gas,turb = 1.0; η pump = 1.0; Eta steam,turb = 1.0; (7) (8) $EndIf P 5 = 8000 [kpa] ; DELT AT 5,11 = 40 [K] Diferenta de temperatura la capatul cald al HEx (9) ; Abur la intrare in turbina - Steam turbine inlet (10) $IfNot ParametricTable= P[6] P 6 = 600 [kpa] ; Extraction pressure for steam open feedwater heater (11) $EndIf P 7 = 20 [kpa] ; Presiunea de condensare a aburului - Steam condenser pressure (12) Ciclul de forta cu gaze (aer) - GAS POWER CYCLE ANALYSIS Gas Compressor anaysis Starea [8]: h 8 = h (Air, T = T 8 ) ; s 8 = s (Air, T = T 8, P = P 8 ) ; (13) Starea [9s]: s s,9 = s 8 ; For the ideal case the entropies are constant across the compressor (14) P 9 = P ratio,gas P 8 ; (15) T s,9 = T (Air, s = s s,9, P = P 9 ) ; Ts9 is the isentropic value of T[9] at compressor exit (16) 2

η comp = w gas,comp,isen /w gas,comp compressor adiabatic efficiency, w comp > w comp,isen (17) h 8 +w gas,comp,isen = h s,9 h s,9 = h (Air, T = T s,9 ) ; SSSF conservation of energy for the isentropic compressor, assuming: adiabatic, ke=pe=0 (19) Starea [9]: h 8 +w gas,comp = h 9 ; SSSF conservation of energy for the actual compressor, assuming: adiabatic, ke=pe=0(20) T 9 = T (Air, h = h 9 ) ; s 9 = s (Air, T = T 9, P = P 9 ) ; (21) Gas Cycle External heat exchanger analysis Starea [10]: P 10 = P 9 ; Assume process 9-10 is SSSF constant pressure (22) h 10 = h (Air, T = T 10 ) ; s 10 = s (Air, T = T 10, P = P 10 ) ; (23) h 9 +q in = h 10 ; Q in = ṁ gas q in ; SSSF conservation of energy for the external heat exchanger, assuming W=0, ke=pe=0(24) (25) Gas Turbine analysis Starea [11s]: P 11 = P 10 P ratio,gas ; s s,11 = s 10 ; For the ideal case the entropies are constant across the turbine (26) h s,11 = h (Air, T = T s,11 ) ; T s,11 = T (Air, s = s s,11, P = P 11 ) ; Ts11 is the isentropic value of T[11] at ga Starea [11]: h 10 = w gas,turb,isen +h s,11 ; SSSF conservation of energy for the isentropic gas turbine, assuming: adiabatic, ke= η gas,turb = w gas,turb /w gas,turb,isen ; gas turbine adiabatic efficiency, w gas,turb,isen > w gas,turb (29) h 10 = w gas,turb +h 11 ; SSSF conservation of energy for the actual gas turbine, assuming: adiabatic, ke=pe=0(30) T 11 = T (Air, h = h 11 ) ; s 11 = s (Air, T = T 11, P = P 11 ) ; (31) Gas-to-Steam Heat Exchanger Starea [12]: h 12 = h (Air, T = T 12 ) ; s 12 = s (Air, T = T 12, P = P 12 ) ; (32) 3

SSSF conservation of energy for the gas-to-steam heat exchanger, assuming: adiabatic, W=0, ke=pe=0 ṁ gas h 11 + ṁ steam h 4 = ṁ gas h 12 + ṁ steam h 5 ; ec 1/2 ec -> debitele (33) Ciclul de forta cu abur - STEAM CYCLE ANALYSIS Starea [1]: Steam Condenser exit pump or Pump 1 analysis P 1 = P 7 ; (34) h 1 = h (ST EAM, P = P 1, x = 0) ; v1 = v (ST EAM, P = P 1, x = 0) ; (35) s 1 = s (ST EAM, P = P 1, x = 0) ; T 1 = T (ST EAM, P = P 1, x = 0) ; (36) Starea [2]: P 2 = P 6 ; (37) w pump1,s = v1 (P 2 P 1 ) ; SSSF isentropic pump work assuming constant specific volume (38) w pump1 = w pump1,s /η pump ; Definition of pump efficiency (39) h 1 + w pump1 = h 2 ; Steady-flow conservation of energy (40) s 2 = s (ST EAM, P = P 2, h = h 2 ) ; T 2 = T (ST EAM, P = P 2, h = h 2 ) ; (41) Starea [3]: P 3 = P 6 ; Condensate leaves heater as sat. liquid at P[3] (42) h 3 = h (steam, P = P 3, x = 0) ; T 3 = T (steam, P = P 3, x = 0) ; (43) s 3 = s (ST EAM, P = P 3, x = 0) ; v3 = v (ST EAM, P = P 3, x = 0) ; (44) Boiler condensate pump or Pump 2 analysis P 4 = P 5 ; (45) w pump2,s = v3 (P 4 P 3 ) ; SSSF isentropic pump work assuming constant specific volume (46) w pump2 = w pump2,s /η pump ; Definition of pump efficiency (47) h 3 + w pump2 = h 4 ; Steady-flow conservation of energy (48) s 4 = s (ST EAM, P = P 4, h = h 4 ) ; T 4 = T (ST EAM, P = P 4, h = h 4 ) ; (49) 4

Steam Turbine analysis T 5 = T 11 T 5,11 ; (50) h 5 = h (steam, T = T 5, P = P 5 ) ; s 5 = s (ST EAM, P = P 5, T = T 5 ) ; (51) Starea [6s]: s s,6 = s 5 ; (52) h s,6 = h (ST EAM, s = s s,6, P = P 6 ) ; T s,6 = T (ST EAM, s = s s,6, P = P 6 ) ; (53) Starea [6]: h 6 = h 5 η steam,turb (h 5 h s,6 ) Definition of steam turbine efficiency (54) T 6 = T (ST EAM, P = P 6, h = h 6 ) ; s 6 = s (ST EAM, P = P 6, h = h 6 ) ; (55) y h 6 + (1 y) h 2 = 1 h 3 ; Steady-flow conservation of energy (56) w steam,pumps = (1 y) w pump1 + w pump2 ; Total steam pump work input/ mass steam (57) Starea [7s]: s s,7 = s 5 ; (58) h s,7 = h (ST EAM, s = s s,7, P = P 7 ) ; T s,7 = T (ST EAM, s = s s,7, P = P 7 ) ; (59) Starea [7]: h 7 = h 5 η steam,turb (h 5 h s,7 ) ; Randamentul turbinei - Definition of steam turbine efficiency (60) T 7 = T (ST EAM, P = P 7, h = h 7 ) ; s 7 = s (ST EAM, P = P 7, h = h 7 ) ; (61) SSSF conservation of energy for the steam turbine: adiabatic, neglect ke and pe h 5 = w steam,turb + y h 6 + (1 y) h 7 ; (62) Steam Condenser analysis (1 y) h 7 = q out + (1 y) h 1 ; SSSF conservation of energy for the Condenser per unit mass (63) Q out = ṁ steam q out ; (64) Cycle Statistics MassRatio gastosteam = ṁ gas /ṁ steam ; Ẇ net = ṁ gas (w gas,turb w gas,comp )+ṁ steam (w steam,turb w steam,pumps ) ; (65) definitia puterii nete a ciclului - net η th = Ẇnet/ Q in 100 [%] ; Cycle thermal efficiency, in percent (67) Bwr = ṁgas w gas,comp + ṁ steam w steam,pumps ṁ gas w gas,turb + ṁ steam w steam,turb ; Back work ratio (68) Ẇ net,steam = ṁ steam (w steam,turb w steam,pumps ) ; (69) Ẇ net,gas = ṁ gas (w gas,turb w gas,comp ) ; (70) NetW orkratio gastosteam = Ẇnet,gas/Ẇnet,steam; (71) Data$ = Date$; (72) 5

Solution Bwr = 0.3825 Data$ = 2015-03-09 T 5,11 = 40 [K] η comp = 1 η gas,turb = 1 η pump = 1 η steam,turb = 1 η th = 62.4 [%] MassRatio gastosteam = 9.069 ṁ gas = 822.3 [kg g as/s] ṁ steam = 90.67 [kg s team/s] NetW orkratio gastosteam = 4.183 P ratio,gas = 14 Q in = 721164 [kw] Q out = 138049 [kw] q in = 877 [kj/kg g as] q out = 1523 [kj/kg s team] v1 = 0.001017 [m 3 /kg] v3 = 0.001101 [m 3 /kg] Ẇ net = 450000 [kw] Ẇ net,gas = 363182 [kw] Ẇ net,steam = 86818 [kw] w gas,comp = 338.1 [kj/kg g as] w gas,comp,isen = 338.1 [kj/kg g as] w gas,turb = 779.8 [kj/kg g as] w gas,turb,isen = 779.8 [kj/kg g as] w pump1 = 0.5899 [kj/kg s team] w pump1,s = 0.5899 [kj/kg s team] w pump2 = 8.144 [kj/kg s team] w pump2,s = 8.144 [kj/kg s team] w steam,pumps = 8.629 [kj/kg s team] w steam,turb = 966.1 [kj/kg s team] y = 0.1784 Arrays Row P i T s,i T i h s,i h i s s,i s i [kpa] [K] [K] [kj/kg] [kj/kg] [kj/kg-k] [kj/kg-k] 1 20 333.2 251.3 0.8318 2 600 333.2 251.9 0.8318 3 600 432 670.6 1.931 4 8000 432.9 678.8 1.931 5 8000 680.6 3159 6.394 6 600 432 432 2598 2598 6.394 6.394 7 20 333.2 333.2 2105 2105 6.394 6.394 8 14.7 300 300.4 6.256 9 205.8 629.6 629.6 638.5 638.5 6.256 6.256 10 205.8 1400 1516 7.157 11 14.7 720.6 720.6 735.8 735.8 7.157 7.157 12 14.7 460 462.3 6.688 6

T-s Plot all(pratiog as) 7

etath(p [6]) etath vs eta 8