Cusps, Resonances, and Exotic States. Eric Swanson

Similar documents
Vincent Poireau CNRS-IN2P3, LAPP Annecy, Université de Savoie, France On behalf of the BaBar collaboration

Bottomonium results. K.Trabelsi kek.jp

X Y Z. Are they cusp effects? Feng-Kun Guo. Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

Charmonium(-like) and Bottomonium(-like) States Results from Belle and BaBar

Some recent progresses in heavy hadron physics. Kazem Azizi. Oct 23-26, Second Iran & Turkey Joint Conference on LHC Physics

Decays and productions of hadronic molecules

Chengping Shen: Beihang University, Beijing XVI International Conference on Hadron Spectroscopy (Hadron 2015) September, 2015, JLab, USA

Hadron Spectroscopy and Exotics Heavy Exotic Mesons Theory

The x + (5568) from QCDSR

Exotic quarkonium-like resonances. Marek Karliner Tel Aviv University with S. Nussinov JHEP 7,153(2013) - arxiv:

A Discovery of the tetraquark by the Belle Experiment

Studies of charmonium production in e + e - annihilation and B decays at BaBar

Charmonium & charmoniumlike exotics

X states (X(3872),...)

Exotic hadronic states XYZ

Searches for exotic mesons

Heavy Quark Spectroscopy at LHCb

Study of Transitions and Decays of Bottomonia at Belle

Results on Charmonium-like States at BaBar

arxiv: v2 [hep-ph] 25 Nov 2014

Bottomonia & charmonia at B-factories

Hadronic molecules in effective field theory

Heavy Quark Baryons and Exotica

Search for exotic charmonium states

BaBar s Contributions. Veronique Ziegler Jefferson Lab

Belle II and XYZ hadrons

from B -Factories A. Oyanguren (IFIC U. Valencia) BaBar Collaboration

Zahra Haddadi, KVI-CART (University of Groningen) for the BESIII collaboration 1 Sep EUNPC 2015, Groningen

Updates on X 3872 production at Belle. K.Trabelsi QWG6 Workshop Nara, Dec 2-5, 2008

CharmSpectroscopy from B factories

Z c (3900) AS A D D MOLECULE FROM POLE COUNTING RULE

Hadron Spectroscopy at BESIII

Recent Results from the BESIII Experiment. Ryan Mitchell Indiana University Miami 2011 December 17, 2011

arxiv: v1 [hep-ex] 3 Nov 2014

arxiv: v1 [hep-ex] 7 Aug 2014

Kai Zhu on behalf of BESIII collaboration Institute of High Energy Physics, Beijing March, Moriond QCD 2015

Hadronic molecules with heavy quarks

CHARM MESON SPECTROSCOPY AT

Recent Results on J/ψ, ψ and ψ Decays from BESII

Y(nS,n 4) Decays at B-Factories

X(3872) and Its Production. 2nd workshop on the XYZ particles 11 月 21 日, 安徽黄山

Meson Spectroscopy Methods, Measurements & Machines

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Double cc production in e + e annihilations at high energy

b hadron properties and decays (ATLAS)

Antimo Palano INFN and University of Bari, Italy On behalf of the LHCb Collaboration

Molecular States in QCD Sum Rules

On the structure of X(3872) and Z(4430)

Heavy hadron spectroscopy at Belle. Kenkichi Miyabayashi (Nara Women s University) Hadrons and Hadron Interactions in QCD Mar.

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24)

Recent results on spectroscopy from

Peng Guo. Physics Department & NTC Indiana University - Bloomington, U.S.A.

Pion Form Factor Measurement at BESIII

Recent results from Belle

Recent XYZ results from Belle

Attributes of molecule-like exotics in the heavy sector - Interlude on EFTs. - Observables that test the molecular hypothesis in

Line Shapes of the X(3872)

Exo$c hadrons with heavy quarks

On the structure of Zc(3900) from lattice QCD

Outline: Absolute Charm Branching Fractions D0 and D+ Rare and inclusive modes Final states with KS or KL. Anders Ryd Cornell University Presented at

Multiquark states by a quark model

Hadron-hadron Interactions

The PANDA experiment at FAIR

Recent results and prospects of exotic hadrons at B-factory

New bottomonium(-like) resonances spectroscopy and decays at Belle

Prospects for Hadron Physics. Roberto Mussa INFN Torino

Discovery searches for light new physics with BaBar

Coupled-channel effects in radiative. Radiative charmonium transitions

Discovery of charged bottomonium-like Z b states at Belle

Recent BaBar results on CP Violation in B decays

Heavy exotics and kinematical effects

arxiv: v2 [hep-ex] 16 Nov 2007

Hadron Spectroscopy, exotics and Bc physics at LHCb. Biplab Dey

CLEO Results From Υ Decays

Line-shape analysis of the ψ(3770)

NEW PERSPECTIVES FOR STUDY OF CHARMONIUM AND EXOTICS ABOVE DD THRESHOLD. Barabanov M.Yu., Vodopyanov A.S.

Dalitz Plot Analysis of Heavy Quark Mesons Decays (3).

Simulation of X(3872) Resonance Scan Using the PandaRoot Framework 1

Triangle Singularities in the Λ b J/ψK p Reaction

Muoproduction of exotic charmonia at COMPASS

Recent results, status and prospects for the BESIII experiment

Charm Decays. Karl M. Ecklund

Search for the very rare decays B s/d + - at LHCb

arxiv: v2 [hep-ex] 8 Aug 2013

CP Violation sensitivity at the Belle II Experiment

Advances in Open Charm Physics at CLEO-c

e e with ISR and the Rb Scan at BaBar

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: )

Tetraquarks and Goldstone boson physics

Searches for low-mass Higgs and dark bosons at BaBar

Exotic hadrons at LHCb

quarkonium XiaoLong Wang Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) Institute of Modern Physics, Fudan University

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

D semi-leptonic and leptonic decays at BESIII

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

b s Hadronic Decays at Belle

Review of Light Hadron Spectra at BESIII

Charming Nuclear Physics

Experimental Status of Semileptonic B Decays Vcb & Vub

Transcription:

[222-130] INT Nov, 2015 Cusps, Resonances, and Exotic States Eric Swanson

Multi-electron States 1946: Wheeler suggests that Ps2 might be bound 1946: Ore proves it is unbound 1947: Hylleraas & Ore prove it is bound Wheeler, J. A. Polyelectrons. Ann. NY Acad. Sci. 48, 219 238 (1946). Hylleraas, E. A. & Ore, A. Binding energy of the positronium molecule. Phys. Rev.71, 493 496 (1947). 2007: Ps2 is observed Cassidy, D.B.; Mills, A.P. (Jr.) (2007). "The production of molecular positronium". Nature 449 (7159): 195 197

Multi-quark States L QED

Thresholds

X(4630)

not a threshold enhancement (?) J/

e + e J/ D ( ) D( ) [Belle] PRL100, 202001 (08)

A Quark Model Example S-wave P-wave

A Quark Model Example p =1/2+L CD min p = 1/2+L CD min endothermic exothermic max (0.2 0.5) QCD scale

Cusps E.P. Wigner, Phys. Rev. 73 (1948) 1002 D. V. Bugg, Europhys. Lett. 96, 11002 (2011) D. V. Bugg, Int. J. Mod. Phys. A 24, 394 (2009)

f0(980) example with effective range parameterization of the amplitude range [Bugg] Other examples K d ( p) pp J/ pp

Example = 2 / 2 d 3 q e q (2 ) 3 E m B m B q 2 /2µ + i =0.5 GeV

Exotic Experiment

four-quark states(?) J/ h c D D D D K cj K J/ (2S) Z 1 (4050) Z c (3900) Z c (4025) Z c (4200) Z 2 (4250) K Z c (4240) Z c (4475) (ns) h b (np ) B B Z b (10610) Z b (10650)

Z 1 (4050) Z 2 (4250) B ZK c1 K Z c (3900) Y (4660).manifestly exotic X(4630).dubious M = 4051(30) = 82(51) M = 4248 +185 45 = 177 +113 J PC =? 72 X(4160) X(3940) c2 c h c R. Mizuk et al. [Belle], PRD76, 072004 (08)

Z 1 (4050) from Y(4360) [Belle] 1410.7641

Z 1 (4050) Y(4360) Y(4660) [Belle] 1410.7641

Z + (4430) B K + Z c (3900) M = 4443 +24 18 = 107 +113 71 X(4630) Y (4660).manifestly exotic.not confirmed by BaBar J PC =? 30 X(4160) Events/0.01 GeV 20 10 X(3940) c2 c h c 0 3.8 4.05 4.3 4.55 4.8 M(! + " # ) (GeV) S.-K Choi et al. [Belle] 0708.1790 F. Rubbo, Torino thesis Mokhtar, 0810.1073

Z + (4430).confirmed by LHCb J P =1 +

Z(4240) [?]

Z c (4200) B K J/ dotted: without Zc(4200) K. Chilikin et al. [Belle] 1408.6457

+ + Z b (10610) Z b (10650) Adachi et al. [Belle] 1105.4583 I G J P =1 + 1 + (2S) h b (1P ) h b (2P )

+ + Z b (10610) Z b (10650) [Belle] preliminary [C.-Z. Yuan, INT Nov 2015]

Shuangshi Feng [BESIII] H13

Zc(3900) e + e D D s =4.26 M = 3883.9 ± 1.5 ± 4.2 = 24.8 ± 3.3 ± 11.0 BESIII PRL112 022001 (14)

Zc(3900) Wolfgang Gradl, Bound States in QCD, St Goar, Mar 24-27, 2015 New BESIII result with all three particles identified. Much smaller background.

Z c (4025) e + e (D D ) ± M = 4026.3 ± 2.6 ± 3.7 = 24.8 ± 5.6 ± 7.7 BESIII Phys. Rev. Lett. 112, 132001 (2014)

Zc(3900) Theory Zc(4025)

Exotic Phenomenology

Charged Exotics as Threshold Cusps It seems foolish to ignore that many of these states are just above open charm/bottom thresholds. B B B B

Z c (3900) Z c (4025) 3870 3875 D 0 D 0 X( J/ ) D 0 D + D + D 0 4010 4015 D 0 D 0 D + D 0 3880 D + D 4020 D + D 3885 Z c (DD ) 4025 Z c ( h c ) Z c (D D ) 3890 4030 3895 3900 Z c ( J/ )

Cusp Model Q: how does Y(5S) couple to Yππ? (5S) hidden bottom = 3.8% (5S) B ( ) B( ) = 57.3% (5S) B ( ) B( ) =8.3% B (5S) (ns) < 7.8 10 3 B*

Cusp Model E.S. Swanson, arxiv:1409.3291 0.2 0.15 B 0.1 0.05 0 (5S) B* (1S) -0.05-0.1 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 11.1 m(bb * ) (GeV) [NB: this exhibits phase motion!]

Cusp Model Im (s) = i k 1+ i+ i i F i = g i exp( s/2 2 i) F i (s)f i (s) k 2 i = (s (m 1i + m 2i ) 2 )(s (m 1i m 2i ) 2 ) 4s B B* (s) = 1 s th ds Im (s ) s s i

Cusp Model (5S) (ns) Zb(10610), Zb(10650) arb. units 90 80 70 60 50 40 30 i =0.7 GeV 20 10 0 10.6 10.62 10.64 10.66 10.68 10.7 10.72 10.74 m(y(3s) ) max (GeV) g 2 (ns)bb =0.9 g2 (ns)b B Adachi et al. [Belle Collaboration], arxiv:1105.4583 [hep-ex]; Garmash et al. [Belle Collaboration], arxiv:1403.0992 [hep-ex].

Cusp Model (5S) (ns) Zb(10610), Zb(10650) arb. units 90 80 70 60 50 40 30 20 10 0 10.4 10.45 10.5 10.55 10.6 10.65 10.7 10.75 10.8 m(y(2s) ) max (GeV) same couplings used! Adachi et al. [Belle Collaboration], arxiv:1105.4583 [hep-ex]; Garmash et al. [Belle Collaboration], arxiv:1403.0992 [hep-ex].

Cusp Model (5S) (ns) Zb(10610), Zb(10650) 60 50 arb. units 40 30 20 10 0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 m(y(1s) ) max (GeV) 30% smaller coupling required Adachi et al. [Belle Collaboration], arxiv:1105.4583 [hep-ex]; Garmash et al. [Belle Collaboration], arxiv:1403.0992 [hep-ex

Cusp Model (5S) h b (np ) Zb(10610), Zb(10650) 14000 12000 10000 h b (1P ) solid line: same as above arb. units 8000 6000 4000 2000 0-2000 dashed line: BB = 0.7 GeV, B B = 0.4 GeV gbb 2 =0.5gB 2 B 10.4 10.45 10.5 10.55 10.6 10.65 10.7 10.75 MM( ) (GeV)

Cusp Model (5S) h b (np ) Zb(10610), Zb(10650) 20000 15000 h b (2P ) solid line: same as above arb. units 10000 5000 0 dashed line: BB = 0.7 GeV, B B = 0.4 GeV gbb 2 =0.5gB 2 B -5000 10.5 10.55 10.6 10.65 10.7 10.75 MM( ) (GeV)

Cusp Model-II E.S. Swanson, arxiv:1504.07952 Attempt a microscopic cusp model [separable nonrelativistic model; solve exactly] [iterate all bubbles] Y (4260) D D Y (4260) J/ g DD exp( (s Y )/ 2 Y ) exp( (s DD )/ 2 DD )

Cusp Model-II effect of the bubble sum 0.04 0.035 0.dat u 1:4 m100.dat u 1:4 m200.dat u 1:4 m400.dat u 1:4 200.dat u 1:4 0 0.03 0.025 0.02 0.015 0.01 0.005 0 3.6 3.7 3.8 3.9 4 4.1 4.2

Cusp Model-II 3875 MeV 0-0.2-0.4 Im(E) -0.6-0.8 3886 MeV -1-0.6-0.4-0.2 0 0.2 0.4 0.6 Re(E)

Cusp Model-II fit the pi Y: D*D* vertex attractive bubble 70 60 50 D D D D D D = 0.2 GeV = 0.3 GeV 90 80 = 0.4 GeV 70 60 D D = 0.3 GeV repulsive bubble events 40 30 events 50 40 20 30 20 10 10 0 4 4.02 4.04 4.06 4.08 4.1 4.12 4.14 m(dd * ) (GeV) 0 4 4.02 4.04 4.06 4.08 4.1 4.12 4.14 m(dd * ) (GeV) no evidence for π D* dynamics, background, or bubble

Cusp Model-II fit the pi Y: DD* vertex 100 80 DD = 0.25 GeV events 60 40 DD =0.2 GeV 20 0 3.85 3.9 3.95 4 4.05 4.1 4.15 m(dd * ) (GeV) no evidence for bubble evidence for incoherent background

Cusp Model-II fit the pi Y: DD* vertex 35 30 25 events 20 15 10 5 0 3.85 3.9 3.95 4 4.05 4.1 4.15 m(dd * ) (GeV) Wolfgang Gradl, Bound States in QCD, St Goar, Mar 24-27, 2015

Cusp Model-II continue to Y: pi pi J/psi Now pi pi dynamics is important 1.4 1.2 1 m 2 ( ) (GeV 2 ) 0.8 0.6 0.4 0.2 0 10 11 12 13 14 15 16 17 m 2 ( J/ ) (GeV 2 )

Cusp Model-II Y: pi pi J/psi

Cusp Model-II Y: pi pi J/psi 120 100 cusp reflection DD* cusp 80 events 60 40 20 0 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 m( J/ ) (GeV) BESIII

Cusp Model-II M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 111, 242001 (2013). e + e + h c sums 13 different ee energy values no significant Zc(3900) observed 140 120 D*D* reflection DD* cusp [incoherent background only] D*D* cusp 100 events 80 60 40 20 0 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 m( h c ) (GeV)

Cusp Model-II e + e + h c

Cusp Model-III F.-K. Guo et al. arxiv: 1411.5584 two loop one loop tree Hanhart et al. claim that the strength of the vertex requires bubble summation, which generates a pole.

Cusp Model-IV Z.Y. Zhou and Z. Xiao, ``Distinguishing cusp effects and near-threshold-pole effects, ' arxiv:1505.05761 [hep-ph].

Exotic Phenomenology Additional Aspects

other cusp channels (5S) K K (ns) B B s + B B s B B s 10695 10745 e + e K KJ/ D D D D s + D D s s 3980 4120 will now argue for B 0 J/ B ± J/ 0 0 ± 0

Cusp Model missing exotics Y (4260) + J/ B 0 + J/ 2 Events / 0.02 GeV/c 100 80 60 40 20 Data MC Z c (3900) MC Sideband Events / (40 MeV) 1000 800 600 400 200 (a) LHCb Events / (20 MeV) 0 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 2 M( + J/ ) (GeV/c ) 0 3.5 4 4.5 5 m(j/ψπ + ) [GeV] BESIII LHCb R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 90, 012003 (2014).

Cusp Model missing exotics Y (4260) + J/ B 0 + J/

Cusp Model missing exotics B 0 s K + K J/

Cusp Model missing exotics COMPASS s N = 7 GeV exp( (s N,m 2,m 2 )/(4s N 2 ) exp( (s N m 2 ) 2 /(4s N 2 ) exp( 88) C. Adolph et al. [COMPASS] arxiv:1407.6186v1

Cusp Model missing exotics

Cusp Model missing exotics B 0 b direct d c c d J/ colour enhanced, indirect I b B 0 d d c c D D colour enhanced, indirect II b B 0 d c d c D D + colour suppressed, wavefunction enhanced, indirect D b d B 0 0 d c c D

Cusp Model missing exotics the direct process is suppressed due to the small odds of back to back charm quarks making a J/psi b c c

Cusp Model missing exotics W d c in more detail b c (m c c )= M 2 (m c c,m d c ) dm 2 d c p = m 2 b /4 m2 c (p)p dp 0 m 2 b /4 m2 c (p) dp 0. P(p) = p d 3 q (q) 2 P(0.92) = 25%

Cusp Model missing exotics the wavefunction penalty is confirmed in the data B X Bf D D 8 10 4 DD 4 10 4 DD 4 10 4 4 10 5 5 10 5 4 10 5

Cusp Model missing exotics no penalty for extra light quarks B X Bf D + 2.7 10 3 D 0 + 8 10 4 D + + 6 10 3 K 8.2 10 4 K 1.2 10 3 0 1.7 10 5 + 4 10 5

Cusp Model missing exotics direct => wavefunction suppressed colour enhanced, indirect I, II => rescattering suppressed colour suppressed, wavefunction enhanced => < rescattering suppressed The first three must be weak since the Zc is not seen by LHCb in B -> psi pi+ pi-. The same happens in Bs -> psi K+ K-, which should see a 3980 (DsD* + DDs*) and a 4215 (DsDs*). We conclude that either the direct diagram or the rescattering wavefunction enhanced diagram dominates. If the latter dominates then cusp states should be visible in B 0 0 0 J/ B ± ± 0 J/ B s J/

Cusp Model Application to X(3872) u/d u/d b c c s ū/ d b c s c ū/ d colour enhanced, II rescattering suppressed B + K + D 0 D0 B + K 0 D + D 0 B 0 K 0 D D + B 0 K + D D 0 colour suppressed rescattering enhanced B + K + D 0 D0 B + K + D + D B 0 K 0 D + D B 0 K 0 D 0 D0

Cusp Model Application to X(3872) colour enhanced rescattering suppressed B + K + D 0 D0 B + K 0 D + D 0 B 0 K 0 D D + B 0 K + D D 0 colour suppressed rescattering enhanced B + K + D 0 D0 B + K + D + D B 0 K 0 D + D B 0 K 0 D 0 D0 Br(B 0 K 0 X) Br(B + K + X) = N cz + + Z 00 + Z + N c Z 00 + Z 00 + Z + 2 N c + 2

Cusp Model Application to X(3872) Br(B 0 K 0 X) Br(B + K + X) = N cz + + Z 00 + Z + N c Z 00 + Z 00 + Z + 2 N c + 2 Br(B 0 K 0 X) Br(B + K + X) = 0.50 ± 0.30 ± 0.05 Thus 7 +17 4.6 Now: 0.82 +- 0.22 +- 0.05 arxiv:0809.1224

Cusp Model Application to X(3872) colour enhanced rescattering suppressed B + K + D 0 D0 B + K 0 D + D 0 B 0 K 0 D D + B 0 K + D D 0 colour suppressed rescattering enhanced B + K + D 0 D0 B + K + D + D B 0 K 0 D + D B 0 K 0 D 0 D0 An X + or X should be made with approximately the same strength as the X. These modes are not seen X has no charge-partners, and X is not a cusp effect.

Cusp Model Application to X(3872) u/d u/d b c c s ū/ d b c s c ū/ d Note that the rescattering enhanced diagram goes through a explaining the large production seen, if this state has a large overlap with the X. c1

Cusp Model Application to X(3872) X-χ mixing Table 1: X χ c1 Mixing. state E B (MeV) a (fm) Z 00 a χ (MeV) prob χ c1 0.1 14.4 93% 94 5% 0.5 6.4 83% 120 10% χ c1 0.1 14.4 93% 60 100% 0.5 6.4 83% 80 > 100%

Cusp Model to do examine the X(3872): interplay of cusp, possible bound state dynamics, and mixing with cc states K DB B* B J/ D 1 = 1 = +

Cusp Diagnostics lie just above thresholds S-wave quantum numbers asymmetric lineshapes partner states of similar width widths will depend on channel the reaction (5S) K K (ns) should reveal B B s + B B s B B s states at 10695 ( ) and 10745 ( ) e + e K KJ/ B 0 J/ B ± J/ 0 0 ± 0 (if the wavefunction enhanced rescattering diagram contributes)