COMPLETE ARCS: BOUNDS AND CONSTRUCTIONS. Fernanda Pambianco

Similar documents
Classification of Arcs in Small Desarguesian Projective Planes

Minimal 1-saturating sets in PG(2,q), q 16

On finite Steiner surfaces

Primitive arcs in P G(2, q)

Large Automorphism Groups of Algebraic Curves in Positive Characteristic. BMS-LMS Conference

Arcs and blocking sets in non-desarguesian planes

Projective Schemes with Degenerate General Hyperplane Section II

Some Two Character Sets

Hyperovals. Tim Penttila

Tight Sets and m-ovoids of Quadrics 1

On Almost Complete Caps in PG(N, q)

A spectrum result on minimal blocking sets with respect to the planes of PG(3, q), q odd

arxiv: v1 [math.ag] 18 Dec 2016

Derivation Techniques on the Hermitian Surface

Multiple coverings of the farthest-off points and multiple saturating sets in projective spaces

Group theoretic characterizations of Buekenhout Metz unitals in PG(2,q 2 )

On the intersection of Hermitian surfaces

Constructing the Tits Ovoid from an Elliptic Quadric. Bill Cherowitzo UCDHSC-DDC July 1, 2006 Combinatorics 2006

On sets without tangents and exterior sets of a conic

A note on cyclic semiregular subgroups of some 2-transitive permutation groups

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions

Symmetric configurations for bipartite-graph codes

On the structure of the directions not determined by a large affine point set

Journal of Discrete Mathematical Sciences & Cryptography Vol. 9 (2006), No. 1, pp

Sextic curves with six double points on a conic

TRIANGLE CENTERS DEFINED BY QUADRATIC POLYNOMIALS

MA 252 notes: Commutative algebra

Quasimultiples of Geometric Designs

A subset of the Hermitian surface

HILBERT l-class FIELD TOWERS OF. Hwanyup Jung

CHARACTERIZATION OF PROJECTIVE GENERAL LINEAR GROUPS. Communicated by Engeny Vdovin. 1. Introduction

Number of points in the intersection of two quadrics defined over finite fields

Two-character sets as subsets of parabolic quadrics

Galois geometries contributing to coding theory

arxiv: v1 [math.co] 2 Dec 2015

ON CERTAIN CLASSES OF CURVE SINGULARITIES WITH REDUCED TANGENT CONE

Buekenhout-Tits Unitals

Upper bounds on the smallest size of a complete cap in PG(N, q), N 3, under a certain probabilistic conjecture

1 Lacunary Polynomials over Finite Fields.

THE TRANSITIVE AND CO TRANSITIVE BLOCKING SETS IN P 2 (F q )

Self-complementary circulant graphs

arxiv: v3 [math.ag] 23 Dec 2017

by a p-sylow of PSL(2,q)

A FINITE VERSION OF THE KAKEYA PROBLEM

Curves with many points Noam D. Elkies

Extending MDS Codes. T. L. Alderson

On the Permutation Products of Manifolds

[1] G. Marino, R. Toscano: Periodic solutions of a class of nonlinear ODE systems, Differential Equations, 40 (2004),

On the Hilbert Functions of Disjoint Unions of a Linear Space and Many Lines in P n

Codewords of small weight in the (dual) code of points and k-spaces of P G(n, q)

Two-intersection sets with respect to lines on the Klein quadric

ON LINEAR CODES WHOSE WEIGHTS AND LENGTH HAVE A COMMON DIVISOR. 1. Introduction

A Partial Multivariate Polynomial Interpolation Problem

Introduction Curves Surfaces Curves on surfaces. Curves and surfaces. Ragni Piene Centre of Mathematics for Applications, University of Oslo, Norway

A characterization of the finite Veronesean by intersection properties

Togliatti systems and artinian ideals failing WLP. Weak Lefschetz Property

COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125

THE CLASSIFICATION OF PLANAR MONOMIALS OVER FIELDS OF PRIME SQUARE ORDER

Exercises for algebraic curves

Links among Finite Geometries, Graphs and Groups

On the lifting problem in positive characteristic

THE ENVELOPE OF LINES MEETING A FIXED LINE AND TANGENT TO TWO SPHERES

arxiv: v1 [math.ag] 1 Apr 2013

Characterizations of Veronese and Segre Varieties

ALGEBRAIC HYPERBOLICITY OF THE VERY GENERAL QUINTIC SURFACE IN P 3

Saturating sets in projective planes and hypergraph covers

Groups with many subnormal subgroups. *

arxiv:math/ v1 [math.ag] 3 May 2006

Galois geometries contributing to coding theory

Three-Bit Monomial Hyperovals

Extending Arcs: An Elementary Proof

The case of equality in the Livingstone-Wagner Theorem

120A LECTURE OUTLINES

On the Moduli Space of Klein Four Covers of the Projective Line

On the GIT moduli of semistable pairs consisting of a plane cubic curve and a line

Quadratic families of elliptic curves and degree 1 conic bundles

arxiv: v2 [math.gr] 17 Dec 2017

Realizability and exceptionality of candidate surface branched covers: methods and results

On small minimal blocking sets in classical generalized quadrangles

Characters and triangle generation of the simple Mathieu group M 11

The Fricke-Macbeath Curve

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA. Semifield spreads

CONDITIONS ON POLYNOMIALS DESCRIBING AN OVAL IN PG(2, q)

On the intersection of Hermitian surfaces

Some results on the reduced power graph of a group

AUTOMORPHISMS OF X(11) OVER CHARACTERISTIC 3, AND THE MATHIEU GROUP M 11

On m ovoids of W 3 (q)

THE ABSOLUTE MORDELL-LANG CONJECTURE IN POSITIVE CHARACTERISTIC. 1. Introduction

FINITE GROUPS IN WHICH SOME PROPERTY OF TWO-GENERATOR SUBGROUPS IS TRANSITIVE

Lacunary Polynomials over Finite Fields Course notes

Hyperplanes of Hermitian dual polar spaces of rank 3 containing a quad

The influence of order and conjugacy class length on the structure of finite groups

TitleHYPERELLIPTIC SURFACES WITH K^2 < 4. Author(s) Rito, Carlos; Sánchez, María Martí. Citation Osaka Journal of Mathematics.

Some general results on plane curves with total inflection points

Finite Fields and Their Applications

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Local properties of plane algebraic curves

Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces

A characterization of the set of lines either external to or secant to an ovoid in PG(3,q)

If F is a divisor class on the blowing up X of P 2 at n 8 general points p 1,..., p n P 2,

Transcription:

SYMMETRIC AND COMPLETE ARCS: BOUNDS AND CONSTRUCTIONS Università degli Studi di Perugia, Italy collaborators: A.A. Davydov, G. Faina, S. Marcugini, A. Milani ACCT 010 Novosibirsk, 5-11 September

SUMMARY GENERAL CONSTRUCTION OF A FAMILY OF ARCS IN PG(,q) HAVING q+3 POINTS ON A CONIC

SUMMARY GENERAL CONSTRUCTION OF A FAMILY OF ARCS IN PG(,q) HAVING q+3 POINTS ON A CONIC GEOMETRIC DESCRIPTION OF SOME EXCEPTIONAL ARCS AND THE FERMAT CURVE

SUMMARY GENERAL CONSTRUCTION OF A FAMILY OF ARCS IN PG(,q) HAVING q+3 POINTS ON A CONIC GEOMETRIC DESCRIPTION OF SOME EXCEPTIONAL ARCS AND THE FERMAT CURVE NEW SIZES ON THE SPECTRUM OF COMPLETE ARCS IN PG(,q). THE MINIMUM ORDER OF COMPLETE ARCS IN PG(,31) AND PG(,3).

Preliminaries Introduction Construction Projective equivalence PG(,q) ARC : set K no 3-collinear points COMPLETE ARC K: K K arc, K < K

Preliminaries Introduction Construction Projective equivalence K : arc in PG(,q) q 5 odd C : irreducible conic = K C q + 3 (B. Segre, Ann. Mat. Pure Appl. 1955)

Introduction Construction Projective equivalence Definition K q (δ) : complete ( q+3 + δ)-arc s.t. K q (δ) C = q+3 q = max{δ}

Open problems Introduction Construction Projective equivalence q =? Examples K q (δ), δ 3? Exceptional arcs ( K q (δ) q+9 ) Constructions of q+7 -arcs, q

Introduction Construction Projective equivalence PG(,13) K 13 (4) = 1 unique A. H. Ali, J. W. P. Hirschfeld, H. Kaneta, J.C.D. 1994 PG(,17) K 17 (4) = 14 unique A. A. Davydov, G. Faina, S. Marcugini, F. P., ACCT 008

Introduction Construction Projective equivalence PG(,19) K 19 (3) = 14 G. Pellegrino Rend. Mat. Appl. (199) unique : A. A. Davydov, G. Faina, S. Marcugini, F. P., ACCT 008 PG(,7) K 7 (3) = 18 unique A. A. Davydov, G. Faina, S. Marcugini, F. P., ACCT 008

Introduction Construction Projective equivalence PG(,43) K 43 (3) = 8 G. Pellegrino Rend. Mat. Appl. (199) unique : G. Korchmaros, A. Sonnino, J.C.D. 009 PG(,59) K 59 (4) = 34 unique G. Korchmaros, A. Sonnino, J.C.D. 009

Introduction Construction Projective equivalence Theorem (G. Korchmaros, A. Sonnino, J.C.D. 009) q = q 89 and q 17, 19, 7, 43, 59 Sporadic examples, q 3 Infinite families in PG(,q), q 3 mod 4 of examples, q 3 ( q = 19, q = 43) in PG(,q r ), r odd

Introduction Construction Projective equivalence General results on q and existence of complete q+7 -arcs q+1 prime q 4 (G. Korchmaros, A. Sonnino, Discr. Math. 003) q 1 mod 16 q = if q+1 m < 1 + 1+ 1+(q 1) q q m 1, smallest divisor of q + 1 (G. Korchmaros, A. Sonnino, J.C.D. 009) q+1 4 prime q = q 19,7,43,163,83,331 (G. Korchmaros, A. Sonnino, J.C.D. 009) Some constructions of q+7 -arcs, q : G. Korchmaros, A. Sonnino, J.C.D. 009 V. Giordano, Inn. Incid. Geom. 009 A. A. Davydov, G. Faina, S. Marcugini, F. P., J. Geom. 009 K. Coolsaet, H. Sticker, Elec. J. of Comb., to appear

Introduction Construction Projective equivalence Geometric construction q mod 3, q = p n, p odd prime, q 11 C : x 0 + x 1 = x 0 x Irreducible conic C = A i = {( 1, i, i ) } + 1 i GF (q) {(0, 0, 1)} ( 1, i, i ) + 1 i F q, A = (0, 0, 1)

Introduction Construction Projective equivalence Ψ projectivity of order 3 Ψ(x 0, x 1, x ) = (x 0, x 1, x ) C is partitioned into 3-orbits called 3-cycles 0 1 1 1 1 1 1 C i = (A i, A m(i), A p(i) ) C i = (A i, A p(i), A m(i) ) m(i) = i 3 1 + i p(i) = i + 3 1 i C i = C i i = 0, ±1, ±3, {C i : C i C i } = q 5 3

P = (0,1,0) external points Introduction Construction Projective equivalence Q = (1, 1,1)

Introduction Construction Projective equivalence B 6 = {P, A 0, A }{{, Q, A } 1, A 3 } closed set }{{} tangent points tangent points

Introduction Construction Projective equivalence B 6 = {P, A 0, A, Q, A 1, A 3 } K 1 = i I C i, I = q 5 6 : C i K 1 C i / K 1

Introduction Construction Projective equivalence B 6 = {P, A 0, A, Q, A 1, A 3 } K 1 = i I C i, I = q 5 6 : Definition Theorem K = 3 q 5 6 C i K 1 C i / K 1 K = B 6 K 1 + 6 = q + 7 K C = q + 3 K is an arc for all the q 5 6 variants of K 1

Introduction Construction Projective equivalence COMPLETENESS Theorem : q mod 3, q = p n, p odd prime, q 11 q 453 one variant of K 1 s.t. K is complete q 149 q 17,59 all the variants of K 1 make K complete q = 17,59 non complete examples completing K 17 (4) K 59 (3) Geometric description of K 17 (4) and K 59 (3) as union of flowers K 17 (4) K 59 (3)

Introduction Construction Projective equivalence Conjecture: q mod 3, q = p n, p odd prime, q 11 one variant of K 1 s.t. K is a q+7 -complete arc

Projective Equivalence Introduction Construction Projective equivalence Definition : K 1 opposite K 1 Proposition C i K 1 C i K 1 K = B 6 K 1 K = B6 K 1 K projectively equivalent to K

Introduction Construction Projective equivalence B 6 is invariant under 1 0 4 G 1 = 0 3 0 G = 0 1 G 3 = 0 1 1 1 1 1 1 4 6 3 3 3 1 3 5 projectivities of order G = Z Z

Non equivalent arcs Introduction Construction Projective equivalence K neq { q 17 6 + q 17 1 q 1 mod 4 q 17 6 + q 11 1 q 3 1 q 3 mod 4 For q = 11, 17, 3, 9, 41, 47, 53 K neq = { q 17 6 q 17 1 + h q 1 mod 4 q 17 6 q 3 1 + h q 3 mod 4 where h = q 1.

Exceptional Arcs Lemma: { K = B6 K 1 U / bisecants of K q = 17 q = 59 The Fermat curve = U external T 1U, T U K

q = 17 q = 59 The Fermat curve q = 17 exceptional 14-complete arc K = K 1 B 6 K 1 = C C 7 (equivalent to K = K 1 }{{} C C 7 B 6 ) K = q+7 = 17+7 = 1 K incomplete

q = 17 q = 59 The Fermat curve K K { R }{{} (1,3,6) K 17 (4) }{{} 14 complete arc, S }{{} (1,15,3) } A, A 11, A 10, A 13 K

Remark q = 17 q = 59 The Fermat curve {P, A 0, A }{{, S, A }, A 11 } {Q, A }{{} 1, A 3, R, A }{{} 13, A 10 } }{{} tangent points tangent points tangent points tangent points {R, A 13, A }{{ 10, S, A }, A 11 } CLOSED SETS! }{{} tangent points tangent points (similar to {P, A 0, A }{{, Q, A } 1, A 3 }) }{{} tangent points tangent points

q = 17 q = 59 The Fermat curve Respective 3-cycles Previous New C i = (A i, A j, A k ) C i = (i, j, k) C i PS = ( i, i+5 +i, ) 9i+3 4i+9 C RQ i = ( ) i, 1+7i 7 i, 3i C i RS = ( 3 i, 5i+11, ) 15i 1 4i ( C PQ i = i, i 3 i + 1, i + 3 ) 1 i

Φ i : Flower with four petals q = 17 q = 59 The Fermat curve Proposition: i Φ i is a 9-arc.? Flowers Structure of K 17 (4)

q = 17 q = 59 The Fermat curve Fix external points and their tangent points B 1 = {P, Q, R, S, A, A 0, A 1, A 3, A 13, A 10, A, A 11 } { C }{{} conic \B 1 : non collinear with two points with B 1 } = {A 8, A 1 } K 17 (4) = B 1 {A 8, A 1 }

q = 17 q = 59 The Fermat curve Surprise: Φ 8 and Φ 1 have petals formed by points already chosen NOT in contrast each other Φ 8 Φ 1

q = 17 q = 59 The Fermat curve K 17 (4) = B 1 {A 8, A 1 } K 17 (4) = Φ 8 Φ 1 {P, Q, R, S} Φ 8 Φ 1

q = 59 q = 17 q = 59 The Fermat curve exceptional 34-complete arc K = K 1 B 6 K 1 = C 7 C 11 C 3 C 33 C 43 C 45 C 5 C 54 C 55 K = q+7 = 59+7 = 33 K-incomplete

q = 17 q = 59 The Fermat curve Remark K K { R }{{} (1,8,7) K 59 (3) }{{} 34 complete arc } {Q, R, A 1, A }{{ 3, A } 5, A 1 } }{{} tangent points tangent points closed set!

q = 17 q = 59 The Fermat curve New 3-cycle Φ i : ( C QR i 11 i = i, 5 + 9i, 1i 9 ) i + 15 Proposition: i C PQ i C QR i is a 5-arc.

q = 17 q = 59 The Fermat curve B 9 = {P, Q, R, A, A 0, A 1, A 3, A 5, A 1 } K 59 (3) = B 9 Φ Φ 6 Φ 11 Φ 15 Φ 17 Φ 3 Φ 30 Φ 55

q = 17 q = 59 The Fermat curve Generalization q = 17 3 q+7 = 460 164 flowers 16-arc completing? One example of 1874 points q = 59 3 q+7 = 10693 19566 flowers 80934-arc completing?

q = 17 q = 59 The Fermat curve What are the planar algebraic non singular curves of degree n MAXIMALLY SYMMETRIC? (proj. autom. group of maximum size)

q = 17 q = 59 The Fermat curve What are the planar algebraic non singular curves of degree n MAXIMALLY SYMMETRIC? (proj. autom. group of maximum size) n = 1, n = 3 x 3 + y 3 + z 3 = 0 G = 54 n = 4 n = 6 n 19 odd prime Klein quartic G = 168 x 3 y + y 3 z + z 3 x = 0 Wiman sextic G = 360 10x 3 y 3 + 9(x 5 + y 5 )z 45x y z 135xyz 4 + 7z 6 = 0 trivial F. Enriques and O. Chisini, 1918 R. Hartshorne, Algebraic Geometry 1977 H. Doi, K. Idei and H. Kaneta, Osaka J. Math. 000 x n + y n + z n = 0 G = 6n H. Kaneta, S. Marcugini and F. P., Geom. Ded. 001

q = 17 q = 59 The Fermat curve What are the planar algebraic non singular curves of degree n MAXIMALLY SYMMETRIC? (proj. autom. group of maximum size) n = 1, n = 3 x 3 + y 3 + z 3 = 0 G = 54 n = 4 n = 6 n 19 odd prime Klein quartic G = 168 x 3 y + y 3 z + z 3 x = 0 Wiman sextic G = 360 10x 3 y 3 + 9(x 5 + y 5 )z 45x y z 135xyz 4 + 7z 6 = 0 trivial F. Enriques and O. Chisini, 1918 R. Hartshorne, Algebraic Geometry 1977 H. Doi, K. Idei and H. Kaneta, Osaka J. Math. 000 x n + y n + z n = 0 G = 6n H. Kaneta, S. Marcugini and F. P., Geom. Ded. 001 What happens for general degree n?

q = 17 q = 59 The Fermat curve THEOREM k: algebraic close field f k[x, y, z], homogeneous of deg n 3 n 4, 6 V (f ): non singular algebraic curve in P (k) Aut(V (f )) 6n Aut(V (f )) = 6n V (f ) projectively equivalent to Fermat curve x n + y n + z n = 0

q = 17 q = 59 The Fermat curve Fermat Curve x n + y n + z n n (q + 1), g genus Goppa method code over GF (q ) of length N = q + 1 + gq Maximal lenght among algebraic codes respect Singleton defect N k + 1 d g

Outline proof of THEOREM q = 17 q = 59 The Fermat curve Proposition (H. H. Mitchell, Trans. Amer. Math. Soc., 1911) G PGL(3, k) P g G Q POINT NO G-invariant g G g G LINE NO G-invariant TRIANGLE NO G-invariant = G {36, 7, 168, 360} = G < 6n, n 8

Outline proof of THEOREM q = 17 q = 59 The Fermat curve Proposition V(f) : G - invariant, deg n 11 P g G g G Q G fixes a point or G fixes a line or g G G permutes cyclically V(f) singular

q = 17 q = 59 The Fermat curve Outline proof of THEOREM Proposition V(f) : G - invariant, deg n 11 G induces S 3 V(f) non singular V(f) proj. equiv. Fermat curve x n + y n + z n = 0

q = 17 q = 59 The Fermat curve degree n = 8 V(f) G- invariant, G 6n Hurwitz Theorem = 5 G or 11 G or 7 G THEOREM 5 G or 11 G or 7 G or V(f) singular V(f) singular V(f) non singular proj. equiv. Fermat curve

q = 17 q = 59 The Fermat curve degree n = 9 V(f) G- invariant, G 6n Hurwitz Theorem = 3 G or 3 3 G THEOREM 3 G or 3 3 G V(f) singular or V(f) singular V(f) non singular proj. equiv. Fermat curve

q = 17 q = 59 The Fermat curve degree n = 10 V(f) G- invariant, G 6n Hurwitz Theorem = 7 G or 13 G or 5 G THEOREM 7 G or 13 G or 5 G or V(f) singular V(f) non singular V(f) singular proj. equiv. Fermat curve

Small sizes for complete arcs Minimum order Small sizes Spectrum Definitive Results MINIMUM ORDER t (, 31) = t (, 3) = 14 Previous definitive result in PG(, 9): S. Marcugini, A. Milani, F. P., J.C.M.C.C. 003

Minimum order Small sizes Spectrum Partial Classification of complete 14-arcs PG(,31) PG(,3) G Non equivalent examples S 3 1 Z Z 4 Z 4 3 Z 97 Z 1 386 G Non equivalent examples Z 5 1 Z 4 1 Z 541 Z 1 8759

Minimum order Small sizes Spectrum Upper bounds for the smallest size t (,q) q 841 t (,q)< 4 q Results t (343) 66 853 q 6011 Theorem (A. A. Davydov, G. Faina, S. Marcugini, F. P., J.G. 009) improvement NEW SMALL SIZES t (, q) < 4. q q 1163, q = 1181, 1193, 1369, 1681, 401; t (, q) < 4.3 q q 1451, q = 1459, 1471, 1481, 1493, 1499, 1511, 1681, 401; t (, q) < 4.4 q q 1849, q = 1867, 1889, 1901, 1907, 1913, 1949, 1993, 401; t (, q) < 4.5 q q 377, q = 401, 417, 437.

Minimum order Small sizes Spectrum 4.5 q SMALL SIZES = t (, q)

Minimum order Small sizes Spectrum New results on spectrum of complete arcs 169 q 5171 : NEW SIZES (q 167 : A. A. Davydov, G. Faina, S. Marcugini, F. P., J. Geom. 1998, 005 and 009 Theorem In PG(,q) 5 q 349, q 56, q = 1013,003 complete arcs of all sizes in [ t (, q), M q ] where t (, q) in previous graphic and M q = q+4 q even q+7 q+5 elsewhere q mod 3 q odd 11 q 3701 q 1 mod 4 q 337 other types of q see G. Korchmaros, A. Sonnino, J.C.D. 009 )

Minimum order Small sizes Spectrum CONJECTURE In PG(, q), q prime odd, 353 q 879 complete arcs of all sizes in [ t (, q), M q ]

Minimum order Small sizes Spectrum Thank for your attention!