CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

Similar documents
CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

CHAPTER 3 Applications of Differentiation

SECTION CHAPTER 7 SECTION f 1 (x) = 1 (x 5) 1. Suppose f(x 1 )=f(x 2 ) x 1 x 2. Then 5x 1 +3=5x 2 +3 x 1 = x 2 ; f is one-to-one

Trigonometric substitutions (8.3).

CHAPTER 3 Applications of Differentiation

CHAPTER 6 Differential Equations

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation

Hyperbolic Functions

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4.

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

1993 AP Calculus AB: Section I

Test one Review Cal 2

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

Answers to Some Sample Problems

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Chapter 2 Section 3. Partial Derivatives

CALCULUS II MATH Dr. Hyunju Ban

1969 AP Calculus BC: Section I

Review Exercises for Chapter 2

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

Mat 267 Engineering Calculus III Updated on 9/19/2010

CHAPTER 3 Exponential and Logarithmic Functions

THEOREM: THE CONSTANT RULE

1985 AP Calculus AB: Section I

CHAPTER 3 Exponential and Logarithmic Functions

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4

CHAPTER P Preparation for Calculus

Try It Exploration A Exploration B Open Exploration. Fitting Integrands to Basic Rules. A Comparison of Three Similar Integrals

Increasing and Decreasing Functions and the First Derivative Test

CHAPTER P Preparation for Calculus

AP Calculus AB/BC ilearnmath.net

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

C H A P T E R 3 Exponential and Logarithmic Functions

Review Exercises. lim 5 x. lim. x x 9 x. lim. 4 x. sin 2. ln cos. x sin x

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video

CHAPTER 3 Exponential and Logarithmic Functions

Trigonometry Outline

Chapter 3 Differentiation Rules (continued)

CHAPTER 11 Vector-Valued Functions

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u.

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

1993 AP Calculus AB: Section I

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

C H A P T E R 9 Topics in Analytic Geometry

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

MA 114 Worksheet #01: Integration by parts

CHAPTER 6 Applications of Integration

Chapter 1 Prerequisites for Calculus

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Fitting Integrands to Basic Rules

4.3 Worksheet - Derivatives of Inverse Functions

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

Calculus 2 - Examination

CHAPTER 2 Differentiation

Mathematical Preliminaries. Developed for the Members of Azera Global By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number.

Integration Techniques, L Hôpital s Rule, and Improper Integrals

Methods of Integration

Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

APPM 1350 Final Exam Fall 2017

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

dx. Ans: y = tan x + x2 + 5x + C

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

Solutions to the Exercises of Chapter 8

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx.

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

Chapter 2 Derivatives

Review Exercises for Chapter 4

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac

First Midterm Examination

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = +

18.01 Final Answers. 1. (1a) By the product rule, (x 3 e x ) = 3x 2 e x + x 3 e x = e x (3x 2 + x 3 ). (1b) If f(x) = sin(2x), then

Algebra/Pre-calc Review

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

CHAPTER 1 Limits and Their Properties

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis

7.3 Inverse Trigonometric Functions

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx

y »x 2» x 1. Find x if a = be 2x, lna = 7, and ln b = 3 HAL ln 7 HBL 2 HCL 7 HDL 4 HEL e 3

AP Calculus BC Summer Review

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) D: (-, 0) (0, )

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics).

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

Name Please print your name as it appears on the class roster.

8.4 Inverse Functions

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE

Math 115 (W1) Solutions to Assignment #4

Solutions to Math 41 Final Exam December 9, 2013

Transcription:

CHAPTER 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. The Natural Logarithmic Function: Dierentiation.... Section 5. The Natural Logarithmic Function: Integration...... Section 5. Inverse Functions...................... 6 Section 5. Eponential Functions: Dierentiation and Integration.. Section 5.5 Bases Other than e and Applications............ 9 Section 5.6 Inverse Trigonometric Functions: Dierentiation..... 55 Section 5.7 Inverse Trigonometric Functions: Integration....... 6 Section 5.8 Hperbolic Functions.................... 66 Review Eercises............................. 7 Problem Solving.............................. 77

CHAPTER 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. The Natural Logarithmic Function: Dierentiation. Simpson s Rule: n.5.5.5.5 t dt Note:.5 t dt.69.55.69.96.987.59.865.5 t dt. (a) ln 5.867 5 dt.867 t 5. (a) ln.8. 7..8 dt. t ln Vertical shit units upward Matches 9. ln Horizontal shit unit to the right Matches (a). ln. ln 5. ln Domain: > Domain: > Domain: > 5 7. (a) ln 6 ln ln.797 ln ln ln.55 (c) ln 8 ln ln.9 (d) ln ln ln.59 9. ln ln ln. ln z ln ln ln z. ln a lna lna 5. ln ln ln ln ln ln

Section 5. The Natural Logarithmic Function: Dierentiation 5 7. ln zz ln z lnz 9. ln ln ln ln z lnz. ln ln ln ln ln. ln 9 ln ln 9 ln ln 5. (a) = g 9 ln ln ln ln ln g since >. 7. lim ln 9. lim ln ln.86. ln ln. ln ln 5. g ln ln g Slope at, is. Slope at, is. Tangent line Tangent line 7. ln 9. d d ln ln ln ln ln d d 5. ln ln ln 5. gt ln t t gt t t t ln t t ln t t 55. lnln 57. d d d ln d ln ln ln ln ln ln ln d d 59. ln ln ln

( 6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 6. 6. 65. d d ln ln sin d cos cot d sin cos 67. lncos ln cos ln cos d sin d cos sin cos tan sin cos sin ln sin d d ln sin ln sin cos sin cos sin cos sin sin 69. ln t dt ln ln Second solution: ln t dt t t ln ln ln ln ln 7. (a) ln,, d d 6 When, d 5. d Tangent line: 5 (, ) 5 5 7. (a) ln sin ln sin,, ln π (, ln Tangent line: sin cos sin cos sin sin ln ln

Section 5. The Natural Logarithmic Function: Dierentiation 7 75. (a) ln,, 77. ln Tangent line: ln d d d d d d d d (, ) 79. At, : ln,, 8. Tangent line: ln 8. ln 85. ln Domain: > Domain: > (, ) when. > > Relative minimum: ln ln when e. e, e Relative minimum:, ( e, e ) 87. ln Domain: < <, > ln ln ln ln ln when e. ln ln ln ln when e. Relative minimum: ln e, e Point o inlection: e, e (, e e) ( e, e/) 9

8 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 89. ln, 9. Find such that ln.,, P, P ln n n n n n ln n n P, P P, P P, P P, P The values o, P, P, and their irst derivatives agree at. The values o the second derivatives o and P agree at. n n n.5.56.567.9.76. Approimate root:.567 P P 5 9. 95. ln ln ln d d d d ln ln ln ln d d d d 5 8 5 8 97. ln ln ln ln d d d d 99. Answers will var. See Theorems 5. and 5..

Section 5. The Natural Logarithmic Function: Dierentiation 9. g ln, > g (a) Yes. I the graph o g is increasing, then g >. Since >, ou know that g and thus, >. Thereore, the graph o is increasing. No. Let (positive and concave up). g ln is not concave up.. False ln ln 5 ln5 ln 5 5. 5.5 t 6.7968 ln, (a) 5 (c) t67. ears T 67. $8,78. t68.5 ears < T 68.5 $8,6. (d) dt d 5.56.7968 ln 5.5 6.7968 ln When 67., dtd.65. When 68.5, dtd.585. (e) There are two obvious beneits to paing a higher monthl pament:. The term is lower. The total amount paid is lower. 7. (a) 5 T p.96 p.955 p (c) T.75 deglbin T7.97 deglbin lim Tp p 9. ln ln ln (a) (c) d lim d d d When 5, dd. When 9, dd 99.

Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions. ln > or >. Since ln is increasing on its entire domain,, it is a strictl monotonic unction and thereore, is one-to-one. Section 5. The Natural Logarithmic Function: Integration. 5 d 5 d 5 ln C. u, du d d ln C 5. u, du d 7. d d u, du d d d ln C ln C ln C 9.. d d. ln C 6 d d 5. u 9, du d 9 d 9 d 5 ln 9 C d 5 d 7. d 6 ln C d ln C 9. u ln, du d ln d ln C 5 ln C. u, du d. d d C C d d d d d d ln C

Section 5. The Natural Logarithmic Function: Integration 5. u, d where C C. du d u du d u u u lnu C du u du ln C ln C 7. u, du d u du d d u du u u where C C 7. 6u 9 u u 6u 9 ln u C u u 8 ln u C du u 6 9 u du 8 ln C 6 8 ln C 9. cos sin d lnsin C. u sin, du cos d csc d csc d ln csc cot C sin t dt ln sin t C 5. sec tan sec d ln sec C. cos t 7. d 9. s tan d (, ) d tan d ln C, : ln C C ln ln cos C, : ln cos C C (, ) s ln cos

Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions., > C C C ln C C C ln. d d, (a) (, ), 5. (a) 5 (, ) 8 d ln C ln C C ln Hence, ln ln ln. d d,, ln C C C ln 8 6 8 7. 5 d 5 ln 5 ln.75 9. u ln, e ln du d d ln e 7 5. d d 5. ln ln cos sin d ln sin sin ln sin.99 55. d ln C ln C where C C.

Section 5. The Natural Logarithmic Function: Integration 57. d ln C 59. csc sin d ln csc cot cos ln.7 Note: In Eercises 6 6, ou can use the Second Fundamental Theorem o Calculus or integrate the unction. 6. F t dt F 6. F t dt F (b Second Fundamental Theorem o Calculus) Alternate Solution: F F t dt ln t ln 65. 67. A d ln ln 69. A tan d ln cos ln ln ln.66 7. A.5; Matches (d) A d d 7. ln 8 ln 5 8 ln.5 square units sec d 6 ln sec tan ln 5. sec 6 6 ln d sec tan 6 6 ln 6

Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 75., b a 5, n Trapezoid: Simpson: Calculator: Eact: ln 5 5 8 6.. 5 8. 9.667 5 d 9. 77. ln, b a 6, n Trapezoid: 5 6.69.97.776.89.798 5.68 Simpson: 5 6 5.6 6 Calculator: ln d 5.6 79. Power Rule 8. Substitution: u and 8. Log Rule ln cos C ln cos C ln sec C 85. 87. 9. ln sec tan sec tan sec tan C ln sec tan ln C Average value d Pt.5t dt.5 sec tan C ln sec tan C 8, ln.5t C P, ln.5 C C Pt, ln.5t ln.5t P ln.75 775 d 89. ln sec tan sec tan C Average value e e ln e e e.9 e.5t dt 9. 5 9, 5 d ln 5 $68.7 ln d

Section 5. The Natural Logarithmic Function: Integration 5 95. (a) 8 e d e ln C e ln e C k 8 8 Let k and graph., 8 (c) In part (a): 8 In part : Using a graphing utilit the graphs intersect at.,.. The slopes are.95 and..95, respectivel. 97. False ln ln ln 99. True d ln C ln ln C ln C, C. (a) (c) intersects :.5 5 A d ln ln Hence, or < m <, the graphs o and m enclose a inite region..5 () = + m m m m m m m = m m, intersection point m A mm ln m mm ln m m ln m m m d, < m < m m m [m lnm

6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. Inverse Functions. (a) 5 g 5 g 5 5 5 g g g5 5 5. (a) g g g g g 5. (a) g, g g g 8 6 g 6 8 7. (a) g = g g g 9. Matches (c). Matches (a). 6 One-to-one; has an inverse 8 5. sin Not one-to-one; does not have an inverse 7. hs s One-to-one; has an inverse 8 6 8 6 π π θ 7

Section 5. Inverse Functions 7 9. ln. One-to-one; has an inverse 5 g 5. One-to-one; has an inverse ln, > > or > is increasing on,. Thereore, is strictl monotonic and has an inverse. 5 5. 7. when,, is not strictl monotonic on,. Thereore, does not have an inverse. < or all is decreasing on,. Thereore, is strictl monotonic and has an inverse. 9.. 5 5 5 5 5. 5.,,, 7. 9.,, 6 The graphs o and across the line. are relections o each other The graphs o and across the line. are relections o each other

8 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions. 7 7 7. 7, < < (, ) (, ) (, ) (, ) The graphs o and across the line. are relections o each other 5. (a) Let be the number o pounds o the commodit costing.5 per pound. Since there are 5 pounds total, the amount o the second commodit is 5. The total cost is.5.65.5 8, 5. (c) Domain o inverse is 6.5 8. We ind the inverse o the original unction:.5 8.5 8 5 8 Inverse: 5 8 7 8 represents cost and represents pounds. (d) I 7 in the inverse unction, 5 8 7 5 pounds. 7. on, 9. > on, is increasing on,. Thereore, is strictl monotonic and has an inverse. on, 8 < on, is decreasing on,. Thereore, is strictl monotonic and has an inverse. 5. cos on, sin < on, is decreasing on,. Thereore, is strictl monotonic and has an inverse. 5. a, b, c ± 6,, Domain o : all Range o : < < on, ± 6 i i The graphs o and the line. are relections o each other across

Section 5. Inverse Functions 9 55. (a), 6 5 (c) Yes, is one-to-one and has an inverse. The inverse relation is an inverse unction. 57. (a), 6 g g (c) g is not one-to-one and does not have an inverse. The inverse relation is not an inverse unction. 6 59., Domain: is one-to-one; has an inverse > or >, 6., 6. is one-to-one or. is one-to-one; has an inverse,, (Answer is not unique.) 65. is one-to-one or., (Answer is not unique.) 67. Yes, the volume is an increasing unction, and hence one-to-one. The inverse unction gives the time t corresponding to the volume V. 69. No, Ct is not one-to-one because long distance costs are 7. step unctions. A call lasting. minutes costs the same as one lasting. minutes., a 5 7. sin, 6 a 75. cos 6 cos6, 6 a 6 6

Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 77. (a) Domain Domain, Range Range, (c) (d),, 8, 8, 79. (a) Domain,, Domain, Range,, Range, (c) (d) 8 6 6 8, 5, 5,, 5 8 8. 7 d d d d d d At,, d d. Alternate Solution: Let 7. Then and. Hence, d d. In Eercises 8 85, use the ollowing. and g 8 8 and g 8. g g 85. 6 6 7 6 In Eercises 87 89, use the ollowing. and g 5 and g 5 87. g g 89. g 5 g g 5 5 Hence, g. Note: g g

Section 5. Inverse Functions 9. Answers will var. See page and Eample. 9. is not one-to-one because man dierent -values ield the same -value. Eample: Not continuous at n, where n is an integer. 95. k is one-to-one. Since, k k k. 97. Let and g be one-to-one unctions. (a) Let g g g g g g (Because is one-to-one.) (Because g is one-to-one.) Thus, g is one-to-one. Let g, then g. Also: g g g g g Thus, g g and g g. 99. Suppose g and h are both inverses o. Then the graph o contains the point a, b i and onl i the graphs o g and h contain the point b, a. Since the graphs o g and h are the same, g h. Thereore, the inverse o is unique.. False. Let.. True 5. Not true. Let,, <. is one-to-one, but not strictl monotonic. 7. dt, t 7 7 9. (a) Hence, i then., The graph o is smmetric about the line.

Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. Eponential Functions: Dierentiation and Integration. e ln. e 5. 9 e 7 7. 5e ln.85 e e e 5 ln 5 ln 5.5 9. ln. ln. ln e 7.89 e e e e.89 e e 5.89 5. e 7. e Smmetric with respect to the -ais Horizontal asmptote: 9. (a) 7 g (c) 7 q 5 7 Horizontal shit units to the right h A relection in the -ais and a vertical shrink 8 Vertical shit units upward and a relection in the -ais. Ce a. C e a Horizontal asmptote: Matches (c) Vertical shit C units Relection in both the - and -aes Matches (a) 5. e 7. g ln ln 6 g 6 e 9. g ln 6 g 6 g As, the graph o approaches the graph o g..5 lim e.5

Section 5. Eponential Functions: Dierentiation and Integration.,,,,.78869 e.78888 e >,,,,. (a) e e e e Tangent line Tangent line 5. e 7. e e 9. d e d gt e t e t gt e t e t e t e t. ln e. d d e e e e e e d d e e e e e e e e 5. e sin cos 7. d d e cos sin sin cos e e cos e cos F ln cos e t dt F cose ln cos 9. e,, 5. e, Tangent line lne,,, Tangent line 5. e e e,, e 55. e e e e e e e e e e Tangent line e ln,, e e ln e ln e e e e Tangent line 57. e 59. e d d e d d d d e e d e d e e e,, e e e e At, : e e Tangent line: e e

( Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 6. e e e 7 6e 7 6e 6e 6 5e 6. e cos sin e sin cos e cos sin e cos sin e sin cos e cos sin e sin cos e cos sin e cos sin e cos sin Thereore,. 65. e e e e e e > Relative minimum:, when. 6 (, ) 67. g e g g e Relative maimum: Points o inlection:, e,,.99 e,,.8 (, e,.,,. (, ( π e.5, π ( ( e.5 π 69. e e e e when,. e e e when ±. Relative minimum:, Relative maimum:, e ± ± e ± Points o inlection:.,.8,.586,.9 (, ) (, e ) 5 ( ±, (6 ± )e ( ± ) )

Section 5. Eponential Functions: Dierentiation and Integration 5 7. gt te t gt te t (, + e) 5 (, ) g t te t 6 6 Relative maimum:, e,.78 Point o inlection:, 7. A baseheight e da d e e e when. A e (, e ) 75. Laeb ae b ae b b L, a >, b >, L > aeb L a b eb ae b al e b b al b eb aeb a b eb ae b ae b al e b b al b a eb b eb ae b i b ln a ae b al b eb ae b ae b b ln b ln a a L ae L b ln ab aa L Thereore, the -coordinate o the inlection point is L. 77. e e Let,, e be the point on the graph where the tangent line passes through the origin. Equating slopes, e e 8 () = e, e, e. (, e ( () = (e) Point:, e Tangent line: e e e

6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 79. V 5,e.686t, t (a), dv dt 99e.686t (c), When t, dv 58.8. dt When t 5, dv 6.89. dt 8. h 5 5 P, 558 76 57 ln P 9. 8.67 7.77 7. 6.8 (a) ln P ah b P e ahb e b e ah P Ce ah, C e b (c).99h 9.8 is the regression line or data h, ln P., (d) For our data, a.99 and C e9.8,957.7. P,957.7e.99h dp,957.7.99e.99h dh For 6.56e.99h dp h 5, dh 776.. For h 8, dp.6. dh 8. e, 7 e, P P e, 6 6 P, P P, P P 8 P 8 P, P P, P The values o, P, P and their irst derivatives agree at. The values o the second derivatives o and agree at. P 85. Let u 5, du 5 d. e 5 5 d e 5 C 87. e d e d e C

Section 5. Eponential Functions: Dierentiation and Integration 7 89. Let u e, du e d. e e d e e d ln e C ln e e C lne C 9. Let u e, du e d. e e d e e d 9. Let u e e, du e e d. e e e e d ln e e C e C 95. 5 e d 5e e d e d 97. e tane d tane e d 5 e e C ln cose C 99. Let u, du d.. e d e d e e e e e d e e e d. Let u, du d. 5. d e d e e e e e e sin cos d e e esin e sin e sin cos d 7. Let u a, du a d. Assume a. 9. e e d e e C e a d ae a a d a ea C C e e d e e C C C e e. (a) 5 d d e,, 6 (, ) 5 e d e d 8 e C, : e C C C 5 e 5

8 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions. 5 e d e 5 e 5 7. 5. 5 6 e d e 6 e.55 6.5.5 7.. e d, n 9..6656 e.9t8 dt 8 Midpoint Rule: 9.898 Graphing utilit:.77 7.7% Trapezoidal Rule: 9.87 Simpson s Rule: 9.785 Graphing utilit: 9.77 e t dt dt. e. Domain is, and range is,. et t e e or is continuous, increasing, one-to-one, and concave upwards on its entire domain. lim e and lim e. 5. Yes. Ce, C a constant. 7. e e e n n n n n n e n e n.579.567.567 We approimate the root o to be.567. 9. ln ea e b ln ea ln e b a b ln e ab a b Thereore, ln ea and since is one-to-one, we have ea e b ln eab ln b eab. e

Section 5.5 Bases Other than e and Applications 9 Section 5.5 Bases Other than e and Applications. log 8 log. log 7 5. (a) 8 7. (a) log. log.5 8 log 8 log..5 8 8 9... h 5 9 9 9 9 5 5 5 5 5. (a) log log. 7. (a) log log. 6 9. (a) log 5 5 5 log 6 log 5 5 5 log 6 6 OR. 75. ln ln 75 ln 75.965 ln z 65 z ln ln 65 z ln 65 ln z ln 65 ln 6.88 5..9 t 7. t ln.9 ln t ln ln.9.5 log 5 5

5 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 9. log.5. g 6 5. hs log s 5.5 Zero:.59 Zero: s. ±.5 ±.85 (.59, ) (., ) 8 5. g log 6 6 g g 7. 9. ln gt t t gt t ln t t t t t t ln t t t ln. h cos h sin ln cos ln cos sin. log log log ln ln ln 5. log 5 log 5 7. d d ln 5 ln 5 gt log t t ln ln t t gt tt ln t ln t ln t t ln 5 ln t t ln 9.,, 5. ln At,, ln. Tangent line: ln ln ln log, 7, At ln 7,, 7 ln. Tangent line: 7 7 ln 7 ln ln

Section 5.5 Bases Other than e and Applications 5 5. 55. ln ln d d ln ln d d ln ln ln ln d d ln d d ln ln 57. ln sin ln At sin,, sin, : cos ln Tangent line: 59. ln cos lnln ln cos, e, cos sin lnln ln At e,, cose. e Tangent line: cose e e cose cose e 6. d C 6. ln 5 d 5 d 5 ln 5 C ln 5 5 C 65. u, du ln d d, 67. ln d ln ln ln C d ln ln 7 ln 7 ln 69. 5 d 5 ln 5 ln 5 ln 5 ln ln 5 ln 7. Area d ln ln 5 ln 6 7 ln ln

5 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions d 7. d., (a) (, (,. d. d ln.. C ln.5. C 6 6 ln.5 C C ln.5 ln.5. ln.5. ln.5 75. 77. 8 (, ) (, ) (8, ) 6 8 (a) is an eponential unction o : False is a logarithmic unction o : True; log (c) is an eponential unction o : True, (d) is a linear unction o : False log ln g g ln Note: Let g. Then: ln ln ln ln ln ln g h h k k ln From greatest to smallest rate o growth: g, k, h, 79. Ct P.5 t (a) C.95.5 $.6 dc dt When When Pln.5.5t (c) t, t 8, dc dt dc dt.5p..7p. dc dt ln.5p.5t ln.5ct The constant o proportionalit is ln.5. 8. P $, r %.5, t n 65 Continuous A.5 n n A e.5 9.7 A.6.78 6.9 8. 9. 9.7 8. P $, r 5%.5, t A.5 n n A e.5 8.69 n 65 Continuous A.9 99.79. 67.7 8. 8.69

Section 5.5 Bases Other than e and Applications 5 85., Pe.5t P,e.5t t 5 P 95,.9 6,65.7 6,787.9,.,5.5 88.5 87., P.5 t P,.5 t t 5 P 95,.8 6,76. 6,86.5,8.66,589.88 85. 89. (a) A,.6 65 658 $,. A $, (c) (d) A 8.6 65 658,.6 65 65 $,98.9 5,.8 $8,5.57 A 9.6 65 658.6 65 65 $,985. Take option (c). 9. (a) lim t 6.7e8.t 6.7e 6.7 million t V.7 t e 8.t V.7 million t r V6. million t r 9. 7e.65 (d) (a) 7e.65 I ( egg masses), 6.67 6.7%. (c) I 66.67%, then 8.8 or 8,8 egg masses. 8.75e.65 7e.65 9.9875e.65 7e.65 7e.65 7e.65 7.8 or 7,8 egg masses. 95. (a) (c) B.7596.77 d.759e.9d 97. (a) t dt 5.67 Bd 9.95e.9d B.8. tonsinch B.5 6.8 tonsinch gt dt 5.67 ht dt 5.67 (c) The unctions appear to be equal: Analticall, t 8 t 8 t 9 t gt ht e.65886t e.65886 t.5 t gt 9 t.5 t t gt ht. No. The deinite integrals over a given interval ma be equal when the unctions are not equal. 6 5

5 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 99. t 7 59. 55.5. False. e is an irrational number. Ck t When t, C. k t 7 59. 55.5.6,.6,.6,.6 7 59. Let k.6..6 t. True g e ln g ln e ln e 5. True d d e e and e e when. e e d d e e 7. ln ln 5 5 t C d dt 8 5 5, d 5 8 5 dt 5 5 d 8 5 dt ln 5 5 t C 5 e5tc C e 5t C e 5t 5 e 5t 5 5e5t e 5t e 5t 5e5t e 5t 5 e.5.t.5e.t 9. (a) ln (i) At ln ln ln ln ln ln ln ln ln (c) (ii) At (iii) At At c, c:, :, : is undeined or c c ln c ln ln ln e. e, e, is undeined., c, e c c ln c 6 8 ln 8 ln ln.77 ln 8 ln ln.7 6 8 ln ln

Section 5.6 Inverse Trigonometric Functions: Dierentiation 55. Let ln ln For n 8, e < n < n, 8.88 and so letting n, n, we have n n > n n. Note: ln, >. ln or > e is decreasing or e. Hence, or e < : < > > ln > ln ln > ln > 8 9.6 and 9 8.. Note: This same argument shows e > e. Section 5.6 Inverse Trigonometric Functions: Dierentiation. arcsin (a).8.6.....6.8.57.97.6.....6.97.57 (c) (d) Smmetric about origin: π π arcsin arcsin Intercept:,. arccos,,, because 6 because cos cos because cos 6 5. arcsin 6 7. arccos 9. arctan 6. arccsc. arccos.8.5 5. arcsec.69 arccos.69.66

56 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 7. (a) sin arctan 5 9. (a) cot arcsin cot 6 5 θ θ sec arcsin 5 5 csc arctan 5 5 5 θ θ 5. cosarcsin. arcsin cos θ sinarcsec arcsec, sin, The absolute value bars on are necessar because o the restriction and sin or this domain must alwas be nonnegative.,, θ 5. tan arcsec 7. 9 csc arctan + arcsec θ arctan θ tan 9 csc 9. (a) Let = g arctan (c) Asmptotes: ± tan sin sinarctan. +. arcsin. arcsin arccos sin sinarccos sin.7, θ

Section 5.6 Inverse Trigonometric Functions: Dierentiation 57 5. (a) arccsc arcsin, arctan arctan, > Let arccsc. Then or Let arctan arctan. Then, and < <, tan tanarctan tanarctan tanarctan tanarctan csc sin. Thus, arcsin. Thereore, arccsc arcsin. (which is undeined). Thus,. Thereore, arctan arctan. 7. arcsin 9. sin Domain: Range: sin,, is the graph o arcsin shited unit to the right. π π (, π ) π (, π ) π arcsec Domain: Range: sec sec,,,,,, (, π ( π (, (. arcsin. g arccos 5. arctan a g a a a a 7. g arcsin 9. ht sinarccos t t g 9 arcsin 9 arcsin 9 ht t t t t 5. arccos 5. arccos arccos ln arctan ln ln arctan d d 55. arcsin d d arcsin arcsin

58 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 57. 8 arcsin 6 59. arctan 6 6 8 6 6 6 6 6 6 6 6. arcsin,, 6. At,,. Tangent line: arctan,, At,,. Tangent line: 65. arccos,, At,,. arccos Tangent line: 67. arctan, a,.5 P = P..5..5..5,..5 P P 69. arcsin, a P P 6 6 P.5..5..5 P.5..5 9

Section 5.6 Inverse Trigonometric Functions: Dierentiation 59 7. arcsec 7. when 5 when or 5 ± ±.7 Relative maimum:.7,.66 Relative minimum:.7,.77 arctan arctan 8 6 B the First Derivative Test,,. is a relative maimum. 75. arctan At,, Tangent line: arctan, arctan 8 arctan. 8 8 6, 77. At arcsin arcsin,,,, Tangent line: 79. The trigonometric unctions are not one-to-one on,, so their domains must be restricted to intervals on which the are one-to-one. 8. arccot, < < cot 8. False arccos 85. True d arctan d > or all. tan since the range is,. So, graph the unction arctan or > and arctan or <. 87. True d arctantan sec d tan sec sec

6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 89. (a) cot 5 9. (a) ht 6t 56 d dt I arccot 5 d 5 dt 5 d 5 dt d dt 5 and, d 6 radhr. dt d I and, d 58.8 radhr. dt dt 6t 56 when t sec tan h 5 6t 56 5 arctan 6 d dt 5 t 6 8t5 5t 6 t 5,65 66 t h 5 θ When t, ddt.5 radsec. When t, ddt.6 radsec. 9. (a) tanarctan arctan Thereore, tanarctan tanarctan tanarctan tanarctan, arctan arctan arctan,. Let and. arctan arctan arctan 56 arctan 6 arctan 56 arctan 56 95. k sin k cos or k k cos or k Thereore, k sin is strictl monotonic and has an inverse or k or k. 97. (a) arccos arcsin (c) Let u arccos and v arcsin cos u and sin v. The graph o is the constant unction. u v sinu v sin u cos v sin v cos u Hence, u v. Thus, arccos arcsin.

Section 5.7 Inverse Trigonometric Functions: Integration 6 99.. sec, <, < (, ) (, ) θ θ θ (c, ) (, ) π π tan c, tan c, < c < To maimize, we minimize c c arctan c arctan c. (a) arcsec, or < or < c c c c c c c 8c 6 π π 8c 6 6 6 c B the First Derivative Test, c is a minimum. Hence, c, c, is a relative maimum or the angle. Checking the endpoints: c : tan.7 arcsec sec sec tan sec tan c : tan.7 c :.578 tan sec tan ±sec Thus,, is the absolute maimum. On < and <, tan. Section 5.7 Inverse Trigonometric Functions: Integration. 5 9 d 5 arcsin C. 7 6 d 7 arctan C 5. d d arcsec C 7. d d d d ln C (Use long division.) 9. d arcsin C. Let u t, du t dt. t t dt t t dt arcsint C

6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions. Let u e, du e d. 5. 7. e d e e d e arctan e C d d d ln arctan C d, u, u, d u du u u u du du arcsin u C u arcsin C 9. 5 9 d 9 d 8 9 d 9 8 arcsin C 6 8 arcsin C. Let u, du d. 6 9 d 5. Let u arcsin, du 6 d arcsin 6 d. arcsin d arcsin 8.8. Let u, du d. d 7. Let d arctan. 6 u, du d. d d 9. Let u cos, du sin d.. sin cos d sin cos d. arctancos ln 6 arctan C d d arctan 6 d 6 6 d 6 6 d 6 6 d 6 d 5. d d arcsin C 7. Let u, du d. d d C

Section 5.7 Inverse Trigonometric Functions: Integration 6 9. d d d d d arcsin.59 6. Let u, du d. d d arctan C. Let u e t. Then u e t, u du e t dt, and et dt u u du du 6 u du u du dt. u u u arctan C et arctan e t C 5. Let u, u, u du d, u. u du u u u du 9. (a) d arctanu d C, u 6 7. (a) d arcsin C, u d C, u (c) d cannot be evaluated using the basic integration rules. Let u. Then u and d u du. d u uu du u u du u 5 5 u u 5 C 5 5 C 5 C (c) Let u. Then u and d u du. d u u du u u du u u C uu C C Note: In and (c), substitution was necessar beore the basic integration rules could be used. 5 u C 5. Area 5. Matches (c),, ) C d arcsin C arcsin

6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 55. (a) 57. (a) 5 5 5 5 d d,, d arctan C, : arctan C C arctan (, ),, d arcsec C arcsec C C arcsec, 8 8 59. d d, 6. d d 6, 6 8 6. A arctan arctan arctan 8 5 d d 65. Area d arcsin arcsin arcsin 6 67. Area cos sin d cos d sin arctansin arctan arctan

Section 5.7 Inverse Trigonometric Functions: Integration 65 69. (a) d d ln ln arctan C Thus, A arctan d ln ln arctan ln arctan ln ln arctan ln ln 9.85 arctan arctan arctan arctan d ln ln arctan C. 7. (a) π Shaded area is given b arcsin d. arcsin d.578 (c) Divide the rectangle into two regions. Area rectangle baseheight Area rectangle arcsin d sin d arcsin d cos Hence, arcsin d arcsin d,.578. 7. F t dt (a) F represents the average value o over the interval,. Maimum at, since the graph is greatest on,. F arctan t F arctan arctan 5 5 5 when. d 75. False,9 6 arcsec C 77. True d d arccos C 79. d d arcsin u a C u u du Thus, a a u arcsin u C. a a u a u

66 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 8. Assume u >. d d a arcsec u a C a ua uaua a The case u < is handled in a similar manner. Thus, du uu a u uu a d a arcsec u C. a u uu a a u uu a. 8. (a) vt t 5 st vt dt t 5 dt (c) (e) 55 kv dv dt k arctan k v t C arctan k v kt C k v tanc k t v k tanc k t When t, v 5, C arctan5k, and we have vt k tan arctan 5 k k t. h 6.86 Simpson s Rule:, tanarctan5.5. t dt n ; h 88 eet () Air resistance lowers the maimum height. s 6 5 C C st 6t 5t When the object reaches its maimum height, vt. s5.65 65.65 55.65 (d) When k.: v(t, tanarctan5.5. t 5 6t 5t C vt t 5 t 5 t 5.65 96.5 t Maimum height vt when t 6.86 sec. 7 Section 5.8 Hperbolic Functions. (a) sinh e e.8 tanh sinh cosh e e e.96 e. (a) cschln e ln e ln cothln 5 coshln 5 5 sinhln 5 eln e ln 5 e ln 5 e ln 5 5 5 5 5

Section 5.8 Hperbolic Functions 67 5. (a) cosh ln.7 sech ln 9.96 7. e e tanh sech e e e e e e e e e e e e 9. sinh cosh cosh sinh e e e e e e e e e e e e e e e e e e e e sinh. sinh sinh sinh sinh e e e e e e e e e e e e e e e e e e e e sinh. sinh cosh cosh tanh csch sech coth cosh 5. sech 7. lnsinh 9. ln tanh sech tanh cosh coth sinh tanh sech sinh cosh csch sinh. h sinh. t arctansinh t h cosh cosh sinh t cosh t cosh t sech t sinh t cosh t

68 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 5. sinh,, 7. cosh Tangent line: cosh sinh,, cosh sinh sinh cosh At,,. Tangent line: 9. sin sinh cos cosh, ( π, cosh π) ( π, cosh π) sin cosh cos sinh cos sinh sin cosh sin cosh when, ±. Relative maima: ±, cosh Relative minimum:, (, ). g sech. a sinh g sech sech tanh sech tanh tanh a cosh a sinh a cosh Using a graphing utilit, ±.997. Thereore,. B the First Derivative Test,.997,.667 is a relative maimum and.997,.667 is a relative minimum. (.,.66) (.,.66) 5. tanh, 7. (a) sech, sech tanh, P P P 5 cosh, 5 5 5 At ±5, 5 cosh.6. P At, 5 cosh 5. sinh (c) At 5, sinh.75. 5. 9. Let u, du d. sinh d sinh d. Let u cosh, du sinh d. cosh sinh d cosh C cosh C

Section 5.8 Hperbolic Functions 69. Let u sinh, du cosh d. cosh sinh d ln sinh C 5. Let u, du d. csch d csch d coth C 7. Let u, du d. csch coth d csch coth d 9. Let u, du d. d d arctan C csch C 5. ln sinh tanh d ln d, u cosh 5. cosh lncosh ln lncoshln lncosh ln 5 ln 5 Note: coshln eln e ln 5 5 d 5 ln 5 5 d 5 d ln 9 5 ln 55. Let u, du d. 57. d d arcsin cosh 9 59. sinh tan 6. tan sec sec tanh sin cos sec sin 6. sinh sinh sinh 65. Answers will var. 67. lim sinh 69. lim sech sinh e 7. lim lim e 7. e d e e e d csch e C ln e e C

7 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 75. Let u, du d. d d sinh C ln C 77. d d ln ln C 79. d d d 6 ln ln C C 8. Let u, du d. 8. 8 8 6 d 8 d arcsin 9 C d d 6 ln C ln 5 C 5 d 5 d ln 5 C 85. A sech d 87. e e e d e d 8 arctane 8 arctane 5.7 5 d 5 d A 5 ln 5 ln 7 5.7 89. (a) ln.7 d sinh sinh.7 d ln

Section 5.8 Hperbolic Functions 7 9. k 6 dt d kt 6 d 6 ln 6 When : t C ln When : k 5 ln 7 6 6 C ln 8 t k 6 ln 7 ln ln 7 6 C When t : 6 5 ln 7 6 8 ln 8 ln 7 6 ln 8 8 9 8 6 8 6 6 5.677 kg 9. a sech a a, a > d d 95. Let a a tanh u. sinh u cosh u eu e u e u eu e u e u e u e u e u e u e u e u u ln u ln, < < a a a u tanh, < < 97. a a a a b e t dt et b b b eb eb eb e b sinhb 99. sech tanh sech. sech sech tanh sech sech sinh sinh cosh cosh sinh

7 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions. c cosh c Let P, be a point on the catenar. P(, ) sinh c The slope at P is sinh c. The equation o line L is (, c) L c. sinh c When c The length o L is sinh c c sinh, c. c sinh c c c cosh c, the ordinate o the point P. Review Eercises or Chapter 5. ln Vertical shit units upward Vertical asmptote: 5 = 5. ln 5 ln 5 5 ln ln ln 5. ln ln ln ln ln ln 7. ln ln e e e 5.598 9. g ln ln. g ln ln ln ln ln ln ln. ba b a lna b 5. d d bb ab a b a b ln,, Tangent line:

7. u 7, du 7 d 9. 7 7 d 7 7 d 7 ln 7 C. d d ln ln Review Eercises or Chapter 5 7 sin cos d sin cos d. ln cos C sec d ln sec tan ln 5. (a) 7 7. (a) 7 7 7 6, (c) 6 (c) 6 6 or. 9. (a) (c). 5 or 5 5.6 5. tan 5. (a) ln 6 sec 6 6 (c) ln e e e e ln e ln e ln e ln e ln e

7 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 7. e 9. 6 gt t e t gt t e t te t te t t. 5. 9. 5. e e. e e e e e e e e lne,, 7. Tangent line: e d 6 e 6 d 5. 6 e 6 e 6 e e d e d 55. e C g e g e e e e ln ln d d d d ln d d d d ln e e d e e e e d e e e C e e e Let u e, du e d. e e d e e d ln e lne lne ln e e lne e C 57. e a cos b sin e a sin b cos e a cos b sin e a b sin a b cos e a b cos a b sin e a b sin a b cos e 6a 8b sin 8a 6b cos e 6a 8b a b b sin 8a 6b a b a cos

Review Eercises or Chapter 5 75 59. Area e d e e6.5 6. 6. log 65. ln 6 5 5 6 7 67. ln ln 69. ln ln ln g log log g ln ln 7. 5 d ln 5 5 C 7. t 5 log 8, 8, h (a) Domain: t 8 h < 8, (c) t 5 log 8, 8, h t5 8, 8, h 6 h,, Vertical asmptote: h 8, 8, h 8, t5 h 8, t5 dh dt 6 ln t5 is greatest when t. 75. arctan 6

76 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 77. (a) Let arcsin Let arcsin sin sin arcsin sin. θ sin cos arcsin cos. 79. tanarcsin 8. arcsec arcsec 8. arcsin arcsin arcsin arcsin arcsin arcsin 85. Let u e, du e d. e e d e e d e e d arctane C 87. Let u, du d. d d arcsin C u arctan, du d. 89. Let arctan d arctan arctan C d 9. A d 9. d d arcsin arcsin.86 d A k m dt arcsin A k m t C Since when t, ou have C. Thus, sin k m t A A sin k m t. 95. tanh tanh tanh 97. Let u, du d. sech d sech d tanh C

Problem Solving or Chapter 5 77 Problem Solving or Chapter 5. tan tan 6 Minimize a 8.768 a.5 Endpoints: : a : a : 6 8.76 or 98.9. 6 9 8.79 9 6 6 Maimum is.76 at a 8.768. arctan arctan 6 9 6 6 ± 8 ± 8 θ θ θ a 6. (a) ln, (c) Let g ln, g, and g. From the deinition o derivative g g ln g lim lim. Thus, lim. lim 5..5 and. intersect. does not intersect. Suppose is tangent to a at,. a a. a ln a ln ln e, a e e For < a e e.5, the curve a intersects. =.5 6 = = =. 6 6

78 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 7. (a) arcsin sin Area A 6 Area B sin d cos 6.68 arcsin d AreaC 8 6 A B.589 8.6 (c) (d) Area A ln e d e ln Area B ln d ln A ln ln 7.958 tan Area A tan d ln cos ln ln ln ln π A Area C arctan d ln.688 ln π B = ln ln A e = B = arctan C 9. e e b e a a e a ae a b I : e a ae a b b ab b a c a Tangent line b e a Thus, a c a a.. Let u tan, du sec d. Area sin cos d du u sec tan d arctan u arctan. (a) u 985.9 985.9,.95.95 t v 985.9,.95.95 t u v 5 The larger part goes or interest. The curves intersect when t 7.7 ears. (c) The slopes are negatives o each other. Analticall, (d) u 985.9 v du dt dv dt u5 v5.6. t.7 ears Again, the larger part goes or interest.