Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Similar documents
Supporting Information:

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Supporting Information

Zn-Catalyzed Diastereo- and Enantioselective Cascade. Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles:

Supporting Information

Supporting Information

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Supporting Information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supplementary information

Supporting Information

Copper Mediated Fluorination of Aryl Iodides

Supplementary Figure 1. 1 H and 13 C NMR spectra for compound 1a

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Stereoselective Synthesis of (-) Acanthoic Acid

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Supporting Information

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Electronic Supplementary Information

Supporting Information

Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid-Catalyzed Symmetry Breaking

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004.

Supporting Information

Enantioselective Organocatalytic Michael Addition of Malonate Esters to Nitro Olefins Using Bifunctional Cinchonine Derivatives

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

A Total Synthesis of Paeoveitol

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Supporting information. Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex

Supporting Information

Supporting Information

Supporting Information

Supplementary Information

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Organocatalytic enantioselective Michael addition of a kojic acid derivative to nitro olefins. Supporting Information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles

Supporting Information

Supporting Information. Organocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a One-Pot Synthesis of -Amino Acid Esters

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Supporting Information

Asymmetric Michael Addition of -Fluoro- -nitroalkanes to Nitroolefins: Facile Preparation of Fluorinated Amines and Tetrahydropyrimidines

Supporting Information

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Supporting Information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Organocatalytic Asymmetric Friedel-Crafts Alkylation of Indoles with Simple α,β-unsaturated Ketones

Supporting Information

Supporting Information. Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Supporting Information

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol

Aminoacid Based Chiral N-Amidothioureas. Acetate Anion. Binding Induced Chirality Transfer

Suppporting Information

SUPPORTING INFORMATION

Supporting information

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supplementary Materials for

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Elaborately Tuning Intramolecular Electron Transfer Through Varying Oligoacene Linkers in the Bis(diarylamino) Systems

Supporting Information

Supporting Information

Supporting Information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Supporting Information for:

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine

Supporting Information

Table of Contents 1. General procedure for the chiral phosphoric acid catalyzed asymmetric reductive amination using benzothiazoline

Supporting Information

Singapore, #05 01, 28 Medical Drive, Singapore. PR China,

Supporting Information

Supporting Information

SUPPORTING INFORMATION. A simple asymmetric organocatalytic approach to optically active cyclohexenones

Supplementary Information

Electronic Supplementary Material

Chiral Sila[1]ferrocenophanes

Supporting Information

Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

Supporting Information

guanidine bisurea bifunctional organocatalyst

SUPPORTING INFORMATION

SUPPORTING INFORMATION

Supporting Information

Supporting Information

Supporting Information

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property

Synergistic Cu/Ir Catalysis. Table of Contents

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Transcription:

Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007

Asymmetric Friedel-Crafts Alkylations of Indoles with Ethyl Glyoxylate Catalyzed by (S)-BIL-Ti (IV) Complex: Direct Access to Enantiomerically Enriched 3-Indolyl-hydroxyacetates Hong-Ming Dong, Hai-Hua Lu, Liang-Qiu Lu, Cai-Bao Chen and Wen-Jing Xiao* The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China ormal University, 152 Luoyu Road, Wuhan, Hubei 430079, China wxiao@mail.ccnu.edu.cn Supporting Information Table of Contents General information S2 General procedures for the Friedel-Crafts reaction and data of 3a-l, 5, 7, 9 S2-S8 Determination of absolute stereochemistry of 3l S8-S17 MR spectra for compounds 3a-l, 5, 7, 9, 10 S18-S33 HPLC spectra for compounds 3a-l, 5, 7, 9, 10 S34-S43 S1

General Information 1 H MR spectra were recorded on 400 (400 MHz) spectrophotometers. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl 3 : 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = single, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz) and integration. 13 C MR spectra were recorded on 100 MHz with complete proton decoupling spectrophotometers (CDCl 3 : 77.0 ppm). Chiral HPLC was performed with chiral columns (Chirapak AS, AD and D columns, (Daicel Chemical Ind., Ltd.)). -Protected indoles and p-chlorophenyl glyoxal were prepared according to literature procedures. [1,2] The solvents were purified prior to use following the guidelines of Perrin and Armarego. [3] Petroleum ether and ethyl acetate for flash column chromatography were distilled before use. ther commercially available materials were used as received. Flash column chromatography was performed using 200-300 mesh silica gel. rganic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. General Procedure for Enantioselective Friedel-Crafts Reaction of Indoles with Ethyl Glyoxylate Catalyzed by (S)-BIL-Ti Complex To a 5-mL flask equipped with a magnetic stirrer, in which the air was replaced by nitrogen, was added (S)-BIL (28.6 mg, 0.1 mmol), diethyl ether (1 ml), and Ti( i Pr) 4 (14.9 μl, 0.05 mmol). The mixture was stirred at room temperature for 1 h. Then the resulting orange solution was cooled to the specific temperature, indoles (0.5 mmol) and ethyl glyoxylate (0.15 ml, 50% in toluene, 0.75 mmol) were introduced into the reaction system. After the completion of the reaction (monitored by TLC), H 2 (3 ml) and dichloromethane (5 ml) were added to the mixture. Insoluble material was filtered off through a pad of Celite, and the filtrate was extracted three times with dichloromethane. The combined organic layer was washed with brine, dried over MgS 4, and the solvent was removed under reduced pressure. The residue was submitted to flash chromatography separation on silica gel using petroleum S2

ether-ethyl acetate (3:1) as an eluent to give the corresponding Friedel-Crafts reaction product 3a-l. Ethyl 3-(1-metheyl)indolyl-hydroxylacetate (3a) Following the general procedure, compound 3a was obtained after 48 hr at -20 C as a colorless oil in 88% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.69 (d, J = 8 Hz, 1H), 7.30-7.10 (m, 4H), 5.44 (s, 1H), 4.31-4.25 (m, 1H), 4.20-4.12 (m, 1H), 3.73 (br, 1H), 3.33 (br, 1H), 1.22 (t, J = 7.2 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ) δ 174.1, 137.2, 127.7, 125.8, 122.0, 119.6, 119.5, 112.2, 109.4, 67.1, 60.9, 32.8, 14.0. MS (EI) m/z 232.9 (rel intensity). Chiral HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 75:25, 1.0 ml/min, λ = 254 nm) indicated 90% ee, t minor = 12.8 min, t major = 11.2 min. Allyl Ethyl 3-(1-allyl)indolyl-hydroxylacetate (3b) Following the general procedure, compound 3b was obtained after 45 hr at -20 C as a colorless oil in 72% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.71 (d, J = 8 Hz, 1H), 7.32-7.11 (m, 4H), 6.01-5.94 (m, 1H), 5.45 (d, J = 4 Hz, 1H), 5.23-5.09 (m, 2H), 4.70-4.68 (m, 2H), 4.32-4.15 (m, 2H), 3.28 (d, J = 4.4 Hz, 1H), 1.33-1.11 (t, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 174.1, 136.7, 133.0, 126.7, 126.1, 122.1, 119.8, 119.6, 117.7, 112.7, 109.8, 67.2, 62.0, 48.9, 14.1. MS (EI) m/z 259.0 (rel intensity). Chiral HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 75:25, 1.0 ml/min, λ = 254 nm) indicated 90% ee, t minor = 12.1 min, t major = 9.9 min. Ethyl 3-(1-phenyl)indolyl-hydroxylacetate (3c) Following the general procedure, compound 3c was obtained Bn after 64 hr at -20 C as a colorless oil in 86% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.73 (d, J = 8 Hz, 1H), 7.29-7.10 (m, 9H), 5.46 (d, J = 5.6 Hz, 1H), 5.26 (s, 2H), 4.32-4.24 (m, H), 4.21-4.13 (m, 1H), 3.30 (d, J = 5.6 Hz, 1H), 1.21 (t, J = 7.0 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 174.0, S3

136.9(4), 136.8(8), 127.7, 127.1, 126.9, 126.1, 122.3, 119.9, 119.7, 113.0, 109.9, 67.2, 62.0, 50.1, 14.0. MS (EI) m/z 309.1 (rel intensity). Chiral HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 75:25, 1.0 ml/min, λ = 254 nm) indicated 91% ee, t minor = 19.3 min, t major = 14.7 min. Ethyl 3-indolyl-hydroxylacetate (3d) Following the general procedure, compound 3d was obtained H after 48 hr at -20 C as a colorless oil in 72% yield. 1 H MR (400 MHz, CDCl 3 ): δ 8.23 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.26-7.14 (m, 3H), 5.47 (d, J = 5.2 Hz, 1H), 4.32-4.26 (m, 1H), 4.21-4.15 (m, 1H), 3.33 (d, J = 5.6 Hz, 1H), 1.22 (t, J = 7.0 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 174.0, 136.4, 125.2, 123.4, 122.4, 120.0, 119.3, 113.5, 111.4, 67.2, 62.0, 14.0. MS (EI) m/z 218.9 (rel intensity). HPLC analysis (Chiralpak AS column, n-hexane/i-prh = 80:20, 1.0 ml/min, λ = 254 nm) indicated 84% ee, t minor = 20.1 min, t major = 12.5 min. Ethyl 3-(1-metheyl-5-bromo)indolyl-hydroxylacetate Br (3e) Following the general procedure, compound 3e was obtained after 72 hr at -20 C as a colorless oil in 71% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.56 (d, J = 8 Hz, 1H), 7.23-7.04 (m, 3H), 5.41 (s, 1H), 4.28-4.21 (m, 1H), 4.15-4.09 (m, 1H), 3.59 (s, 1H), 3.37 (br, 1H), 2.42 (s, 1H), 1.16 (t, J = 7.0 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 173.7, 135.9, 128.7, 127.4, 124.9, 122.2, 113.1, 111.9, 110.9, 67.0, 62.2, 33.0, 14.0. MS (EI) m/z 312.9 (rel intensity). HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 90:10, 1.0 ml/min, λ = 254 nm) indicated 90% ee, t minor = 30.4 min, t major = 26.7 min. F Ethyl (3f) 3-(1-metheyl-5-fluoro)indolyl-hydroxylacetate S4

Following the general procedure, compound 3f was obtained after 54 hr at -20 C as a colorless oil in 80% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.36-6.93 (m, 4H), 5.66-4.96 (m, 1H), 4.29-4.13 (m, 2H), 3.73-3.66 (m, 2H), 1.26-1.19 (m, 3H); 13 C MR (100 MHz, CDCl 3 ): δ 173.8, 159.0, 156.6, 133.8, 129.2, 126.1, 126.0, 112.1, 110.5, 110.3, 110.2, 110.1, 104.6, 104.4, 67.0, 62.2, 33.0, 14.0; MS (EI) m/z 250.9 (rel intensity). HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 90:10, 1.0 ml/min, λ = 254 nm) indicated 92% ee, t minor = 31.0 min, t major = 26.3 min. Ethyl 3-(1-allyl-6-chloro)indolyl-hydroxylacetate (3g) Following the general procedure, compound 3g was Cl Allyl obtained after 60 hr at -20 C as a colorless oil in 70% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.61 (d, J = 8.4 Hz, 1H), 7.29-7.08 (m, 3H), 6.00-5.93 (m, 1H), 5.41 (s, 1H), 5.24 (d, J = 5.2 Hz, 2H), 5.11 (d, J = 17.2 Hz, 1H), 4.65 (d, J = 5.2 Hz, 2H), 4.33-4.25 (m, 1H), 4.23-4.15 (m, 1H), 3.29 (br, 1H), 1.22 (t, J = 7.2 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 173.7, 137.0, 132.5, 128.0, 127.3, 124.5, 120.6, 120.3, 117.8, 112.9, 109.8, 66.9, 61.9, 48.8, 13.9. MS (EI) m/z 292.9 (rel intensity). HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 80:20, 1.0 ml/min, λ = 254 nm) indicated 92% ee, t minor = 15.8 min, t major = 11.1 min. Et thyl 3-(2-ethoxy-1-hydroxy-2-oxoethyl)-1-methylindole-5-carboxylate (3h) Following the general procedure, compound 3h was obtained after 72 hr at -20 C as a colorless oil in 81% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.17-6.87 (m, 4H), 5.40 (s, 1H), 4.30-4.26 (m, 1H), 4.20-4.14 (m, 1H), 3.83 (s, 3H), 3.67 (s, 3H), 3.38 (br, 1H), 1.22 (t, J = 7.2 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 173.9, 154.1, 153.7, 132.5, 128.1, 126.1, 112.4, 111.6, 110.2, 101.0, 67.8, 61.8, 55.7, 32.8, 14.0. MS (EI) m/z 291.0 (rel intensity). HPLC analysis (Chiralpak AS column, n-hexane/i-prh = 80:20, 1.0 ml/min, λ = 254 nm) indicated 80% ee, t minor = 36.7 min, t major = 22.7 min. S5

Et Ethyl 3-(1-metheyl-5-methoxy)indolyl-hydroxylacetate (3i) Following the general procedure, compound 3i was Allyl obtained after 72 hr at -20 C as a colorless oil in 64% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.26-7.03 (m, 3H), 6.89-6.84 (m, 1H), 5.98-5.94 (m, 1H), 5.40 (d, J = 16 Hz, 1H), 5.22-5.04 (m, 2H), 4.67-4.62 (m, 2H), 4.31-4.17 (m, 2H), 3.90 (s, 2H), 3.86-3.79 (m, 2H), 1.40-1.21(m, 3H); 13 C MR (100 MHz, CDCl 3 ): δ 174.0, 154.2, 132.5, 128.1, 126.2, 112.5, 111.7, 110.2, 101.0, 67.1, 61.9, 55.8, 32.9, 29.6, 14.1; MS (EI) m/z 289.2 (rel intensity). HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 80:20, 1.0 ml/min, λ = 254 nm) indicated 87% ee, t minor = 17.5 min, t major = 14.9 min. Ethyl 3-(1, 5-dimetheyl)indolyl-hydroxylacetate (3j) Following the general procedure, compound 3j was obtained after 60 hr at -40 C as a colorless oil in 75% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.48 (s, 1H), 7.24-7.05 (m, 3H), 5.41 (s, 1H), 4.32-4.28 (m, 1H), 4.20-4.14 (m, 1H), 3.71 (s, 3H), 3.22 (br, 1H), 1.23 (t, J = 7.0 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 174.1, 135.7, 129.0, 127.7, 126.1, 123.7, 119.1, 111.6, 109.1, 67.2, 61.9, 32.8, 21.4, 14.5. MS (EI) m/z 247.0 (rel intensity). HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 80:20, 1.0 ml/min, λ = 254 nm) indicated 66% ee, t minor = 14.4 min, t major = 13.3 min. Ethyl 3-(1, 2-dimetheyl)indolyl-hydroxylacetate (3k) Following the general procedure, compound 3k was obtained after 55 hr at -20 C as a colorless oil in 70% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.56 (d, J = 8.0 Hz, 1H), 7.23-7.04 (m, 3H), 5.41 (s, 1H), 4.28-4.21 (m, 1H), 4.15-4.09 (m, 1H), 3.59 (s, 3H), 3.37 (s, 1H), 2.42 (s, 3H), 1.16 (t, J = 7.0 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 174.4, 136.6, 135.6, 125.5, 121.0, 119.6, 118.3, 108.7, 108.2, 66.5, 61.8, 29.4, 14.0, 10.3. MS (EI) m/z 246.9 (rel intensity). HPLC analysis (Chiralpak AD column, n-hexane/i-prh = S6

90:10, 1.0 ml/min, λ = 254 nm) indicated 66% ee, t minor = 27.2 min, t major = 23.3 min. Br Bn Ethyl 3-(1- phenyl -5-bromo)indolyl-hydroxylacetate (3l) Following the general procedure, compound 3e was obtained after 96 hr at -20 C as a white solid in 64% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.87 (d, J = 1.6 Hz, 1H), 7.31-7.09 (m, 9H), 5.41 (d, J = 4 Hz, 1H), 5.26 (s, 2H), 4.33-4.19 (m, 2H), 3.32 (d, J = 4.8 Hz, 1H), 1.25 (t, J = 14.4 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 173.7, 136.4, 135.5, 128.8, 128.1, 127.9, 127.7, 126.8, 125.1, 122.4, 113.3, 112.5, 111.4, 67.0, 62.2, 50.3, 14.0. MS (EI) m/z 389.1 (rel intensity). HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 70:30, 1.0 ml/min, λ = 254 nm) indicated 96% ee, t minor = 26.4 min, t major = 15.3 min. CF 3 C thyl 2-[3-(1-methyl)]indolyl-2-hydroxy-trifluoro propionate (5) Following the general procedure, compound 5 was obtained after 40 hr at -20 C as a colorless oil in 88% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.84 (d, J = 8.0 Hz, 1H), 7.30-7.21 (m, 3H), 4.34 (s, 1H), 3.91 (s, 3H), 3.74 (s, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 167.0, 137.1, 128.7, 125.6, 124.9, 122.2, 120.9, 120.2, 109.5, 106.6, 54.4, 32.9; MS (EI) m/z 287.0 (rel intensity). HPLC analysis (Chiralpak D column, n-hexane/i-prh = 90:10, 1.0 ml/min, λ = 254 nm) indicated 10% ee, t minor = 16.8 min, t major = 12.3 min. CH 3 thyl 2, 2-bis[3-(1-methyl)]indolyl-propionate (7) Following the general procedure, compound 7 was obtained after 60 hr at -20 C as a white solid in 99% yield. 1 H MR (400 MHz, CDCl 3 ): δ 7.51 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.22-7.17 (m, 2H), 7.03-7.00 (t, 2H), 6.83 (s, 2H), 3.70 (s, 6H), 3.66 (s, 3H), 2.11 (s, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 176.0, 137.5, 127.5, S7

126.4, 121.3, 118.7, 117.5, 109.2, 52.2, 46.1, 32.7, 26.2; MS (EI) m/z 366.4 (rel intensity). Cl Bis[3-(1-methyl)]indolyl-p-chloroacetophenone (9) Following the general procedure, compound 9 was obtained after 18 hr at -20 C as a white solid in 97% yield. 1 H MR (400 MHz, CDCl 3 ): δ 8.04 (d, J = 8.8 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.31-7.23 (m, 5H), 7.09 (s, 1H), 6.86 (s, 1H), 6.44 (s, 1H), 3.70 (s, 6H). 13 C MR (100 MHz, CDCl 3 ): δ 197.3, 139.2, 137.3, 135.2, 130.2, 128.9, 128.5, 126.9, 121.8, 119.2, 118.9, 112.4, 109.4, 41.9, 32.8; MS (EI) m/z 412.6 (rel intensity). Determination of absolute stereochemistry: Br Bn C 2 Et CH 3 H 2 /CH 3 H rt Br Bn 3l 10 (S)-2-(1-benzyl-5-bromo-1H-indol-3-yl)-2-hydroxy--methylacetamide 3l (98% ee, 0.5 mmol) was dissolved in H 2 methanol soultion (5 ml, 32%), sealed and the mixture was stirred at rt for 14 h. The solution was then concentrated under reduced pressure, which is subjeted to flash chromatography to afford the title compoud (10) as a white solid. 1 H MR (400 MHz, CDCl 3 ): δ 8.05 (d, J = 4.8 Hz, 1H), 7.86 (d, J = 1.6 Hz, 1H), 7.46-7.19 (m, 9H), 5.96 (d, J = 4 Hz, 1H), 5.38 (s, 2H), 5.12 (d, J = 4.4 Hz, 1H), 2.64 (d, J = 4.4 Hz, 3H). 13 C MR (100 MHz, CDCl 3 ): δ 172.7, 137.9, 134.9, 128.8, 128.6, 128.1, 127.5, 127.2, 123.7, 122.6, 114.8, 112.2, 111.7, 67.9, 49.1, 25.5. MS (EI) m/z 373.8 (rel intensity). HPLC analysis (Chiralpak AD column, n-hexane/i-prh = 70:30, 1.0 ml/min, λ = 254 nm) indicated >99% ee, t minor = 8.9 min, t major = 17.4 min. H S8

Br H H H 10 Table 1. Crystal data and structure refinement for 10. Identification code 10 Empirical formula C18 H17 Br 2 2 Formula weight 373.25 Temperature 296(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P 21 Unit cell dimensions a = 4.5759(6) Å α= 90. b = 9.4134(11) Å β= 95.049(2). c = 18.540(2) Å γ = 90. Volume 795.51(17) Å 3 Z 2 Density (calculated) 1.558 Mg/m 3 Absorption coefficient 2.595 mm -1 F(000) 380 Crystal size 0.20 x 0.20 x 0.10 mm 3 Theta range for data collection 2.21 to 27.99. Index ranges -6<=h<=5, -11<=k<=12, -22<=l<=24 Reflections collected 5321 Independent reflections 3482 [R(int) = 0.0205] Completeness to theta = 27.99 98.6 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7814 and 0.6249 S9

Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3482 / 1 / 215 Goodness-of-fit on F 2 0.945 Final R indices [I>2sigma(I)] R1 = 0.0287, wr2 = 0.0608 R indices (all data) R1 = 0.0366, wr2 = 0.0627 Absolute structure parameter 0.015(7) Largest diff. peak and hole 0.401 and -0.323 e.å -3 Table 2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for t. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Br(1) 11469(1) -3199(1) 7371(1) 64(1) C(1) 6534(6) 39(3) 8158(1) 39(1) C(2) 8019(6) -1216(3) 8073(1) 43(1) C(3) 9654(6) -1411(3) 7480(1) 39(1) C(4) 9924(5) -383(2) 6965(1) 34(1) C(5) 8429(5) 900(2) 7037(1) 30(1) C(6) 6757(5) 1082(3) 7638(1) 32(1) C(7) 8163(5) 2179(2) 6626(1) 32(1) C(8) 6355(5) 3059(3) 6971(1) 36(1) C(9) 3612(5) 3018(3) 8100(1) 40(1) C(10) 5304(5) 3531(3) 8781(1) 36(1) C(11) 7243(6) 4648(3) 8761(1) 48(1) C(12) 8776(7) 5135(4) 9376(2) 69(1) C(13) 8399(8) 4520(5) 10034(2) 76(1) C(14) 6496(9) 3411(4) 10071(2) 73(1) C(15) 4936(7) 2922(3) 9443(1) 55(1) C(16) 9457(5) 2509(2) 5930(1) 35(1) C(17) 7595(5) 1810(3) 5307(1) 34(1) C(18) 3941(7) 2177(3) 4284(1) 54(1) (1) 5491(5) 2407(2) 7579(1) 36(1) (2) 5881(5) 2677(2) 4890(1) 40(1) (1) 9600(4) 4007(2) 5866(1) 47(1) (2) 7673(4) 508(2) 5222(1) 47(1) S10

Table 3. Bond lengths [Å] and angles [ ] for t. Br(1)-C(3) 1.895(2) C(1)-C(2) 1.378(4) C(1)-C(6) 1.386(3) C(1)-H(1A) 0.9300 C(2)-C(3) 1.397(4) C(2)-H(2) 0.9300 C(3)-C(4) 1.372(3) C(4)-C(5) 1.400(3) C(4)-H(4) 0.9300 C(5)-C(6) 1.416(3) C(5)-C(7) 1.425(3) C(6)-(1) 1.375(3) C(7)-C(8) 1.369(3) C(7)-C(16) 1.498(3) C(8)-(1) 1.371(3) C(8)-H(8) 0.9300 C(9)-(1) 1.467(3) C(9)-C(10) 1.500(3) C(9)-H(9A) 0.9700 C(9)-H(9B) 0.9700 C(10)-C(11) 1.378(4) C(10)-C(15) 1.380(3) C(11)-C(12) 1.363(4) C(11)-H(11) 0.9300 C(12)-C(13) 1.376(5) C(12)-H(12) 0.9300 C(13)-C(14) 1.365(5) C(13)-H(13) 0.9300 C(14)-C(15) 1.389(5) C(14)-H(14) 0.9300 C(15)-H(15) 0.9300 C(16)-(1) 1.418(3) C(16)-C(17) 1.524(3) C(16)-H(16) 0.9800 C(17)-(2) 1.236(4) C(17)-(2) 1.331(3) S11

C(18)-(2) 1.448(3) C(18)-H(18A) 0.9600 C(18)-H(18B) 0.9600 C(18)-H(18C) 0.9600 (2)-H(2A) 0.87(3) (1)-H(1) 0.91(4) C(2)-C(1)-C(6) 117.5(2) C(2)-C(1)-H(1A) 121.3 C(6)-C(1)-H(1A) 121.3 C(1)-C(2)-C(3) 120.4(2) C(1)-C(2)-H(2) 119.8 C(3)-C(2)-H(2) 119.8 C(4)-C(3)-C(2) 122.9(2) C(4)-C(3)-Br(1) 119.02(18) C(2)-C(3)-Br(1) 118.10(18) C(3)-C(4)-C(5) 117.9(2) C(3)-C(4)-H(4) 121.1 C(5)-C(4)-H(4) 121.1 C(4)-C(5)-C(6) 118.8(2) C(4)-C(5)-C(7) 134.2(2) C(6)-C(5)-C(7) 107.0(2) (1)-C(6)-C(1) 129.9(2) (1)-C(6)-C(5) 107.5(2) C(1)-C(6)-C(5) 122.6(2) C(8)-C(7)-C(5) 106.69(19) C(8)-C(7)-C(16) 125.3(2) C(5)-C(7)-C(16) 127.91(19) C(7)-C(8)-(1) 110.1(2) C(7)-C(8)-H(8) 125.0 (1)-C(8)-H(8) 125.0 (1)-C(9)-C(10) 113.0(2) (1)-C(9)-H(9A) 109.0 C(10)-C(9)-H(9A) 109.0 (1)-C(9)-H(9B) 109.0 C(10)-C(9)-H(9B) 109.0 H(9A)-C(9)-H(9B) 107.8 C(11)-C(10)-C(15) 118.0(2) S12

C(11)-C(10)-C(9) 120.7(2) C(15)-C(10)-C(9) 121.3(2) C(12)-C(11)-C(10) 121.3(3) C(12)-C(11)-H(11) 119.3 C(10)-C(11)-H(11) 119.3 C(11)-C(12)-C(13) 120.3(3) C(11)-C(12)-H(12) 119.9 C(13)-C(12)-H(12) 119.9 C(14)-C(13)-C(12) 119.8(3) C(14)-C(13)-H(13) 120.1 C(12)-C(13)-H(13) 120.1 C(13)-C(14)-C(15) 119.6(3) C(13)-C(14)-H(14) 120.2 C(15)-C(14)-H(14) 120.2 C(10)-C(15)-C(14) 121.0(3) C(10)-C(15)-H(15) 119.5 C(14)-C(15)-H(15) 119.5 (1)-C(16)-C(7) 107.67(18) (1)-C(16)-C(17) 113.1(2) C(7)-C(16)-C(17) 109.08(18) (1)-C(16)-H(16) 109.0 C(7)-C(16)-H(16) 109.0 C(17)-C(16)-H(16) 109.0 (2)-C(17)-(2) 123.8(2) (2)-C(17)-C(16) 120.3(2) (2)-C(17)-C(16) 116.0(2) (2)-C(18)-H(18A) 109.5 (2)-C(18)-H(18B) 109.5 H(18A)-C(18)-H(18B) 109.5 (2)-C(18)-H(18C) 109.5 H(18A)-C(18)-H(18C) 109.5 H(18B)-C(18)-H(18C) 109.5 C(8)-(1)-C(6) 108.7(2) C(8)-(1)-C(9) 126.5(2) C(6)-(1)-C(9) 124.8(2) C(17)-(2)-C(18) 122.7(2) C(17)-(2)-H(2A) 121(2) C(18)-(2)-H(2A) 116(2) S13

C(16)-(1)-H(1) 106(2) Symmetry transformations used to generate equivalent atoms: Table 4. Anisotropic displacement parameters (Å 2 x 10 3 ) for t. The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Br(1) 78(1) 35(1) 81(1) 14(1) 20(1) 15(1) C(1) 49(2) 39(1) 31(1) 2(1) 8(1) -6(1) C(2) 58(2) 37(1) 35(1) 11(1) 2(1) -3(1) C(3) 44(1) 30(1) 43(1) 2(1) -1(1) 3(1) C(4) 36(1) 33(1) 33(1) -3(1) 2(1) 0(1) C(5) 32(1) 31(1) 26(1) -3(1) 1(1) -5(1) C(6) 36(1) 32(1) 26(1) -2(1) 0(1) -4(1) C(7) 37(1) 28(1) 30(1) -1(1) 2(1) -2(1) C(8) 44(1) 30(1) 33(1) -1(1) 1(1) 2(1) C(9) 38(1) 44(1) 40(1) -2(1) 8(1) 4(1) C(10) 41(1) 35(1) 35(1) -5(1) 10(1) 6(1) C(11) 53(2) 47(2) 45(1) -6(1) 5(1) -3(1) C(12) 58(2) 65(2) 81(2) -26(2) -5(2) -4(2) C(13) 78(2) 86(3) 58(2) -34(2) -21(2) 36(2) C(14) 113(3) 77(3) 31(2) 4(2) 10(2) 44(2) C(15) 75(2) 50(2) 41(2) 3(1) 21(1) 6(2) C(16) 40(1) 29(1) 37(1) 3(1) 7(1) 0(1) C(17) 46(1) 29(1) 28(1) 2(1) 14(1) 2(1) C(18) 66(2) 58(2) 36(1) 4(1) -4(1) -1(1) (1) 43(1) 36(1) 30(1) -2(1) 7(1) 1(1) (2) 55(1) 32(1) 33(1) 2(1) 3(1) 2(1) (1) 68(1) 30(1) 45(1) 3(1) 15(1) -10(1) (2) 72(1) 28(1) 41(1) -3(1) 5(1) 5(1) S14

Table 5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for t. x y z U(eq) H(1A) 5425 180 8548 47 H(2) 7932-1936 8414 52 H(4) 11062-534 6580 41 H(8) 5795 3967 6817 43 H(9A) 2210 2306 8225 48 H(9B) 2518 3806 7874 48 H(11) 7512 5078 8320 58 H(12) 10081 5887 9350 83 H(13) 9437 4858 10453 91 H(14) 6246 2985 10514 88 H(15) 3624 2173 9470 65 H(16) 11449 2120 5951 42 H(18A) 5083 1786 3921 81 H(18B) 2787 2955 4081 81 H(18C) 2667 1457 4446 81 H(1) 10880(80) 4180(40) 5528(18) 81 H(2A) 5720(70) 3580(30) 4998(16) 65 Table 6. Torsion angles [ ] for t. C(6)-C(1)-C(2)-C(3) -0.5(4) C(1)-C(2)-C(3)-C(4) 1.3(4) C(1)-C(2)-C(3)-Br(1) -176.7(2) C(2)-C(3)-C(4)-C(5) -1.4(4) Br(1)-C(3)-C(4)-C(5) 176.59(17) C(3)-C(4)-C(5)-C(6) 0.8(3) C(3)-C(4)-C(5)-C(7) -179.7(2) C(2)-C(1)-C(6)-(1) 178.8(2) C(2)-C(1)-C(6)-C(5) 0.0(4) C(4)-C(5)-C(6)-(1) -179.2(2) C(7)-C(5)-C(6)-(1) 1.2(2) S15

C(4)-C(5)-C(6)-C(1) -0.1(3) C(7)-C(5)-C(6)-C(1) -179.7(2) C(4)-C(5)-C(7)-C(8) 179.5(2) C(6)-C(5)-C(7)-C(8) -1.0(3) C(4)-C(5)-C(7)-C(16) 2.1(4) C(6)-C(5)-C(7)-C(16) -178.3(2) C(5)-C(7)-C(8)-(1) 0.4(3) C(16)-C(7)-C(8)-(1) 177.8(2) (1)-C(9)-C(10)-C(11) 65.1(3) (1)-C(9)-C(10)-C(15) -116.1(3) C(15)-C(10)-C(11)-C(12) 0.5(4) C(9)-C(10)-C(11)-C(12) 179.4(3) C(10)-C(11)-C(12)-C(13) -0.3(5) C(11)-C(12)-C(13)-C(14) 0.4(5) C(12)-C(13)-C(14)-C(15) -0.6(5) C(11)-C(10)-C(15)-C(14) -0.7(4) C(9)-C(10)-C(15)-C(14) -179.5(2) C(13)-C(14)-C(15)-C(10) 0.7(4) C(8)-C(7)-C(16)-(1) 25.1(3) C(5)-C(7)-C(16)-(1) -158.0(2) C(8)-C(7)-C(16)-C(17) -97.9(3) C(5)-C(7)-C(16)-C(17) 78.9(3) (1)-C(16)-C(17)-(2) 167.5(2) C(7)-C(16)-C(17)-(2) -72.7(3) (1)-C(16)-C(17)-(2) -14.3(3) C(7)-C(16)-C(17)-(2) 105.5(2) C(7)-C(8)-(1)-C(6) 0.4(3) C(7)-C(8)-(1)-C(9) 178.4(2) C(1)-C(6)-(1)-C(8) -180.0(2) C(5)-C(6)-(1)-C(8) -1.0(2) C(1)-C(6)-(1)-C(9) 1.9(4) C(5)-C(6)-(1)-C(9) -179.1(2) C(10)-C(9)-(1)-C(8) -101.6(3) C(10)-C(9)-(1)-C(6) 76.2(3) (2)-C(17)-(2)-C(18) -0.7(3) C(16)-C(17)-(2)-C(18) -178.8(2) Symmetry transformations used to generate equivalent atoms: S16

References 1. (a) ttoni,.; Cruz, R.; Alves, R. Terahedron 1998, 54, 13928. (b) Heaney, H.; Ley, S. V. rg. synth. 1977, 54, 58. 2. (a) Kornblum,.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H..; Levand,.; Weaver, W. M. J. Am. Chem. Soc. 1957, 79, 6562. (b) Bauer, D. P.; Macomber, R. S. J. rg. Chem. 1975, 40, 1990. 3. Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals; Fourth ed.; Butterworth-Heinemann: xford, 1996. S17

MR Spectra 3a Ethyl 3-(1-metheyl)indolyl-hydroxyacetate S18

Allyl 3b Ethyl 3-(1-allyl)indolyl-hydroxyacetate S19

Bn 3c Ethyl 3-(1-phenyl)indolyl-hydroxyacetate S20

H 3d Ethyl 3-indolyl-hydroxyacetate S21

Br 3e Ethyl 3-(1-metheyl-5-bromo)indolyl-hydroxyacetate S22

F 3f Ethyl 3-(1-metheyl-5-fluoro)indolyl-hydroxyacetate S23

Cl Allyl 3g Ethyl 3-(1-metheyl-6-chloro)indolyl-hydroxyacetate S24

Et thyl 3-(2-ethoxy-1-hydroxy-2-oxoethyl)-1-methyl-indole-5-carboxylate 3h S25

Allyl 3i Et Ethyl 3-(1-metheyl-5-methoxy)indolyl-hydroxyacetate S26

3j Ethyl 3-(1, 5-dimetheyl)indolyl-hydroxyacetate S27

3k Ethyl 3-(1, 2-dimetheyl)indolyl-hydroxyacetate S28

Br Bn 3l Ethyl 3-(1- phenyl -5-bromo)indolyl-hydroxylacetate S29

5 CF 3 C 2 thyl 2-[3-(1-methyl)]indolyl-2-hydroxy-trifluoro propionate S30

CH 3 thyl 2, 2-bis[3-(1-methyl)]indolyl-propionate 7 S31

Cl Bis[3-(1-methyl)]indolyl-p-chloroacetophenone 9 S32

Br Bn 10 H (S)-2-(1-benzyl-5-bromo-1H-indol-3-yl)-2-hydroxy--methylacetamide S33

HPLC Spectra HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 75:25, 1.0 ml/min, λ 254 nm racemic 3a HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 75:25, 1.0 ml/min, λ 254 nm 3a HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 75:25, 1.0 ml/min, λ 254 nm Allyl racemic 3b S34

HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 75:25, 1.0 ml/min, λ 254 nm Allyl 3b HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 75:25, 1.0 ml/min, λ 254 nm Bn racemic 3c HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 75:25, 1.0 ml/min, λ 254 nm Bn 3c S35

HPLC Conditions: Daicel chiralpak AS, Hexane:IPA, 80:20, 1.0 ml/min, λ 254 nm H racemic 3d HPLC Conditions: Daicel chiralpak AS, Hexane:IPA, 80:20, 1.0 ml/min, λ 254 nm H 3d HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 90:10, 1.0 ml/min, λ 254 nm Br racemic 3e S36

HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 90:10, 1.0 ml/min, λ 254 nm Br 3e HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 90:10, 1.0 ml/min, λ 254 nm F racemic 3f HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 90:10, 1.0 ml/min, λ 254 nm F 3f S37

HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 80:20, 1.0 ml/min, λ 254 nm Cl Allyl racemic 3g HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 80:20, 1.0 ml/min, λ 254 nm Cl Allyl 3g HPLC Conditions: Daicel chiralpak AS, Hexane:IPA, 80:20, 1.0 ml/min, λ 254 nm Et racemic 3h S38

HPLC Conditions: Daicel chiralpak AS, Hexane:IPA, 80:20, 1.0 ml/min, λ 254 nm Et 3h HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 80:20, 1.0 ml/min, λ 254 nm Allyl Et racemic 3i HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 90:10, 1.0 ml/min, λ 254 nm Allyl Et 3i S39

HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 80:20, 1.0 ml/min, λ 254 nm racemic 3j HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 80:20, 1.0 ml/min, λ 254 nm 3j HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 90:10, 1.0 ml/min, λ 254 nm racemic 3k S40

HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 90:10, 1.0 ml/min, λ 254 nm 3k HPLC Conditions: Daicel chiralpak AD, Hexane:IPA,70:30, 1.0 ml/min, λ 254 nm Br Bn racemic 3l HPLC Conditions: Daicel chiralpak AD, Hexane:IPA,70:30, 1.0 ml/min, λ 254 nm Br Bn 3l S41

HPLC Conditions: Daicel chiralpak D, Hexane:IPA, 90:10, 1.0 ml/min, λ 254 nm CF 3 C racemic 5 HPLC Conditions: Daicel chiralpak D, Hexane:IPA, 90:10, 1.0 ml/min, λ 254 nm CF 3 C 5 HPLC Conditions: Daicel chiralpak AD, Hexane:IPA,70:30, 1.0 ml/min, λ 254 nm Br Bn H racemic 10 S42

HPLC Conditions: Daicel chiralpak AD, Hexane:IPA,70:30, 1.0 ml/min, λ 254 nm Br Bn H 10 HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 75:25, 1.0 ml/min, λ 254 nm 20 mmol % (R)-6,6 -Br 2 -BIL was used HPLC Conditions: Daicel chiralpak AD, Hexane:IPA, 75:25, 1.0 ml/min, λ 254 nm 20 mmol % (S)-H 8 -BIL was used S43